Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS...

110
CAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides Computer-Aided Design for Micro-Electro-Mechanical Systems Eigenvalues, Energy Losses, and Dick Tracy Watches D. Bindel Computer Science Division Department of EECS University of California, Berkeley UC Davis, 9 Mar 2006

Transcript of Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS...

Page 1: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Computer-Aided Design forMicro-Electro-Mechanical Systems

Eigenvalues, Energy Losses, and Dick Tracy Watches

D. Bindel

Computer Science DivisionDepartment of EECS

University of California, Berkeley

UC Davis, 9 Mar 2006

Page 2: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

The Computational Science Picture

Application modelingCheckerboard resonatorDisk resonatorShear ring resonator

Mathematical analysisPhysical modeling and finite element technologyStructured eigenproblems and reduced-order modelsParameter-dependent eigenproblems

Software engineeringHiQLabSUGARFEAPMEX

Page 3: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

The Computational Science Picture

Application modelingCheckerboard resonatorDisk resonatorShear ring resonator

Mathematical analysisPhysical modeling and finite element technologyStructured eigenproblems and reduced-order modelsParameter-dependent eigenproblems

Software engineeringHiQLabSUGARFEAPMEX

Page 4: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Outline

1 Resonant MEMS

2 HiQLab

3 Anchor Losses

4 Disk Resonator Analysis

Page 5: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMSMEMS Basics

RF MEMS

Checkerboard Model

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Outline

1 Resonant MEMS

2 HiQLab

3 Anchor Losses

4 Disk Resonator Analysis

Page 6: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMSMEMS Basics

RF MEMS

Checkerboard Model

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

What are MEMS?

Page 7: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMSMEMS Basics

RF MEMS

Checkerboard Model

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

MEMS Basics

Micro-Electro-Mechanical SystemsChemical, fluid, thermal, optical (MECFTOMS?)

Applications:Sensors (inertial, chemical, pressure)Ink jet printers, biolab chipsRadio devices: cell phones, inventory tags, pico radio

Use integrated circuit (IC) fabrication technologyTiny, but still classical physics

Page 8: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMSMEMS Basics

RF MEMS

Checkerboard Model

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Radio-Frequency MEMS

Microguitars from Cornell University (1997 and 2003)

MHz-GHz mechanical resonatorsImpact: smaller, lower-power cell phonesOther uses:

Sensing elements (e.g. chemical sensors)Really high-pitch guitars

Page 9: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMSMEMS Basics

RF MEMS

Checkerboard Model

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Micromechanical Filters

Mechanical filter

Capacitive senseCapacitive drive

Radio signal

Filtered signal

Mechanical high-frequency (high MHz-GHz) filterYour cell phone is mechanical!New MEMS filters can be integrated with circuitry=⇒ smaller and lower power

Page 10: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMSMEMS Basics

RF MEMS

Checkerboard Model

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Ultimate Success

“Calling Dick Tracy!”

Page 11: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMSMEMS Basics

RF MEMS

Checkerboard Model

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Designing Transfer Functions

Time domain:

Mu′′ + Cu′ + Ku = bφ(t)y(t) = pT u

Frequency domain:

−ω2Mu + iωCu + K u = bφ(ω)

y(ω) = pT u

Transfer function:

H(ω) = pT (−ω2M + iωC + K )−1by(ω) = H(ω)φ(ω)

Page 12: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMSMEMS Basics

RF MEMS

Checkerboard Model

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Narrowband Filter Needs

20 log10 |H(ω)|

ω

Want “sharp” poles for narrowband filters=⇒ Want to minimize damping

Page 13: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMSMEMS Basics

RF MEMS

Checkerboard Model

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Checkerboard Resonator

D+

D−

D+

D−

S+ S+

S−

S−

Anchored at outside cornersExcited at northwest cornerSensed at southeast cornerSurfaces move only a few nanometers

Page 14: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMSMEMS Basics

RF MEMS

Checkerboard Model

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Checkerboard Model Reduction

Finite element model: N = 2154Expensive to solve for every H(ω) evaluation!

