COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

237
COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE FLEXURAL MEMBERS by Garth Roger Christie Bachelor of Science in Engineering (Civil), University of New Brunswick, 2006 Bachelor of Computer Science, University of New Brunswick, 2003 A Report Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Engineering in the Graduate Academic Unit of Civil Engineering Supervisor: P.H. Bischoff, PhD, PEng, Department of Civil Engineering Examining Board: J.H. Rankin, PhD, PEng, Department of Civil Engineering H.H. El Naggar, PhD, PEng, Department of Civil Engineering This report is accepted by the Dean of Graduate Studies THE UNIVERSITY OF NEW BRUNSWICK May, 2014 ยฉGarth Roger Christie, 2014

Transcript of COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

Page 1: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

COMPUTED DEFLECTION OF CONTINUOUS

REINFORCED CONCRETE FLEXURAL MEMBERS

by

Garth Roger Christie

Bachelor of Science in Engineering (Civil), University of New Brunswick, 2006

Bachelor of Computer Science, University of New Brunswick, 2003

A Report Submitted in Partial Fulfillment

of the Requirements for the Degree of

Masters of Engineering

in the Graduate Academic Unit of Civil Engineering

Supervisor: P.H. Bischoff, PhD, PEng, Department of Civil Engineering

Examining Board: J.H. Rankin, PhD, PEng, Department of Civil Engineering

H.H. El Naggar, PhD, PEng, Department of Civil Engineering

This report is accepted by the Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

May, 2014

ยฉGarth Roger Christie, 2014

Page 2: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

ii

ABSTRACT

Bending deflection is important to the design of some concrete members. While

deflection is rarely a safety issue when it governs, deflection limits are always a code

requirement. For beams and slabs, deflection checks are not required if a member meets

the recommended depth-to-span ratio. In design of thinner steel reinforced concrete

slabs and most FRP reinforced members, though, deflection requirements often govern.

Because commonly used deflection calculations, as per ACI 318-05 and CSA A23.3-04,

are often inaccurate in important ways, this work studies improved calculations.

This report extends Bischoffโ€™s method for computing an effective moment of inertia for

simply supported members to an effective moment of inertia for continuous members.

This comparison is done for immediate deflections with a uniformly-distributed load, a

center-point load, and equal loads at third-points. Bischoffโ€™s work with simply

supported members is reviewed. Bransonโ€™s equation and the S806 method are also

reviewed and used for comparison.

The results indicate that Bischoffโ€™s equations for simply-supported members also work

well for continuous members. These proposed equations work very well for centered

point loads and uniformly distributed loads (within proposed limits). For a member

with equal point loads at third-points, a minor calculation modification is suggested

which improves its usable range and accuracy. For members with unequal end-

moments, accuracy requires use of the maximum positive bending moment (not the

moment at midspan). For situations where the end-moment magnitude greatly exceeds

the positive moment, a numerical integration approach is recommended.

Page 3: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

iii

TABLE OF CONTENTS

ABSTRACT ...................................................................................................................... ii

TABLE OF CONTENTS ................................................................................................. iii

LIST OF TABLES........................................................................................................... vii

LIST OF FIGURES .......................................................................................................... ix

LIST OF SYMBOLS ....................................................................................................... xi

1.0 INTRODUCTION ................................................................................................. 1

1.1 Project Need ................................................................................................ 2

1.2 Project Objectives ....................................................................................... 2

1.3 Project Scope ............................................................................................... 3

1.4 Report Organization .................................................................................... 4

2.0 BACKGROUND TO DEFLECTION OF REINFORCED CONCRETE ............. 6

2.1 Introduction to Deflection ........................................................................... 7

2.2 Elastic Deflection of Prismatic Members ................................................... 7

2.2.1 Simply Supported Members ........................................................................ 8

2.2.2 Members with Bending Moments at Supports ............................................ 9

2.2.3 Continuous Member Factor, ๐พ .................................................................. 10

2.3 Bending Deflection of Reinforced Concrete ............................................. 11

2.3.1 Concrete Bending Response ..................................................................... 12

2.3.2 Tension Stiffening of Concrete Bending Members ................................... 13

2.3.3 Constant Stiffness Approach ..................................................................... 14

2.3.4 Integration Approach to Deflection ........................................................... 16

2.4 Effect of Materials and Load History on Deflection ................................. 17

2.4.1 Variation in Mix Materials and Field Conditions ...................................... 17

2.4.2 Effect of Load-History on Deflection ....................................................... 18

2.5 FRP Reinforced Members, Razaqpurโ€™s Work, and CSA S806 ................. 19

2.5.1 Fibre Reinforced Polymers as Concrete Reinforcing................................ 19

2.5.2 Razaqpurโ€™s Work ....................................................................................... 20

2.5.3 Concrete Deflection in CSA S806 ............................................................ 21

2.6 Bending Deflection in CSA A23.3-04 ....................................................... 22

Page 4: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

iv

2.6.1 CSA A23.3-04, Clause 9.8.2.1, Minimum Thickness ............................... 23

2.6.2 CSA A23.3-04, Clause 9.8.2.2 and 9.8.2.3, Immediate Deflection........... 24

2.6.3 CSA A23.3-04, Clause 9.8.2.4, Moment of Inertia for Continuous Spans 24

2.6.4 CSA A23.3-04, Clause 9.8.2.5, Sustained Load Deflections .................... 25

2.7 Bransonโ€™s Work ......................................................................................... 25

2.7.1 Limited Accurate Range for Bransonโ€™s Equation...................................... 26

2.7.2 Modification Factors Examples for Bransonโ€™s Equation .......................... 26

2.8 Bischoffโ€™s Work ........................................................................................ 27

2.8.1 Purpose of Bischoffโ€™s Work ...................................................................... 27

2.8.2 Bischoffโ€™s Equation and Loading Type Factor.......................................... 28

2.8.3 Discussion of Arguments Against Use of Bischoffโ€™s Equation ................. 30

3.0 METHODOLOGY AND RESULTS ................................................................... 31

3.1 Virtual Work and Moment of Inertia Methodology .................................. 32

3.1.1 Deflection of Concrete by Integration Using Virtual Work ...................... 33

3.1.2 Deflection of Concrete Using a Constant Moment of Inertia ................... 34

3.2 Generating Idealized Members ................................................................. 35

3.2.1 Definitions of Bending Moment Variables ............................................... 35

3.2.2 Automated Member Generation ................................................................ 38

3.3 Computing Deflection of Idealized Members ........................................... 39

3.3.1 Development and Use of Analytical Integration ....................................... 44

3.3.2 Discussion of Analytical Integration Simplifications ............................... 45

3.3.3 Use of Numerical Integration .................................................................... 46

3.3.4 Comparing Results of Analytical and Numerical Integration ................... 46

3.4 Continuous Beam with a Centered Point Load ......................................... 47

3.4.1 Proposed Solution for a Centered Point Load ........................................... 47

3.4.2 Comparison of Results: Centered Point Load and Equal End-Moments .. 48

3.4.3 Summary of Results for a Centered Point Load........................................ 53

3.5 Continuous Beam with Two Equal Point Loads at Third Points ............... 55

3.5.1 Proposed Solution for Two Equal Loads at Third Points .......................... 56

3.5.2 Comparison of Results for Two Equal Loads at Third Points ................... 58

3.5.3 Summary of Results for Two Equal Loads at Third Points ....................... 63

3.6 Continuous Beam with a Uniformly Distributed Load ............................. 65

3.6.1 Proposed Solution for a Uniformly Distributed Load ............................... 65

3.6.2 Comparison of Results for a Uniformly Distributed Load........................ 67

Page 5: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

v

3.6.3 Summary of Results for a Uniformly Distributed Load............................ 74

3.7 Additional Findings ................................................................................... 77

3.7.1 When Midspan and Maximum Deflections are Different ......................... 77

3.7.2 Accurate Constant Stiffnesses can be Impossible ..................................... 78

3.7.3 Importance of the Correct Bending Moment Function ............................. 79

3.7.4 Effect on Results of the CSA A23.3 Update to Clause 9.8.2.3 ................. 80

3.8 Summary of Results using Bransonโ€™s Method .......................................... 81

4.0 CONCLUSIONS AND RECOMMENDATIONS ............................................... 83

4.1 Conclusions ............................................................................................... 83

4.2 Recommendation for Future Work ............................................................ 85

4.2.1 Improve Deflection Equation Information Provided to Engineers ........... 85

4.2.2 Improve Assumptions for Stiffness ........................................................... 85

4.2.3 Investigation of Other Possible Moment of Inertia Equations .................. 86

REFERENCES ................................................................................................................ 88