Build a reduced-order model to approximate behaviorReduced system of 80 to 100 vectorsEvaluate H(ω) in milliseconds instead of secondsWithout damping: standard Arnoldi projectionWith damping: Second-Order ARnoldi (SOAR)

Page 15: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMSMEMS Basics

RF MEMS

Checkerboard Model

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Checkerboard Simulation

0 2 4 6 8 10

x 10−5

0

2

4

6

8

10

12

x 10

9 9.2 9.4 9.6 9.8

x 107

−200

−180

−160

−140

−120

−100

Frequency (Hz)

Am

plitu

de (

dB)

9 9.2 9.4 9.6 9.8

x 107

0

1

2

3

4

Frequency (Hz)

Pha

se (

rad)

Page 16: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMSMEMS Basics

RF MEMS

Checkerboard Model

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Checkerboard Measurement

S. Bhave, MEMS 05

Page 17: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMSMEMS Basics

RF MEMS

Checkerboard Model

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Contributions

Built predictive model used to design checkerboardUsed model reduction to get thousand-fold speedup– fast enough for interactive use

Page 18: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Outline

1 Resonant MEMS

2 HiQLab

3 Anchor Losses

4 Disk Resonator Analysis

Page 19: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Damping and Q

Designers want high quality of resonance (Q)Dimensionless damping in a one-dof system

d2udt2 + Q−1 du

dt+ u = F (t)

For a resonant mode with frequency ω ∈ C:

Q :=|ω|

2 Im(ω)=

Stored energyEnergy loss per radian

Page 20: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Enter HiQLab

Existing codes do not compute quality factors... and awkward to prototype new solvers... and awkward to programmatically define meshesSo I wrote a new finite element code: HiQLab

Page 21: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Heritage of HiQLab

SUGAR: SPICE for the MEMS worldSystem-level simulation using modified nodal analysisFlexible device description languageC core with MATLAB interfaces and numerical routines

FEAPMEX: MATLAB + a finite element codeMATLAB interfaces for steering, testing solvers, runningparameter studiesTime-tested finite element architectureBut old F77, brittle in places

Page 22: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Other Ingredients

“Lesser artists borrow. Great artists steal.”– Picasso, Dali, Stravinsky?

Lua: www.lua.orgEvolved from simulator data languages (DEL and SOL)Pascal-like syntax fits on one page; complete languagedescription is 21 pagesFast, freely available, widely used in game design

MATLAB: www.mathworks.com“The Language of Technical Computing”Good sparse matrix supportStar-P: http://www.interactivesupercomputing.com/

Standard numerical libraries: ARPACK, UMFPACK

Page 23: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

HiQLab Structure

User interfaces

(C++)Core libraries

Solver library(C, C++, Fortran, MATLAB)

Element library(C++)

Problem description(Lua)

(MATLAB, Lua)

Standard finite element structures + some new ideasFull scripting language for mesh inputCallbacks for boundary conditions, material propertiesMATLAB interface for quick algorithm prototypingCross-language bindings are automatically generated

Page 24: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

HiQLab’s Hello World

0 2 4 6 8 10x 10−6

−6

−4

−2

0

2

4

6x 10−6

mesh = Mesh:new(2)mat = make_material(’silicon2’, ’planestrain’)mesh:blocks2d( 0, l , -w/2.0, w/2.0 ,

mat )

mesh:set_bc(function(x,y)if x == 0 then return ’uu’, 0, 0; end

end)

Page 25: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

HiQLab’s Hello World

>> mesh = Mesh_load(’beammesh.lua’);>> [M,K] = Mesh_assemble_mk(mesh);>> [V,D] = eigs(K,M, 5, ’sm’);>> opt.axequal = 1; opt.deform = 1;>> Mesh_scale_u(mesh, V(:,1), 2, 1e-6);>> plotfield2d(mesh, opt);

Page 26: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Contributions

Wrote a new code, HiQLab, to study dampingHiQLab is based on my earlier simulators:

SUGAR, for system-level MEMS simulationFEAPMEX, for scripting parameter studies

Page 27: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLossesSubstrate modeling

1-D Example

Finite Elements

DiskResonatorAnalysis

Conclusions

Backup Slides

Outline

1 Resonant MEMS

2 HiQLab

3 Anchor Losses

4 Disk Resonator Analysis

Page 28: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLossesSubstrate modeling

1-D Example

Finite Elements

DiskResonatorAnalysis

Conclusions

Backup Slides

Example: Disk Resonator

SiGe disk resonators built by E. Quévy

Page 29: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLossesSubstrate modeling

1-D Example

Finite Elements

DiskResonatorAnalysis

Conclusions

Backup Slides

Damping Mechanisms

Possible loss mechanisms:Fluid dampingMaterial lossesThermoelastic dampingAnchor loss

Model substrate as semi-infinite with a

Perfectly Matched Layer (PML).