Derivation of ๐พ for Continuous Linear-Elastic Members ..................... 89 Appendix A

Calculate ๐พ for Point Load at Midspan and Generic End-Moments .................. 90

Calculate ๐พ for Two Equal Third-Point Loads and Generic End-Moments ....... 91

Calculate ๐พ for Uniformly Distributed Load and Generic End-Moments .......... 92

Bending Deflection by Integration Using Virtual Work ....................... 93 Appendix B

Deflection for Simply Supported Member without Tension Appendix C

Stiffening ................................................................................................. 95

Derivation of Bischoff's Factor for a Uniformly Distributed Load .... 97 Appendix D

Analytical Integration for Midspan Deflection ..................................... 99 Appendix E

Bending Moment and Virtual Moment Equations ............................................ 101

Lengths to where the Function being Integrated Changes ................................ 102

Midspan Deflection of Midspan-Point Loaded Member with End-Moments .. 104

Midspan Deflection of Third-Point Loaded Member with End-Moments ....... 105

Midspan Deflection of Member with Uniform Load and End-Moments ......... 105

Analytical Results Simplified for Fixed-Fixed Midspan Point Load .. 109 Appendix F

Page 6: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

vi

Integration using CSA S806 / Razaqpurโ€™s Method ............................. 111 Appendix G

Example Simply Supported Constant Stiffness Beam ........................ 120 Appendix H

Example Constant Stiffness Beam with End-Moments .......................... 122 Appendix I

Example Generation and Deflection Computation for an Idealized Appendix J

Concrete Bending Member ................................................................... 124

Methodology and Example using Numerical Integration ................... 134 Appendix K

Examples Graphs of the Integrated Function ...................................... 138 Appendix L

Centered Point Load Examples โ€“ Data for Section 3.4 ....................... 143 Appendix M

Third-Point Loaded Examples โ€“ Data for Section 3.5 ........................ 156 Appendix N

Uniformly Distributed Load Examples โ€“ Data for Section 3.6 ........... 169 Appendix O

Results Using New Mcr per CSA A23.3-04 (R2010) .......................... 195 Appendix P

The Effects of Cracking near Supports ............................................... 206 Appendix Q

Midspan and Maximum Deflection of Linear-Elastic Members ......... 209 Appendix R

Criticisms of CSA A23.3 and the Concrete Handbook ....................... 220 Appendix S

Criticism of Use of Bransonโ€™s Equation in CSA A23.3-04 .............................. 220

Criticism of 0.5 Mcr Modifier in CSA A23.3-04 ............................................... 220

Criticism of Use of Midspan Moment in CSA A23.3-04 ................................. 221

Criticism of Concrete Design Handbook Using Midspan Deflection ............... 221

Curriculum Vitae

Page 7: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

vii

LIST OF TABLES

Table 2-1 - Example simply supported members with equations ..................................... 8

Table 2-2 - Deflection of continuous prismatic linear-elastic members ......................... 10

Table 2-3 - Deflection using Bischoff's Equation ........................................................... 29

Table 3-1 - Valid Ranges for I'e for a Centered Point Load ............................................ 54

Table 3-2 - Valid Ranges for I'e* for Equal Point Loads at Third Points ........................ 64

Table 3-3 - Valid Ranges for I'e for Uniformly Distributed Load .................................. 75

Table C-1 - Deflection Equations for Idealized FRP-Reinforced Members ................... 96

Table H-1 - Equal Midspan Deflection Example for CPL, 2PL, and UDL .................. 121

Table I-1 - Equal Midspan Deflection Example for Continuous UDL ......................... 123

Table J-1 - Summary of Appendix J and Appendix K Results for Continuous

Member ............................................................................................................. 133

Table K-1 - Midspan Deflection Example using 10 Segment Numerical Integration .. 136

Table K-2 - Midspan Deflection Example using 100 Segment Numerical Integration 136

Table K-3 - Maximum Deflection Example using 100 Segment Numerical

Integration ......................................................................................................... 137

Table M-1 - Data for CPL, ML=MR, Ig/Icr=2.3 โ€“ Example 3.4.2a โ€“ Page 1 .................. 144

Table M-2 - Data for CPL, ML=MR, Ig/Icr=2.3 โ€“ Example 3.4.2a โ€“ Page 2 .................. 145

Table M-3 - Data for CPL, ML=MR, Ig/Icr=3.9 โ€“ Example 3.4.2b โ€“ Page 1 .................. 147

Table M-4 - Data for CPL, ML=MR, Ig/Icr=3.9 โ€“ Example 3.4.2b โ€“ Page 2 .................. 148

Table M-5 - Data for CPL, ML=MR, Ig/Icr=3.8 โ€“ Example 3.4.2c โ€“ Page 1 .................. 150

Table M-6 - Data for CPL, ML=MR, Ig/Icr=3.8 โ€“ Example 3.4.2c โ€“ Page 2 .................. 151

Table M-7 - Data for CPL, ML=MR, Ig/Icr=12 โ€“ Example 3.4.2d โ€“ Page 1 ................... 153

Table M-8 - Data for CPL, ML=MR, Ig/Icr=12 โ€“ Example 3.4.2d โ€“ Page 2 ................... 154

Table N-1 - Data for 2PL, ML=MR, Ig/Icr=3.0 โ€“ Example 3.5.2a โ€“ Page 1 ................... 157

Table N-2 - Data for 2PL, ML=MR, Ig/Icr=3.0 โ€“ Example 3.5.2a โ€“ Page 2 ................... 158

Table N-3 - Data for 2PL, MR=0, Ig/Icr=3.0 โ€“ Example 3.5.2b โ€“ Page 1 ...................... 160

Table N-4 - Data for 2PL, MR=0, Ig/Icr=3.0 โ€“ Example 3.5.2b โ€“ Page 2 ...................... 161

Table N-5 - Data for 2PL, ML=MR, Ig/Icr=12 โ€“ Example 3.5.2c โ€“ Page 1 .................... 163

Table N-6 - Data for 2PL, ML=MR, Ig/Icr=12 โ€“ Example 3.5.2c โ€“ Page 2 .................... 164

Table N-7 - Data for 2PL, MR=0, Ig/Icr=12 โ€“ Example 3.5.2d โ€“ Page 1 ....................... 166

Table N-8 - Data for 2PL, MR=0, Ig/Icr=12 โ€“ Example 3.5.2d โ€“ Page 2 ....................... 167

Table O-1 - Data for UDL Beam, ML=MR, Ig/Icr=3.0 โ€“ Example 3.6.2a โ€“ Page 1 ........ 171

Table O-2 - Data for UDL Beam, ML=MR, Ig/Icr=3.0 โ€“ Example 3.6.2a โ€“ Page 2 ........ 172

Table O-3 - Data for UDL Beam, MR=0, Ig/Icr=3.0 โ€“ Example 3.6.2b โ€“ Page 1 ........... 174

Table O-4 - Data for UDL Beam, MR=0, Ig/Icr=3.0 โ€“ Example 3.6.2b โ€“ Page 2 ........... 175

Page 8: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

viii

Table O-5 - Data for UDL Beam, ML=MR, Ig/Icr=4.9 โ€“ Example 3.6.2c โ€“ Page 1 ........ 177

Table O-6 - Data for UDL Beam, ML=MR, Ig/Icr=4.9 โ€“ Example 3.6.2c โ€“ Page 2 ........ 178

Table O-7 - Data for UDL Slab, ML=MR, Ig/Icr=4.9 โ€“ Example 3.6.2d โ€“ Page 1 .......... 180

Table O-8 - Data for UDL Slab, ML=MR, Ig/Icr=4.9 โ€“ Example 3.6.2d โ€“ Page 2 .......... 181

Table O-9 - Data for UDL Slab, MR=0, Ig/Icr=4.9 โ€“ Example 3.6.2e โ€“ Page 1 ............. 183

Table O-10 - Data for UDL Slab, MR=0, Ig/Icr=4.9 โ€“ Example 3.6.2e โ€“ Page 2 ........... 184

Table O-11 - Data for UDL Slab, ML=MR, Ig/Icr=18 โ€“ Example 3.6.2f โ€“ Page 1 .......... 186

Table O-12 - Data for UDL Slab, ML=MR, Ig/Icr=18 โ€“ Example 3.6.2f โ€“ Page 2 ......... 187

Table O-13 - Data for UDL Slab, MR=0, Ig/Icr=6 โ€“ Example 3.6.2g โ€“ Page 1 .............. 189

Table O-14 - Data for UDL Slab, MR=0, Ig/Icr=6 โ€“ Example 3.6.2g โ€“ Page 2 .............. 190

Table O-15 - Data for UDL Beam, ML=MR, Ig/Icr=17 โ€“ Example 3.6.2h โ€“ Page 1....... 192

Table O-16 - Data for UDL Beam, ML=MR, Ig/Icr=17 โ€“ Example 3.6.2h โ€“ Page 2....... 193

Table P-1 - Data for UDL Beam, Ig/Icr=3.0, New A23.3 Mcr Example P1 โ€“ Page 1 ..... 197

Table P-2 - Data for UDL Beam, Ig/Icr=3.0, New A23.3 Mcr Example P1 โ€“ Page 2 ..... 198

Table P-3 - Data for UDL Beam, Ig/Icr=4.9, New A23.3 Mcr Example P2 โ€“ Page 1 ..... 200

Table P-4 - Data for UDL Beam, Ig/Icr=4.9, New A23.3 Mcr Example P2 โ€“ Page 2 ..... 201

Table P-5 - Data for UDL Beam, Ig/Icr=17, Reduced Mcr Example P3 โ€“ Page 1 .......... 203

Table P-6 - Data for UDL Beam, Ig/Icr=17, Reduced Mcr Example P3 โ€“ Page 2 .......... 204

Table R-1 - Example Midspan vs Maximum Deflection for UDL โ€“ Page 1 ................. 211

Table R-2 - Example Midspan vs Maximum Deflection for UDL โ€“ Page 2 ................. 212

Table R-3 - Example Midspan vs Maximum Deflection for UDL โ€“ Page 3 ................. 213

Table R-4 - Example Midspan vs Maximum Deflection for UDL โ€“ Page 4 ................. 214

Table R-5 - Example Midspan vs Maximum Deflection for UDL โ€“ Page 5 ................. 215

Table R-6 - Example Midspan vs Maximum Deflection for UDL โ€“ Page 6 ................. 216

Table R-7 - Example Midspan vs Maximum Deflection for UDL โ€“ Summary ............ 217

Table R-8 - Example Midspan vs Maximum Deflection for CPL โ€“ Summary ............. 218

Table R-9 - Example Midspan vs Maximum Deflection for 2PL โ€“ Summary ............. 219

Page 9: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

ix

LIST OF FIGURES

Figure 2-1 - Deflected Shape Comparison of Four Different Loads & End-Moments .. 10

Figure 2-2 - Moment-Curvature Response of Reinforced Concrete ............................... 12

Figure 2-3 - Effect of Tension Stiffening on a Reinforced Concrete Member ................ 14

Figure 2-4 - Gross, Local-Effective, Equivalent, and Cracked Moments of Inertia ....... 15

Figure 3-1 โ€“ Midspan Deflection of Steel Reinforced Beams under Centered Point

Load with Ig/Icr=2.3, Mm/Mcr=3.0, and ML=MR .................................................. 50

Figure 3-2 - Midspan Deflection of Steel Reinforced Beams under Centered Point

Load with Ig/Icr=3.9, Mm/Mcr=1.6, and ML=MR .................................................. 51

Figure 3-3 - Midspan Deflection of FRP Reinforced Beams under Centered Point

Load with Ig/Icr=3.3, Mm/Mcr=2.5, and ML=MR .................................................. 52

Figure 3-4 - Midspan Deflection of FRP Reinforced Beams under Centered Point

Load with Ig/Icr=12, Mm/Mcr=1.6, and ML=MR ................................................... 53

Figure 3-5 - Midspan Deflection of Steel Reinforced Beams under Third Point

Loading with Ig/Icr=3.0, Mm/Mcr=2.2, and ML=MR ............................................. 59

Figure 3-6 - Midspan and Maximum Deflection of Steel Reinforced Beams under

Third Point Loading with Ig/Icr=3.0, Mmax /Mcr=2.2, and MR=0 ......................... 60

Figure 3-7 - Midspan Deflection of GFRP Reinforced Beams under Third Point

Loading with Ig/Icr=12.2, Mm/Mcr=1.4, and ML=MR ........................................... 61

Figure 3-8 - Midspan and Maximum Deflection of GFRP Reinforced Beams under

Third Point Loading with Ig/Icr=12.2, Mmax /Mcr=1.4, and MR=0 ....................... 62

Figure 3-9 - Midspan Deflection of Steel Reinforced Beams under Uniformly

Distributed Load with Ig/Icr=3.0, Mm /Mcr=2.17, and ML=MR ............................ 70

Figure 3-10 - Midspan and Maximum Deflection of Steel Reinforced Beams under

Uniformly Distributed Load with Ig/Icr=3.0, Mmax /Mcr=2.17, and MR=0 ........... 71

Figure 3-11 - Midspan Deflection of Steel Reinforced Slabs under Uniformly

Distributed Load with Ig/Icr=4.9, Mm /Mcr=1.33, and ML=MR ............................ 72

Figure 3-12 - Midspan and Maximum Deflection of Steel Reinforced Slabs under

Uniformly Distributed Load with Ig/Icr=4.9, Mmax /Mcr=1.33, and MR=0 ........... 73

Figure 3-13 - Midspan and Deflection of GFRP Reinforced Beams under Uniformly

Distributed Load with Ig/Icr=17, Mm /Mcr=1.25, and ML=MR ............................. 74

Figure A-1 - Midspan Point Load on a Continuous Member ......................................... 90

Figure A-2 - Equal Point Load at Third Points on a Continuous Member ..................... 91

Figure A-3 - Uniformly Distributed Load on a Continuous Member ............................. 92

Figure C-1 - Idealized Moment-Curvature for FRP-Reinforced Member ...................... 95

Figure E-1 - Lengths to Integration Segments for Example Midspan Point Load.......... 99

Page 10: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

x

Figure E-2 - Lengths to Integration Segments for Example Equal Third-Point Loads 100

Figure E-3 - Lengths to Integration Segments for Example Uniform Load ................. 100

Figure G-1 - Lengths to Integration Segments for Example Centered Point Load ....... 112