Page 30: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLossesSubstrate modeling

1-D Example

Finite Elements

DiskResonatorAnalysis

Conclusions

Backup Slides

Perfectly Matched Layers

Complex coordinate transformationGenerates a “perfectly matched” absorbing layerIdea works with general linear wave equations

Electromagnetics (Berengér, 1994)Quantum mechanics – exterior complex scaling(Simon, 1979)Elasticity in standard finite element framework(Basu and Chopra, 2003)

Page 31: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLossesSubstrate modeling

1-D Example

Finite Elements

DiskResonatorAnalysis

Conclusions

Backup Slides

Model Problem

Domain: x ∈ [0,∞)

Governing eq:

∂2u∂x2 −

1c2

∂2u∂t2 = 0

Fourier transform:

d2udx2 + k2u = 0

Solution:u = coute−ikx + cineikx

Page 32: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLossesSubstrate modeling

1-D Example

Finite Elements

DiskResonatorAnalysis

Conclusions

Backup Slides

Model Problem Illustrated

Outgoing exp(−ix) Incoming exp(ix)

Transformed coordinate

Re(x)

0 2 4 6 8 10 12 14 16 18

0 5 10 15 200 5 10 15 20

-4

-2

0

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Page 33: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLossesSubstrate modeling

1-D Example

Finite Elements

DiskResonatorAnalysis

Conclusions

Backup Slides

Model Problem Illustrated

Outgoing exp(−ix) Incoming exp(ix)

Transformed coordinate

Re(x)

0 2 4 6 8 10 12 14 16 18

0 5 10 15 200 5 10 15 20

-4

-2

0

-2

-1

0

1

2

3

-1

-0.5

0

0.5

1

Page 34: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLossesSubstrate modeling

1-D Example

Finite Elements

DiskResonatorAnalysis

Conclusions

Backup Slides

Model Problem Illustrated

Outgoing exp(−ix) Incoming exp(ix)

Transformed coordinate

Re(x)

0 2 4 6 8 10 12 14 16 18

0 5 10 15 200 5 10 15 20

-4

-2

0

-4

-2

0

2

4

6

-1

-0.5

0

0.5

1

Page 35: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLossesSubstrate modeling

1-D Example

Finite Elements

DiskResonatorAnalysis

Conclusions

Backup Slides

Model Problem Illustrated

Outgoing exp(−ix) Incoming exp(ix)

Transformed coordinate

Re(x)

0 2 4 6 8 10 12 14 16 18

0 5 10 15 200 5 10 15 20

-4

-2

0

-10

-5

0

5

10

15

-1

-0.5

0

0.5

1

Page 36: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLossesSubstrate modeling

1-D Example

Finite Elements

DiskResonatorAnalysis

Conclusions

Backup Slides

Model Problem Illustrated

Outgoing exp(−ix) Incoming exp(ix)

Transformed coordinate

Re(x)

0 2 4 6 8 10 12 14 16 18

0 5 10 15 200 5 10 15 20

-4

-2

0

-20

0

20

40

-1

-0.5

0

0.5

1

Page 37: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLossesSubstrate modeling

1-D Example

Finite Elements

DiskResonatorAnalysis

Conclusions

Backup Slides

Model Problem Illustrated

Outgoing exp(−ix) Incoming exp(ix)

Transformed coordinate

Re(x)

0 2 4 6 8 10 12 14 16 18

0 5 10 15 200 5 10 15 20

-4

-2

0

-50

0

50

100

-1

-0.5

0

0.5

1

Page 38: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLossesSubstrate modeling

1-D Example

Finite Elements

DiskResonatorAnalysis

Conclusions

Backup Slides

Finite Element Implementation

x(ξ)

ξ2

ξ1

x1

x2 x2

x1

Ωe Ωe

Ω

x(x)

Combine PML and isoparametric mappings

ke =

∫Ω

BT DBJ dΩ

me =

∫Ω

ρNT NJ dΩ

Matrices are complex symmetric

Page 39: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLossesSubstrate modeling

1-D Example

Finite Elements

DiskResonatorAnalysis

Conclusions

Backup Slides

Contributions

New formulation of perfectly matched layersEasy to apply PML to axisymmetric, 2D, or 3D modelsSame formulation applies to electromagnetics, etc.