Figure L-1 - Integrated Function and Accurate Deflection Example ............................ 139

Figure L-2 - Integrated Function and Inaccurate Deflection Example ......................... 141

Figure M-1 - Copy of Figure 3-1 โ€“ Midspan Point Load, Ig/Icr=2.3 and Mm/Mcr=3.0 .. 146

Figure M-2 - Copy of Figure 3-2 โ€“ Midspan Point Load, Ig/Icr=3.9 and Mm/Mcr=1.6 .. 149

Figure M-3 - Copy of Figure 3-3 โ€“ Midspan Point Load, Ig/Icr=3.3 and Mm/Mcr=2.5 .. 152

Figure M-4 - Copy of Figure 3-4 โ€“ Midspan Point Load, Ig/Icr=12 and Mm/Mcr=1.6 ... 155

Figure N-1 - Copy of Figure 3-5 โ€“ Third-Point Loaded, Ig/Icr=3 and Mm/Mcr=2.2....... 159

Figure N-2 - Copy of Figure 3-6 โ€“ Third-Point Loaded, Ig/Icr=3, Mmax/Mcr=2.2,

MR=0 ................................................................................................................. 162

Figure N-3 - Copy of Figure 3-7 โ€“ Third-Point Loaded, Ig/Icr=12 and Mm/Mcr=1.4..... 165

Figure N-4 - Copy of Figure 3-8 โ€“ Third-Point Loaded, Ig/Icr=12, Mmax/Mcr=1.4,

MR=0 ................................................................................................................. 168

Figure O-1 - Copy of Figure 3-9 โ€“ UDL on Beam, Ig/Icr=3, Mm /Mcr=2.2, ML=MR ..... 173

Figure O-2 - Copy of Figure 3-10 โ€“ UDL on Beam, Ig/Icr=3, Mmax/Mcr=2.2, MR=0 .... 176

Figure O-3 - Midspan Deflection of Steel Reinforced Beams under Uniformly

Distributed Load with Ig/Icr=5, Mm /Mcr=1.3, and ML=MR ............................... 179

Figure O-4 - Copy of Figure 3-11 โ€“ UDL on Slab, Ig/Icr=5, Mm /Mcr=1.3, ML=MR ..... 182

Figure O-5 - Copy of Figure 3-12 โ€“ UDL on Slab, Ig/Icr=5, Mmax /Mcr=1.3, MR=0 ...... 185

Figure O-6 - Midspan Deflection of FRP Reinforced Slabs under Uniformly

Distributed Load with Ig/Icr=18, Mm/Mcr=1.2, ML=0 ........................................ 188

Figure O-7 - Midspan and Maximum Deflection of FRP Reinforced Slabs under

Uniformly Distributed Load with Ig/Icr=6, Mmax/Mcr=2, ML=0 ........................ 191

Figure O-8 - Copy of Figure 3-13 โ€“ UDL on Beam, Ig/Icr=17, Mm /Mcr=1.3, ML=MR . 194

Figure P-1 - Midspan Deflection Computed using Shrinkage Restraint Mcr โ€“ Beam

with Ig/Icr=3 Mm/Mcr=3.2, ML=MR .................................................................... 199

Figure P-2 - Copy of Figure O-1, Ig/Icr=3, Mm /Mcr=2.2 โ€“ Compare to Figure P-1 ...... 199

Figure P-3 โ€“ Midspan and Maximum Deflection Computed using Shrinkage

Restraint Mcr โ€“ Slab with Ig/Icr=5, Mmax/Mcr=2, and MR=0 .............................. 202

Figure P-4 - Copy of Figure O-5, Ig/Icr=5, Mmax/Mcr=1.3 โ€“ Compare to Figure P-3 .... 202

Figure P-5 - Midspan Deflection Computed using Shrinkage Restraint Mcr โ€“ Slab

with Ig/Icr=17, Mm/Mcr=1.9, and ML=MR .......................................................... 205

Figure P-6 - Copy of Figure O-8, Ig/Icr=17, Mm/Mcr=1.3 โ€“ Compare to Figure P-5 ..... 205

Figure R-1 - Examples of Differences between Midspan and Maximum Deflection ... 210

Page 11: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

xi

LIST OF SYMBOLS

This report defines the following symbols as:

2PL = two point loads located at third points on the relevant member span

๐‘Ž = depth of equivalent rectangular stress block

๐ด๐‘“ = area of FRP reinforcement in tension for this member segment

๐ด๐‘š = area of tension reinforcement, ๐ด๐‘  or ๐ด๐‘“, at/near midspan for this member

๐ด๐‘  = area of steel reinforcement in tension for this member segment

๐ด๐ฟ = area of tension reinforcement, ๐ด๐‘  or ๐ด๐‘“, in the left end of this member

๐ด๐‘… = area of tension reinforcement, ๐ด๐‘  or ๐ด๐‘“, in the right end of this member

๐‘ = width of rectangular beam across the compression face

๐‘ = distance from the compression face to the neutral axis

๐‘๐ฟ = ๐‘ for the design of the left end moment of the member

๐‘๐‘š = ๐‘ for the design of the maximum moment near midspan of the member

๐‘๐‘… = ๐‘ for the design of the right end moment of the member

CPL = one point loads located at midpoint on the relevant member span

๐‘‘ = effective depth of tension reinforcement from compression face

๐ธ = elastic modulus of the material being analyzed

๐ธ๐‘ = elastic modulus of reinforcing bar, ๐ธ๐‘“ or ๐ธ๐‘ 

๐ธ๐‘ = elastic modulus of concrete

๐ธ๐‘“ = design or guaranteed elastic modulus of FRP reinforcement

๐ธ๐‘  = elastic modulus of steel reinforcing

๐‘“๐‘ = service load stress in the reinforcing bar

๐‘“๐‘โ€ฒ = specified compressive strength of concrete

๐‘“๐‘“๐‘ข = tensile strength at failure, (unfactored ultimate tensile stress)

๐‘“๐‘†๐ฟ๐‘† = serviceability limit for FRP reinforced concrete design

๐‘“๐‘“,`๐‘  = creep-rupture stress limit for FRP reinforced concrete design

๐‘“๐‘Ÿ = modulus of rupture of concrete (taken as 0.6โˆš๐‘“๐‘โ€ฒ in MPa)

๐‘“๐‘ฆ = yield strength of steel reinforcement (or similar for FRP)

โ„Ž = height of rectangular beam, from compression face to tension face

๐‘– = symbol/counter for sections, 0 to ๐‘—, or segments, 1 to ๐‘—, for the span

๐‘— = denotes total number of equal segments used for numerical integration

๐ผ = moment of inertia of the member about the axis the load is applied

๐ผ๐‘๐‘Ÿ = moment of inertia of the cracked transformed section, ๐ผ๐‘๐‘Ÿ= ๐ผ๐‘๐‘Ÿ๐‘š unless noted

๐ผ๐‘๐‘Ÿโˆ— = moment of inertia of appropriate section ( ๐ผ๐‘๐‘Ÿ๐ฟ , ๐ผ๐‘๐‘Ÿ๐‘š , or ๐ผ๐‘๐‘Ÿ๐‘…)

Page 12: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

xii

๐ผ๐‘๐‘Ÿ๐ฟ = moment of inertia, ๐ผ๐‘๐‘Ÿ, for negative bending at the left end

๐ผ๐‘๐‘Ÿ๐‘š = moment of inertia, ๐ผ๐‘๐‘Ÿ, for positive bending for the midspan segment

๐ผ๐‘๐‘Ÿ๐‘… = moment of inertia, ๐ผ๐‘๐‘Ÿ, for negative bending at the right end

๐ผ๐‘’ = effective moment of inertia for the member using the method indicated

๐ผ๐‘’(๐‘ฅ) = (local) section-based effective moment of inertia at position ๐‘ฅ along member

๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” = average effective moment of inertia using CSA A23.3 clause 9.8.2.4

๐ผ๐‘’๐‘š = effective moment of inertia with for the midspan segment in method indicated

๐ผ๐‘’๐ฟ = effective moment of inertia with left end-moment in method indicated

๐ผ๐‘’๐‘… = effective moment of inertia with right end-moment in method indicated

๐ผ๐‘’โ€ฒ = integration-based (constant) equivalent moment of inertia for a member

๐ผ๐‘’โˆ—โ€ฒ = approximate equivalent moment of inertia, ๐ผ๐‘’

โ€ฒ , but using โˆ— in lieu of

๐ผ๐‘” = gross moment of inertia, (๐‘โ„Ž3 12โ„ for prismatic rectangular sections)

๐‘˜๐‘‘ = the depth of the compression face for purposes of defining ๐ผ๐‘๐‘Ÿ

๐พ = factor which ratios a simply supported ๐›ฅ to a continuous member ๐›ฅ

๐พ๐‘Ÿ = variable which gives factored resistance such that ๐‘€๐‘Ÿ = ๐พ๐‘Ÿ๐‘๐‘‘2

๐พ๐‘Ÿ ๐‘š = ๐พ๐‘Ÿ for midspan based on the maximum positive moment (near midspan)

๐พ๐‘Ÿ ๐ฟ = ๐พ๐‘Ÿ for the left end of the member

๐พ๐‘Ÿ ๐‘… = ๐พ๐‘Ÿ for the right end of the member

๐ฟ = length of member span (measured center-to-center of relevant supports)

๐ฟโˆ†๐‘š๐‘Ž๐‘ฅ = length from left end of span to location of maximum deflection

๐ฟ1 = length from left end of span to end of left-negative-cracked segment

๐ฟ2 = length from left end of span to start of positive-cracked segment

๐ฟ3 = length from left end of span to midspan, therefore ๐ฟ3 = ๐ฟ/2

๐ฟ3๐ด = length from left end of span to the 1/3 point, therefore ๐ฟ3๐ด = ๐ฟ/3

๐ฟ3๐ต = length from left end of span to the 2/3 point, therefore ๐ฟ3๐ต = 2๐ฟ/3

๐ฟ4 = length from left end of span to end of positive-cracked segment

๐ฟ5 = length from left end of span to start of right-negative-cracked segment

๐ฟ6 = length of span, therefore ๐ฟ6 = ๐ฟ

๐ฟ๐‘๐‘Ÿ = distance ๐‘ฅ to leftmost section where ๐‘€(๐‘ฅ) > 0 and ๐‘€(๐‘ฅ) > ๐‘€๐‘๐‘Ÿ

๐ฟ๐‘” = length of uncracked section(s) in FRP-reinforced concrete (Appendix C)

๐ฟ๐‘— = length from left end of span to right end of integration segment ๐‘—

๐ฟ๐‘ƒ๐ฟ = distance to the closest point load from closest support

๐ฟ๐‘…4 = length from right end of span to right end of positive-cracked segment

๐ฟ๐‘…5 = length, from right end of span, of the right-negative-cracked segment

l n = the clear span between supports as defined in CSA A23.3-04

Page 13: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

xiii

๐‘š(๐‘ฅ) = internal virtual moment from virtual load, using method of virtual work

๐‘š๐‘–(๐‘ฅ) = virtual moment, ๐‘š(๐‘ฅ), at location ๐‘– on the span

๐‘€ = midspan bending moment for the applied load

๐‘€๐‘Ž = the applied bending moment used to compute the effective moment of inertia

๐‘€(๐‘ฅ) = bending moment at position ๐‘ฅ for the applied load

๐‘€0 = total static moment (midspan service load moment if end-moments released)

๐‘€0,0 = ๐‘€0 for a simply supported member when producing example members

๐‘€1๐‘ƒ๐ฟ = maximum moment from one point load applied at midspan

๐‘€2๐‘ƒ๐ฟ = maximum moment from two equal loads applied at third points

๐‘€๐‘๐‘Ÿ = cracking moment of the member, (fr๐‘โ„Ž2/6 for rectangular sections)

๐‘€๐‘“ = factored moment of the member (required to be less than ๐‘€๐‘Ÿ)

๐‘€๐‘š = net midspan moment (with worst case service load applied)

๐‘€๐‘š๐‘Ž๐‘ฅ = maximum positive service moment (with worst case service load applied)

๐‘€๐‘› = the nominal moment capacity (๐‘€๐‘Ÿ without the reductions from ๐œ™๐‘ & ๐œ™๐‘ )

๐‘€๐‘Ÿ = factored bending moment resistance in ultimate limit states design

๐‘€๐‘  = service load bending moment at location indicated

๐‘€๐‘ ๐‘ข๐‘  = sustained service load bending moment at indicated segment

๐‘€๐ฟ = service moment at left support a loading when ๐‘€๐‘š๐‘Ž๐‘ฅ occurs

๐‘€๐‘… = service moment at right support a loading when ๐‘€๐‘š๐‘Ž๐‘ฅ occurs

๐‘€๐‘ˆ๐ท๐ฟ = maximum moment from uniformly distributed load, ๐‘ค๐‘ˆ๐ท๐ฟ๐ฟ2 8โ„

๐‘› = modular ratio (๐ธ๐‘/๐ธ๐‘)

๐‘ = denotes specific point/location along the span to determine deflection at

๐‘ƒ = load applied at a particular point(s) (short segment(s)) on the span

๐‘ƒ๐‘๐‘Ÿ = load ๐‘ƒ which causes tension face to exceed ๐‘“๐‘Ÿ

๐‘ƒ0 = ๐‘ƒ1๐‘ƒ๐ฟ or ๐‘ƒ2๐‘ƒ๐ฟ used to produce continuous member based on a simple member

๐‘ƒs = maximum service load ๐‘ƒ

๐‘ƒ1๐‘ƒ๐ฟ = one point load (๐‘ƒ) applied at midspan

๐‘ƒ2๐‘ƒ๐ฟ = total of two equal loads (๐‘ƒ), each equal ๐‘ƒ2๐‘ƒ๐ฟ 2โ„ , applied at third points

๐‘† = time-dependant factor used for calculating sustained-load effects

UDL = a uniformly distributed load located along the relevant member span

๐‘‰๐ฟ = shear force resulting from loads ๐‘ƒ or ๐‘ค at the left end of the span

๐‘‰๐‘… = shear force resulting from loads ๐‘ƒ or ๐‘ค at the right end of the span

๐‘ค = any distributed load applied on a member; ๐‘ค๐‘ˆ๐ท๐ฟ in this report

๐‘ค0 = ๐‘ค๐‘ˆ๐ท๐ฟ on a simply supported member

๐‘ค๐‘ˆ๐ท๐ฟ = service load distributed uniformly across full member span

๐‘ฅ = distance, from left, along a span (to a particular position/cross-section)

Page 14: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

xiv

๐‘ฆ๐‘ก = distance from section gross centroid to tension face (rectangular = โ„Ž/2)

z = denotes load case number for specific example load and end-moments

๐›ผ1 = ratio of average stress in rectangular compression block to ๐‘“๐‘โ€ฒ

๐›ผ๐‘๐‘Ÿ = ratio of cracking moment divided by total moment (๐‘€๐‘๐‘Ÿ/๐‘€0)

๐›ผ+ ๐‘“โ„ = ratio of ๐‘€๐‘Ÿ/๐‘€๐‘“ , midspan, where additional bars added to reduce ๐›ฅ๐‘š๐‘Ž๐‘ฅ

๐›ผ๐‘  ๐‘“โ„ = service load ratio (factored load divided by service load, ๐‘€๐‘ /๐‘€๐‘“)