Analysis of discretization error for PMLsResults in cheap, automatic parameter optimization

Structure-preserving model reduction for complexsymmetric systems

Double accuracy for same work as standard method

Page 40: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Outline

1 Resonant MEMS

2 HiQLab

3 Anchor Losses

4 Disk Resonator Analysis

Page 41: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Disk Resonator Simulations

Page 42: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Disk Resonator Mesh

PML region

Wafer (unmodeled)

Electrode

Resonating disk

0 1 2 3 4

x 10−5

−4

−2

0

2x 10

−6

Axisymmetric model with bicubic meshAbout 10K nodal points in converged calculation

Page 43: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Mesh Convergence

Mesh density

Com

pute

dQ

Cubic

LinearQuadratic

1 2 3 4 5 6 7 80

1000

2000

3000

4000

5000

6000

7000

Cubic elements converge with reasonable mesh density

Page 44: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Response of the Disk Resonator

Page 45: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Variation in Quality of Resonance

Film thickness (µm)

Q

1.2 1.3 1.4 1.5 1.6 1.7 1.8100

102

104

106

108

Simulation and lab measurements vs. disk thickness

Page 46: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Explanation of Q Variation

Real frequency (MHz)

Imagin

ary

freq

uen

cy(M

Hz)

ab

cdd

e

a b

cdd

e

a = 1.51 µm

b = 1.52 µm

c = 1.53 µm

d = 1.54 µm

e = 1.55 µm

46 46.5 47 47.5 480

0.05

0.1

0.15

0.2

0.25

Interaction of two nearby eigenmodes

Page 47: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Contributions

Built disk model in HiQLab and verified against labmeasurementsDemonstrated dominance of anchor loss for this devicePredicted geometric sensitivity of quality factor Q(which was subsequently verified in the lab)Explained Q sensitivity in terms of mode interference

Page 48: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Contributions Summary (1)

Application modelingFinite element models of several devicesDiscovery of effects of mode interferenceImportance of anchor loss vs thermoelastic damping

Mathematical analysisReformulation of perfectly-matched layersAnalysis of discretization and parameter choice in PMLsComplex symmetry-preserving model reductionPerturbation solution for thermoelastic damping

Software: HiQLab, FEAPMEX, SUGAR

Page 49: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Contributions Summary (2)

HiQLab (about 33000 lines of code)Collaborations at Berkeley, Cornell, Stanford, Bosch

FEAPMEX (about 5000 lines of code)2400+ page viewsUsed for instrument models, stochastic structuralanalysis, ultrasonic nondestructive evaluation problems,material parameter identification problems

SUGAR (about 18000 lines of code)2000+ downloadsUsed in classes at Berkeley, Cornell, Johns HopkinsContinued research use for design optimization

Page 50: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Other Contributions

Lowered complexity of roots from O(n3) to O(n2)

Code to go into next LAPACK releaseDeveloped first sparse subspace continuation code

Going into the next Matcont release

Developed new network tomography methodDesigned initial security model for OceanStoreServed as IEEE 754R secretaryResponsible for last CLAPACK version

Page 51: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Future Work

Code developmentStructural elements and elements for different physicsDesign and implementation of parallelized version

Theoretical analysisMore damping mechanismsSensitivity analysis and variational model reduction

Application collaborationsUse of nonlinear effects (quasi-static and dynamic)New designs (e.g. internal dielectric drives)Continued experimental comparisons

Page 52: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup Slides

Conclusions

RF MEMS are a great source of problemsInteresting applicationsInteresting physics (and not altogether understood)Interesting numerical mathematics

http://www.cs.berkeley.edu/~dbindel

Page 53: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Application: Network monitoring

Set of n hosts in a large networkn(n − 1) directed paths between themWant latency and packet loss rates for each pathUse info to choose servers, route around faults

Page 54: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Network “distance” metrics

Linear relation between path length yij and link length xl :

yij =∑

l∈path

xl =∑

l

gijlxl

where gijl indicates if link l is used on path i → j .Write in matrix form (one path per row): y = Gx .