๐›ผ๐ฟ = ratio of left end-moment divided by total moment (๐‘€๐ฟ/๐‘€0)

๐›ผ๐ฟ/๐‘š๐‘Ž๐‘ฅ = ratio of left end-moment divided by maximum moment (๐‘€๐ฟ/๐‘€๐‘š๐‘Ž๐‘ฅ)

๐›ผ๐‘… = ratio of right end-moment divided by total moment (๐‘€๐‘…/๐‘€0)

๐›ผ๐‘…/๐‘š๐‘Ž๐‘ฅ= ratio of right end-moment divided by maximum moment (๐‘€๐‘…/๐‘€๐‘š๐‘Ž๐‘ฅ)

๐›ฝ = tension stiffening factor for tensile contribution of concrete after cracking

๐›ฝ1 = ratio of depth of rectangular compression block to depth of neutral axis

๐›ฝ๐‘‘ = coefficient to modify Bransonโ€™s equation for FRP-reinforcing

= integration factor to account for changes in stiffness along member span

โˆ— = correction to which improves continuous member effective stiffness

๐›ฟ = symbol indicating the change in the subsequent variable(s)

๐›ฟ๐›ฅ๐‘๐‘Ÿ = the change in the deflection from the bending-moment related cracking

๐›ฅ = midspan deflection resulting from the maximum service load case

๐›ฅ(๐‘ฅ) = deflection at ๐‘ฅ from the given service load case

๐›ฅ1 = analytical integration results, ๐›ฅ๐‘— , for ๐‘ฅ = 0 ๐‘ก๐‘œ ๐ฟ1

๐›ฅ1+2 = ๐›ฅ๐‘— for ๐‘ฅ = 0 ๐‘ก๐‘œ ๐ฟ2 for analytical integration with no left-end cracking

๐›ฅ2 = analytical integration results, ๐›ฅ๐‘— , for ๐‘ฅ = ๐ฟ1 ๐‘ก๐‘œ ๐ฟ2

๐›ฅ3 = analytical integration results, ๐›ฅ๐‘— , for ๐‘ฅ = ๐ฟ2 ๐‘ก๐‘œ ๐ฟ/2

๐›ฅ3๐ด = third-point loading integration results, ๐›ฅ๐‘— , for ๐‘ฅ = ๐ฟ2 ๐‘ก๐‘œ ๐ฟ/3

๐›ฅ3๐ต = third-point loading integration results, ๐›ฅ๐‘— , for ๐‘ฅ = ๐ฟ/3 ๐‘ก๐‘œ 2๐ฟ/3

๐›ฅ3๐ถ = third-point loading integration results, ๐›ฅ๐‘— , for ๐‘ฅ = ๐ฟ/2 ๐‘ก๐‘œ 2๐ฟ/3

๐›ฅ3๐ท = third-point loading integration results, ๐›ฅ๐‘— , for ๐‘ฅ = 2๐ฟ/3 ๐‘ก๐‘œ ๐ฟ4

๐›ฅ4 = analytical integration results, ๐›ฅ๐‘— , for ๐‘ฅ = ๐ฟ/2 ๐‘ก๐‘œ ๐ฟ4

๐›ฅ5 = analytical integration results, ๐›ฅ๐‘— , for ๐‘ฅ = ๐ฟ4 ๐‘ก๐‘œ ๐ฟ5

๐›ฅ5+6 = ๐›ฅ๐‘— for ๐‘ฅ = ๐ฟ4 ๐‘ก๐‘œ ๐ฟ for analytical integration with no right-end cracking

๐›ฅ6 = analytical integration results, ๐›ฅ๐‘— , for ๐‘ฅ = ๐ฟ5 ๐‘ก๐‘œ ๐ฟ

๐›ฅ๐‘๐‘Ÿ = midspan deflection assuming the member is fully cracked (using ๐ผ๐‘๐‘Ÿ)

๐›ฅ๐‘” = midspan deflection assuming the member is uncracked (using ๐ผ๐‘”)

๐›ฅ๐‘”,๐‘š๐‘Ž๐‘ฅ = maximum deflection assuming the member is uncracked (using ๐ผ๐‘”)

๐›ฅ๐‘”,๐‘š๐‘–๐‘‘ = midspan deflection assuming the member is uncracked (using ๐ผ๐‘”)

๐›ฅ๐‘– = deflection at point ๐‘–, found by method of virtual work by using ๐‘š๐‘–(๐‘ฅ)

Page 15: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

xv

๐›ฅ๐‘— = portion of ๐›ฅ๐‘– contributed by respective integration segment: ๐‘— = 1,2,3,โ€ฆ

๐›ฅ๐‘š๐‘Ž๐‘ฅ = maximum deflection of a member at the maximum service load case

๐›ฅ๐‘š๐‘Ž๐‘ฅ,๐ผ๐‘’(๐‘ฅ) = maximum deflection of a member calculated using ๐ผ๐‘’(๐‘ฅ)

๐›ฅ๐‘š๐‘Ž๐‘ฅ,๐ผ๐‘’โ€ฒ = maximum deflection calculated using Bischoffโ€™s ๐ผ๐‘’

โ€ฒ

๐›ฅ๐‘š๐‘–๐‘‘ = midspan deflection, ๐›ฅ, exactly at midspan (๐ฟ/2) for 2-support member

๐›ฅ๐‘ข๐‘›๐‘๐‘Ÿ = midspan deflection when ๐‘€๐‘š๐‘Ž๐‘ฅ โ‰ˆ ๐‘€๐‘๐‘Ÿ (and assuming no cracking)

๐›ฅ๐ผ๐‘’ = midspan deflection determined using Bransonโ€™s ๐ผ๐‘’

๐›ฅ๐ผ๐‘’โ€ฒ = midspan deflection calculated using Bischoffโ€™s ๐ผ๐‘’โ€ฒ

๐›ฅ๐ผ๐‘’โˆ—โ€ฒ = midspan deflection calculated using proposed ๐ผ๐‘’โˆ—โ€ฒ (equal third-point loading)

๐›ฅ๐ผ๐‘’(๐‘ฅ) = midspan deflection calculated using section-based moment of inertia, ๐ผ๐‘’(๐‘ฅ)

๐›ฅ๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” = midspan deflection calculated using the average moment of inertia (see ๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘”)

๐›ฅ๐ผ๐‘’,๐›ฝ๐‘‘ = midspan deflection calculated using ๐ผ๐‘’ per ACI440.1R (with a ๐›ฝ๐‘‘ modifier)

๐›ฅ๐‘€๐ฟ = deflection caused by left end-moment

๐›ฅ๐‘€๐‘… = deflection caused by right end-moment

๐›ฅ๐‘ˆ๐ท๐ฟ = deflection caused by uniformly distributed load

๐›ฅ๐‘ˆ๐‘ง(๐‘ฅ) = total deflection at ๐‘ฅ caused by uniformly distributed load for load case ๐‘ง

๐›ฅ๐›ฝ=0 = midspan deflection calculated with tension stiffening neglected (per S806)

๐›ฅ๐›พ=1 = midspan deflection calculated using the Bischoffโ€™s ๐ผ๐‘’ (equals ๐ผ๐‘’โ€ฒ with = 1)

ํœ€๐‘๐‘ข = maximum strain at extreme compression face at ultimate, 0.0035

๐œ‚ = stiffness reduction coefficient (1 โˆ’ ๐ผ๐‘๐‘Ÿ/๐ผ๐‘”), use ๐œ‚=๐œ‚๐‘š unless noted

๐œ‚๐‘š = stiffness reduction coefficient (1 โˆ’ ๐ผ๐‘๐‘Ÿ๐‘š/๐ผ๐‘”) for at/near midspan