Examples:LatencyLog probability of transmission successJitter (variance in latency)

Page 55: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Path dependencies

A3

B3

B2

B1

A1

A2

(Ai → Bi) = (A1 → Bi) + (Ai → B1)− (A1 → B1)

Many linear dependencies among paths!k := rank(G) n2

Measure only k paths to infer properties for all paths

Page 56: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Rank of G: Lucent scan (bound)

100 200 300 400 500 600 700 800 900 10000

1

2

3

4

5

6

7x 10

4

Number of end hosts on the overlay (n)

Ran

k of

pat

h sp

ace

(k)

original measurementregression on nregression on nlognregressino on n1.25

regression on n1.5

regression on n1.75

Page 57: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Rank of G: AS-level Albert-Barabasi

100 200 300 400 500 600 700 800 900 10000

1000

2000

3000

4000

5000

6000

7000

8000

Number of end hosts on the overlay (n)

Ran

k of

pat

h sp

ace

(k)

original measurementregression on nregression on nlognregressino on n1.25

regression on n1.5

regression on n1.75

Page 58: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Rank of G: AS Barabasi + RT Waxman

100 200 300 400 500 600 700 800 900 10000

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of end hosts on the overlay (n)

Ran

k of

pat

h sp

ace

(k)

original measurementregression on nregression on nlognregression on n1.25

regression on n1.5

regression on n1.75

Page 59: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Contributions

Accurate predictions on O(n2) paths from a smallnumber of measurementsPrototype monitoring system on PlanetLabOngoing work on fault diagnosis using similar ideasSee: http://list.cs.northwestern.edu/

Page 60: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Model with Perfectly Matched Layer

Transformed domainx

σ

Regular domain

dxdx

= λ(x) where λ(s) = 1− iσ(s)

d2udx2 + k2u = 0

u = coute−ik x + cineik x

Page 61: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Model with Perfectly Matched Layer

Transformed domainx

σ

Regular domain

dxdx

= λ(x) where λ(s) = 1− iσ(s),

ddx

(1λ

dudx

)+ k2u = 0

u = coute−ikx−kΣ(x) + cineikx+kΣ(x)

Σ(x) =

∫ x

0σ(s) ds

Page 62: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Model with Perfectly Matched Layer

Transformed domainx

σ

Regular domain

If solution clamped at x = L then

cin

cout= O(e−kγ) where γ = Σ(L) =

∫ L

0σ(s) ds

Page 63: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Eigenvalues and Model Reduction

Want to know about the transfer function H(ω):

H(ω) = pT (K − ω2M)−1b

Can eitherLocate poles of H (eigenvalues of (K , M))Plot H in a frequency range (Bode plot)

Usual tactic: subspace projectionBuild an Arnoldi basis VCompute with much smaller V ∗KV and V ∗MV

Can we do better?

Page 64: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Variational Principles

Variational form for complex symmetric eigenproblems:Hermitian (Rayleigh quotient):

ρ(v) =v∗Kvv∗Mv

Complex symmetric (modified Rayleigh quotient):

θ(v) =vT KvvT Mv

First-order accurate eigenvectors =⇒Second-order accurate eigenvalues.Key: relation between left and right eigenvectors.

Page 65: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Accurate Model Reduction

Build new projection basis from V :

W = orth[Re(V ), Im(V )]

span(W ) contains both Kn and Kn=⇒ double digits correct vs. projection with VW is a real-valued basis=⇒ projected system is complex symmetric

Page 66: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Model Reduction Accuracy

Frequency (MHz)

Tra

nsf

er(d

B)

Frequency (MHz)

Phase

(deg

rees

)

47.2 47.25 47.3

47.2 47.25 47.3

0

100

200

-80

-60

-40

-20

0

Results from ROM (solid and dotted lines) nearindistinguishable from full model (crosses)

Page 67: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Model Reduction Accuracy

Frequency (MHz)

|H(ω

)−

Hreduced(ω

)|/H

(ω)|

Arnoldi ROM

Structure-preserving ROM

45 46 47 48 49 50

10−6

10−4

10−2

Preserve structure =⇒get twice the correct digits

Page 68: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Time-Averaged Energy Flux

0 0.5 1 1.5 2 2.5 3 3.5

x 10−5

−2

0

2

x 10−6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10−6

−1

−0.5

0

0.5

1

1.5

2

2.5x 10

−6

Page 69: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Sources of Damping

Fluid dampingAir is a viscous fluid (Re 1)Can operate in a vacuumShown not to dominate in many RF designs

Material lossesLow intrinsic losses in silicon, diamond, germaniumTerrible material losses in metals

Thermoelastic dampingVolume changes induce temperature changeDiffusion of heat leads to mechanical loss