๐œ‚๐ฟ = stiffness reduction coefficient (1 โˆ’ ๐ผ๐‘๐‘Ÿ๐ฟ/๐ผ๐‘”) for the left end

๐œ‚๐‘… = stiffness reduction coefficient (1 โˆ’ ๐ผ๐‘๐‘Ÿ๐‘…/๐ผ๐‘”) for the right end

๐œ‰ = 1 โˆ’ โˆš1 โˆ’๐‘€๐‘๐‘Ÿ/๐‘€๐‘š , ( ๐œ‰๐ฟ/2 is the uncracked end length with ๐‘ค๐‘ˆ๐ท๐ฟ load)

๐œŒ = reinforcement ratio of the tension bars, ๐ด๐‘ /๐‘๐‘‘ or ๐ด๐‘“/๐‘๐‘‘

๐œŒโ€ฒ = reinforcement ratio of the compression bars

๐œŒ๐‘ = balanced reinforcement ratio for a reinforced member

๐œŒ๐‘š = tension reinforcement ratio, ๐œŒ, at/near member midspan

๐œŒ๐ฟ = tension reinforcement ratio, ๐œŒ, at left end of member

๐œŒ๐‘… = tension reinforcement ratio, ๐œŒ, at right end of member

๐œ™ = curvature of member being considered at the point being considered

๐œ™๐‘ = resistance factor for concrete under CSA A23.3-04 (or as required)

๐œ™๐‘ = resistance factor for reinforcement bar: ๐œ™๐‘“ or ๐œ™๐‘ 

๐œ™๐‘“ = resistance factor for FRP reinforcement per relevant standard

๐œ™๐‘  = resistance factor for steel reinforcement under CSA A23.3-04

Page 16: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

1

1.0 INTRODUCTION

Building and bridge codes usually prescribe deflection limits. Deflection limits exist so

that all designed structures will meet reasonable serviceability requirements. Poor

serviceability causes unnecessary inconvenience to users, sometimes becoming a safety

concern. Engineers need accurate equations for predicting deflection so that they can

efficiently meet bridge and building code requirements.

Bending deflection of concrete members can govern their design. Steel-reinforced

concrete members can be assumed to meet deflection requirements if they comply with

Table 9.1 of A23.3 (CSA 2004). For other cases, however, deflection must be

calculated. To accurately predict bending deflection, a reasonably accurate effective

moment of inertia is needed. For steel reinforced slabs and FRP reinforced concrete

members, Bransonโ€™s (1965) equation often underestimates deflections (Bischoff 2005).

Deflection often governs design in these cases, so this issue needs to be rectified.

This report introduces bending deflection of continuous concrete members and

evaluates different member-based moment of inertia solutions, including a proposed

solution, for use with continuous members. All evaluations provided are based on

immediate deflection caused by dead load plus live load; the deflection computed is the

maximum vertical sag between two supports of a one-way slab or beam. Accurate

solutions for simply-supported prismatic members are provided by Bischoff and Gross

(2011). This report will demonstrate that those solutions also work well for almost all

deflection-critical continuous members.

Page 17: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

2

1.1 Project Need

Moment of inertia calculations should progress toward increasing accuracy and this

work intends to aid in that evolution. ACI 318 (ACI Committee 318 2011), CSA A23.3

(CSA 2004), and CSA S806 (CSA 2012) use the โ€œeffective moment of inertiaโ€ approach

to calculate bending deflection of reinforced concrete members. This approach

calculates deflection using linear-elastic deflection equations and an effective moment

of inertia is used to account for non-linearity after cracking. An improved approach

should also account for variations in member stiffness along the length of the member.

While Bransonโ€™s (1965) solution for the effective moment of inertia has been used for

nearly 50 years, it is an empirical equation that was only calibrated using simply

supported beams with steel reinforcing ratios between 1% and 2%. Rationally derived

equations that also work well for other member types without losing accuracy, such as

those proposed by Bischoff and Gross (2011), should replace Bransonโ€™s solution.

1.2 Project Objectives

The report will demonstrate the complexity of continuous concrete member bending

deflection by showing the results of analytical integration for midspan deflection and

discussing issues related to the service moment history.

The report will also demonstrate that Bischoffโ€™s equations for the equivalent moment of

inertia for simply-supported members (Bischoff and Gross 2011) are useful for

continuous members. These equations are used in calculations of one-way bending

deflection for cracked reinforced concrete members. The examples provided show that

the equations offer similar or improved results relative to the other available methods.

Page 18: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

3

1.3 Project Scope

The unique aspects of the bending deflection of continuous concrete members are

introduced and methods for computing predicted deflections are introduced; this

culminates in a description of Bischoffโ€™s approach (Bischoff and Gross, 2011) for

determining the local (section based) moment of inertia and equivalent moment of

inertia. This report only provides three possible loadings because of the complexity of

the continuous member problem. Only short-term deflection is investigated; long-term

deflection is assumed to be the predicted short-term deflection augmented by a

calculated multiplier.

To demonstrate that Bischoffโ€™s simply-supported equations (Bischoff and Gross, 2011)

are generally accurate for continuous members, results are compared between

Bischoffโ€™s equations, analytical/numerical integrations, Bransonโ€™s (1965) equation, and

the S806 (CSA 2012) method. Continuous member clauses and methods from A23.3

(CSA 2004) for steel reinforced concrete and S806 (CSA 2012) for FRP reinforced

concrete are included where relevant. The example members selected are intended to

cover the practical range of steel reinforced members and provide FRP-reinforced

member examples.

Loading cases provided include midspan point load, two equal third-point loads, and a

uniformly distributed load. Examples are prismatic members spanning between

supports with bending moments that are positive near midspan and negative (or zero) at

supports.

Page 19: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

4

The results are not compared to beam deflection test data in this report. The results rely

on the accuracy of Bischoffโ€™s method (Bischoff and Gross, 2011), which integrates

curvature while accounting for tension stiffening to calculate an effective stiffness.

Deflections in this report are calculated for a statically determinate span with end

moments. The relative stiffness of the adjacent structural members, end rotations, and

pattern loading may affect the actual end moments. Designers must resolve the

structure and worst case service load to accurately determine deflections using the

provided equations.

The appendices provide detailed information about the equations used in this report,

along with example calculations. The means of producing the example idealized

members within spreadsheets and the means of computing deflection using each method

are presented. The data for the example results shown in Chapter 3 are provided, along

with other data and graphs which compare computed results using the proposed

equations and other methods. The appendices also discuss several interesting and

relevant aspects of concrete bending deflection, such as derivations of equations used

and discussions of some of the complications of computing deflection of concrete

members.

1.4 Report Organization

Chapter 2 of this report introduces bending deflection for linear-elastic members and

concrete members that are cracked in bending. It then introduces relevant published

research, requirements from Canadian standards, and the deflection calculation guide

Page 20: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

5

from the Concrete Design Handbook (CAC 2005). Research is presented from Branson

(1965), Razaqpur et al. (2000), and Bischoff and Gross (2011).

Chapter 3 presents the methodology and results of this project. It shows and/or

discusses the following: relevant integration methods, setup for example members,

example deflection results, and proposed deflection equations and limits. Equations,

results, and discussions are provided for members with a midspan point load, equal

third-point loads, and a uniformly distributed load.

Chapter 4 summarizes useful results in this report and recommends relevant future

work.

Page 21: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

6

2.0 BACKGROUND TO DEFLECTION OF

REINFORCED CONCRETE

Accurately predicting bending deflection in reinforced concrete is complicated. A

constant stiffness is required to calculate deflection using the standard North American

method. When portions of concrete members are in tension and crack, however, the

stiffness is not constant. Therefore, the use of standard methods for computing

deflection requires the use of an effective constant moment of inertia for a reinforced

concrete member. Research has led to different approaches and solutions for predicting

deflection; these include solutions using a constant moment of inertia. Most solutions,

however, are valid only for a limited range of reinforcement ratios or types of

reinforcement. This work presents four methods for calculating deflection for these

members, with two determining a constant stiffness. It also presents and discusses

relevant Canadian building code requirements.