Anchor lossElastic waves radiate from structure

Page 70: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Sources of Damping

Fluid dampingAir is a viscous fluid (Re 1)Can operate in a vacuumShown not to dominate in many RF designs

Material lossesLow intrinsic losses in silicon, diamond, germaniumTerrible material losses in metals

Thermoelastic dampingVolume changes induce temperature changeDiffusion of heat leads to mechanical loss

Anchor lossElastic waves radiate from structure

Page 71: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Fabrication Outline

300 um

1 Si wafer2 Deposit 2 microns SiO23 Pattern and etch SiO2 layer4 Deposit 2 microns polycrystalline Si5 Pattern and etch Si layer6 Release etch remaining SiO2

Page 72: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Fabrication Outline

300 um

2 um

1 Si wafer2 Deposit 2 microns SiO23 Pattern and etch SiO2 layer4 Deposit 2 microns polycrystalline Si5 Pattern and etch Si layer6 Release etch remaining SiO2

Page 73: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Fabrication Outline

300 um

2 um

1 Si wafer2 Deposit 2 microns SiO23 Pattern and etch SiO2 layer4 Deposit 2 microns polycrystalline Si5 Pattern and etch Si layer6 Release etch remaining SiO2

Page 74: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Fabrication Outline

300 um

2 um

2 um

1 Si wafer2 Deposit 2 microns SiO23 Pattern and etch SiO2 layer4 Deposit 2 microns polycrystalline Si5 Pattern and etch Si layer6 Release etch remaining SiO2

Page 75: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Fabrication Outline

300 um

2 um

2 um

1 Si wafer2 Deposit 2 microns SiO23 Pattern and etch SiO2 layer4 Deposit 2 microns polycrystalline Si5 Pattern and etch Si layer6 Release etch remaining SiO2

Page 76: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Fabrication Outline

300 um

2 um

2 um

1 Si wafer2 Deposit 2 microns SiO23 Pattern and etch SiO2 layer4 Deposit 2 microns polycrystalline Si5 Pattern and etch Si layer6 Release etch remaining SiO2

Page 77: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Fabrication Result

300 um

2 um

2 um

(C. Nguyen, iMEMS 02)

Page 78: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Role of simulation

HiQLab: Modeling RF MEMSExplore fundamental device physics

Particularly details of damping

Detailed finite element modelingReduced models eventually to go into SUGAR

SUGAR: “Be SPICE to the MEMS world”Fast enough for early design stagesSimple enough to attract usersSupport design, analysis, optimization, synthesisVerify models by comparison to measurement

Page 79: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Why simulate?

“Build and break” is too expensiveWafer processing costs months, thousands of dollarsFabrication is impreciseDays or weeks to take good measurements

Good experiments need good hypothesesEven when device behavior is understood, still need tounderstand system behavior

Page 80: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

From simulation to synthesis

Computer can assist at many levels:Fundamental physicsDetailed device modelsSystem-level models and macromodelsMetrologyDesign optimizationDesign synthesis

Page 81: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Research thrusts

Model development (e.g. new finite elements)Numerical algorithms (e.g. model reduction)Numerical software engineering (SUGAR, HiQLab)Metrology and comparison to measurementOptimization and design synthesis

Page 82: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Research group

Faculty StudentsA. Agogino (ME) D. Bindel (CS)Z. Bai (Math,CS,UCD) J.V. Clark (AS&T)J. Demmel (Math,CS) C. Cobb (ME)S. Govindjee (CEE) D. Garmire (CS)R. Howe (EE,ME) T. Koyama (CEE)K.S.J. Pister (EE) J. Nie (Math)C. Sequin (CS) H. Wei (CEE)

Y. Zhang (CEE)

Page 83: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

SUGAR

Goal: “Be SPICE to the MEMS world”Fast enough for early design stagesSimple enough to attract usersSupport design, analysis, optimization, synthesisVerify models by comparison to measurement

System assembly

Models

Solvers

Matlab Web Library

Sensitivity analysis

Static analysis

Steady−state analysis

Transient analysis

Results

Netlist

Interfaces

Page 84: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

SUGAR: Analysis of a micromirror

(Mirror design by M. Last)

Page 85: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

SUGAR: Design synthesis

Page 86: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

SUGAR: Comparison to measurement

Page 87: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Elastic PMLs

∫Ω

ε(w) : C : ε(u) dΩ− ω2∫

Ωρw · u dΩ =

∫Γ

w · tndΓ

ε(u) =

(∂u∂x

)s

Start from standard weak formIntroduce transformed x with ∂x

∂x = Λ

Map back to reference system (JΛ = det(Λ))All terms are symmetric in w and u

Page 88: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Elastic PMLs

∫Ω

ε(w) : C : ε(u) dΩ− ω2∫

Ωρw · u dΩ =

∫Γ

w · tndΓ

ε(u) =

(∂u∂x

)s

=

(∂u∂x

Λ−1)s

Start from standard weak formIntroduce transformed x with ∂x

∂x = Λ

Map back to reference system (JΛ = det(Λ))All terms are symmetric in w and u

Page 89: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Elastic PMLs

∫Ω

ε(w) : C : ε(u) JΛ dΩ− ω2∫

Ωρw · u JΛ dΩ =

∫Γ

w · tn dΓ

ε(u) =

(∂u∂x

)s

=

(∂u∂x

Λ−1)s

Start from standard weak formIntroduce transformed x with ∂x

∂x = Λ

Map back to reference system (JΛ = det(Λ))All terms are symmetric in w and u

Page 90: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Elastic PMLs

∫Ω

ε(w) : C : ε(u) JΛ dΩ− ω2∫

Ωρw · u JΛ dΩ =

∫Γ

w · tn dΓ

ε(u) =

(∂u∂x

)s

=

(∂u∂x

Λ−1)s

Start from standard weak formIntroduce transformed x with ∂x

∂x = Λ

Map back to reference system (JΛ = det(Λ))All terms are symmetric in w and u

Page 91: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Continuum 2D model problem

k

L

λ(x) =

1− iβ|x − L|p, x > L1 x ≤ L.

∂x

(1λ

∂u∂x

)+

∂2u∂y2 + k2u = 0

Page 92: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Continuum 2D model problem

k

L

λ(x) =

1− iβ|x − L|p, x > L1 x ≤ L.

∂x

(1λ

∂u∂x

)− k2

y u + k2u = 0

Page 93: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Continuum 2D model problem

k

L

λ(x) =

1− iβ|x − L|p, x > L1 x ≤ L.

∂x

(1λ

∂u∂x

)+ k2

x u = 0

1D problem, reflection of O(e−kxγ)

Page 94: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Discrete 2D model problem

k

L

Discrete Fourier transform in ySolve numerically in xProject solution onto infinite space traveling modesExtension of Collino and Monk (1998)

Page 95: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Nondimensionalization

k

L

λ(x) =

1− iβ|x − L|p, x > L1 x ≤ L.

Rate of stretching: βhp

Elements per wave: (kxh)−1 and (kyh)−1

Elements through the PML: N

Page 96: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Nondimensionalization

k

L

λ(x) =

1− iβ|x − L|p, x > L1 x ≤ L.

Rate of stretching: βhp

Elements per wave: (kxh)−1 and (kyh)−1

Elements through the PML: N

Page 97: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Discrete reflection behavior

Number of PML elements

log10(β

h)

− log10

(r) at (kh)−1 = 10

1

1

1

2

2

2

2 2 2 2

333

3

3

3

3

444

4

4

5 10 15 20 25 30

-1.5

-1

-0.5

0

0.5

1

Quadratic elements, p = 1, (kxh)−1 = 10

Page 98: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Discrete reflection decomposition

Model discrete reflection as two parts:Far-end reflection (clamping reflection)

Approximated well by continuum calculationGrows as (kxh)−1 grows

Interface reflectionDiscrete effect: mesh does not resolve decayDoes not depend on NGrows as (kxh)−1 shrinks

Page 99: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Discrete reflection behavior

Number of PML elements

log10(β

h)

− log10

(r) at (kh)−1 = 10

1

1

1

2

2

2

2 2 2 2

333

3

3

3

3

444

4

4

5 10 15 20 25 30

-1.5

-1

-0.5

0

0.5

1

Number of PML elements

log10(β

h)

− log10(rinterface + rnominal) at (kh)−1 = 10

1

11

2

2

2

2 2 2 2

333

3

3

3

444

4

4

5 10 15 20 25 30

-1.5

-1

-0.5

0

0.5

1

Quadratic elements, p = 1, (kxh)−1 = 10

Model does well at predicting actual reflectionSimilar picture for other wavelengths, element types,stretch functions

Page 100: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Choosing PML parameters

Discrete reflection dominated byInterface reflection when kx largeFar-end reflection when kx small

Heuristic for PML parameter choiceChoose an acceptable reflection levelChoose β based on interface reflection at kmax

xChoose length based on far-end reflection at kmin

x

Page 101: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Thermoelastic damping (TED)

u is displacement and T = T0 + θ is temperature

σ = Cε− βθ1ρutt = ∇ · σ

ρcvθt = ∇ · (κ∇θ)− βT0 tr(εt)

Volumetric strain rate drives energy transfer frommechanical to thermal domain

Irreversible diffusion =⇒ mechanical dampingNot often an important factor at the macro scaleRecognized source of damping in microresonators

Zener: semi-analytical approximation for TED in beamsWe consider the fully coupled system

Page 102: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Nondimensionalization

σ = Cε− ξθ1utt = ∇ · σθt = η∇2θ − tr(εt)

ξ :=

ρc

)2 T0

cvand η :=

κ

ρcv cL

Length ∼ LTime ∼ L/c, where c =

√E/ρ

Temperature ∼ T0β

ρcv

Page 103: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Scaling analysis

σ = Cε− ξθ1utt = ∇ · σθt = η∇2θ − tr(εt)

ξ :=

ρc

)2 T0

cvand η :=

κ

ρcv cL

Micron-scale poly-Si devices: ξ and η are ∼ 10−4.Small η leads to thermal boundary layersLinearize about ξ = 0

Page 104: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Discrete mode equations

σ = Cε− ξθ1utt = ∇ · σθt = η∇2θ − tr(εt)

σ = Cε− ξθ1−ω2u = ∇ · σ

iωθ = η∇2θ − iω tr(ε)

−ω2Muuu + Kuuu + Kutθ = 0iωDttθ + Kttθ + iωDtuu = 0

Page 105: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Perturbation computation

−ω2Muuu + Kuuu + Kutθ = 0iωDttθ + Kttθ + iωDtuu = 0

Approximate ω by perturbation about Kut = 0:

−ω20Muuu0 + Kuuu0 = 0

iω0Dttθ0 + Kttθ0 + iω0Dtuu0 = 0

Choose v : vT u0 6= 0 and compute[(−ω2

0Muu + Kuu) −2ω0Muuu0vT 0

] [δuδω

]=

[−Kutθ0

0

]

Page 106: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Comparison to Zener’s model

105

106

107

108

109

1010

10−7

10−6

10−5

10−4

The

rmoe

last

ic D

ampi

ng Q

−1

Frequency f(Hz)

Zener’s Formula

HiQlab Results

Comparison of fully coupled simulation to Zenerapproximation over a range of frequenciesReal and imaginary parts after first-order correctionagree to about three digits with Arnoldi

Page 107: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Thermoelastic boundary layer

0 20 40 60 80 100 1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 1200

0.5

1x 10

−4

One-dimensional test problem (longitudinal mode in abar)Fixed temperature and displacement at leftFree at right

Page 108: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Shear ring resonator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9hw = 5.000000e−05

Value = 2.66E+07 Hz.

Ring is driven in a shearing motionCan couple ring to other resonatorsHow do we track the desired mode?

Page 109: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Mode tracking

Find a continuous solution to(K (s)− ω(s)2M(s)

)u(s) = 0.

K and M are symmetric and M > 0Eigenvectors are M-orthogonalPerturbation theory gives good shiftsLook if u(s + h) and u(s) are on the same path bylooking at u(s + h)T M(s + h)u(s)

Many more subtleties in the nonsymmetric caseFocus of the CIS algorithm

Page 110: Computer-Aided Design for HiQLab Micro-Electro …bindel/present/2006-03-davis.pdfCAD for MEMS Resonant MEMS HiQLab Anchor Losses Disk Resonator Analysis Conclusions Backup Slides

CAD forMEMS

ResonantMEMS

HiQLab

AnchorLosses

DiskResonatorAnalysis

Conclusions

Backup SlidesNetwork tomography

PML model problem

Complex Symmetry

Damping

MEMS Fabrication

SUGAR and HiQLab

Elastic PMLs

Reflection Analysis

TED

SubspaceContinuation

Mode tracking in a shear resonator

2 2.5 3 3.5 4 4.5 5 5.5 6

x 10−5

2.5

3

3.5

4

4.5

5

5.5x 107

Half width of annulus

Fre

quen

cy (

Hz)

Finite elementAnalytic result