Bransonโ€™s (1965) work introduced the concept of an effective moment of inertia. His

equation, sometimes provided with modification factors, is currently recommended in

most North American concrete member design standards. CSA S806 (2012), however,

employs integration of curvature (while ignoring tension stiffening) and provides

solutions for common cases. Similar solutions that include tension stiffening have been

proposed by Bischoff (2011) for FRP reinforced concrete, and these solutions also work

well with steel reinforcement. Bischoffโ€™s method would complete the evolution to one

common and accurate deflection equation that does not depend on the type or amount of

reinforcement used.

Page 22: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

7

2.1 Introduction to Deflection

Deflection is a simple but important concept for people who design structures, even

though it is rarely noticed by the public. Deflection is the movement of a portion of a

structure from its initial or previous position. Even if a structure is strong enough to

resist every required design load, engineers must accurately predict (and sometimes

reduce) deflection because bridge and building codes and standards impose deflection

limits. These limits exist because too much movement can result in structures not being

sufficiently comfortable, aligned, or usable. Examples of deflection include beam sag,

column tilt, and floor vibration.

2.2 Elastic Deflection of Prismatic Members

In North America, the standard equations for deflection assume linear-elastic behaviour

of prismatic members. Elastic deflection occurs if a member returns to its pre-loaded

position after the load is removed. Prismatic members have a uniform cross-section and

moment of inertia for the full member length. For a linear-elastic material, prismatic

members enable accurate deflection prediction using available equations; these

equations enable engineers to meet deflection requirements for most structures.

Concrete undergoes non-linear deflection behavior when it cracks, and also tends to

have additional long-term deflection. Equations for linear-elastic members are,

however, still used to determine reinforced concrete bending deflection.

The second moment of inertia (referred to as the โ€œmoment of inertiaโ€ in this report) is

important in determining bending deflection. The bending stiffness is a function of the

materials used (specifically their modulus of the elasticity, such as ๐ธ๐‘  or ๐ธ๐‘) and the

Page 23: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

8

moment of inertia for the axis about which the member is being bent. The moment of

inertia will be denoted with the symbols ๐ผ , ๐ผ๐‘” , ๐ผ๐‘๐‘Ÿ , ๐ผ๐‘’ , ๐ผ๐‘’โ€ฒ , and so on, depending on

what is assumed, neglected, or taken into account.

2.2.1 Simply Supported Members

Simply supported members are simple to design and simple to test in the laboratory.

These members are free to rotate at both ends and free to move longitudinally at one

end. The engineering analysis is simple because members are statically determinate and

pattern loadings can be ignored. Because simply supported designs are easier to study

and test, their deflection has been studied more thoroughly.

Table 2-1 provides the equations for bending moment, ๐‘€, and maximum deflection, โˆ†,

for simply supported members that are modelled as linear-elastic and prismatic. The

equations can be found in the Handbook of Steel Construction (CISC 2009) and many

Table 2-1 - Example simply supported members with equations

Page 24: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

9

other sources. ๐‘€(๐‘ฅ), as used throughout this report, is the bending moment at distance

x from the left end of the beam. Bending moments are taken as positive if they act to

cause tension in the bottom face of the member (hence adding downwards deflection

within the span). See Appendix H for example calculations and see the List of Symbols

for other variable definitions.

2.2.2 Members with Bending Moments at Supports

Continuous members are used throughout cast-in-place concrete construction. The use

of continuous members reduces the amount of construction work and concrete required.

Continuous slabs, beams, and columns are typical examples for concrete construction,

but all cantilevers and other moment connections are also, in effect, continuous

members. The negative bending moments (at supports) for continuous prismatic beams

or slabs are typically between one-half and three times the positive (midspan) bending

moments. These large negative moments reduce the member depth required because

they reduce the positive bending moment and deflection. โ€œContinuous membersโ€ and

โ€œmembers with end-momentsโ€ are referred to synonymously in this report.

Figure 2-1 shows exaggerated deflected shapes for four different end-moment

conditions. Four different uniformly distributed loads are contrived to give equal

midspan deflection. Note that the midspan deflection is not the maximum deflection for

unequal end-moments. The derivations and data for Figure 2-1 are found in Appendix I.

In Figure 2-1, โˆ† represents the bending deflection of the member, ๐‘€๐ฟ and ๐‘€๐‘… represent

the left end and right end bending moment, and ๐‘€๐‘š is the net midspan moment.

Page 25: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

10

Figure 2-1 - Deflected Shape Comparison of Four Different Loads & End-Moments

2.2.3 Continuous Member Factor, ๐‘ฒ

Deflections for prismatic linear-elastic continuous members can by determined using

the equations shown in Table 2-2. The Concrete Design Handbook (CAC 2005),

Chapter 6, introduces the factor, ๐พ, to compute these deflections. The equations for ๐พ

apply to any constant stiffness members with known end-moments. The midspan

deflection of a prismatic continuous member is the ๐พ factor multiplied by the midspan

Table 2-2 - Deflection of continuous prismatic linear-elastic members

Page 26: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

11

deflection of a prismatic simply supported member with the same span, midspan

moment, and midspan properties. A derivation of the ๐พ factors shown in Table 2-2 can

be found in Appendix A. See the List of Symbols for other equation variable

definitions.

2.3 Bending Deflection of Reinforced Concrete

There are many issues to overcome in order to predict bending deflection for reinforced

concrete. The modulus of rupture, shrinkage stress, crack spacing, and the effect of

concrete between (tension face) cracks must be approximated; they cannot be predicted

with high precision. Input materials, site condition history, load history, and the type of

reinforcement used also affect the member response. Calculations predicting deflection

are therefore only intended to give the engineer an indication of whether deflection is

likely to be of concern.

When a portion of a reinforced concrete member cracks in bending, it is no longer

linear-elastic. Simply supported concrete members develop bending cracks in the

bottom face at a midspan segment and have uncracked end segments. Continuous

members develop positive bending cracks at midspan and negative bending cracks at

supports with uncracked segments separating these three cracked segments. The

moment of inertia also varies within a cracked segment. To accurately determine the

deflection, the variation in the moment of inertia along the member should be accounted

for. This report accepts the values and formulas recommended in Bischoff and Gross

(2011) and explores use of those equivalent moments of inertia for continuous members.

Page 27: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

12

As will be discussed in Section 2.5, A23.3 (CSA 2004) provides some guidance for

steel-reinforced concrete members. These members can be assumed to meet deflection

requirements if they meet a recommended minimum depth per A23.3 Table 9.1 (CSA

2004). For other cases, A23.3 (CSA 2004) recommends the linear-elastic equation

approach and provides Bransonโ€™s (1965) equation for the constant effective moment of

inertia, ๐ผ๐‘’. Many standards and codes indicate that integration of curvature can be used

as a robust and practiced method to determine deflection without a limited range of

validity.

2.3.1 Concrete Bending Response

Figure 2-2 shows the typical moment-curvature response of a flexural member, and the

load deflection response looks essentially the same. The steep line on this graph, on the

left, shows the deflection of an uncracked member. The low-slope line, on the right,

shows the deflection of a fully cracked member. The thicker solid line shows the

Figure 2-2 - Moment-Curvature Response of Reinforced Concrete

(Bischoff 2007)

Page 28: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

13

response of an initially uncracked concrete member which is loaded until it is heavily

cracked. In the transition between the cracked and uncracked lines, the member is

partially cracked. The line with the ๐ธ๐‘๐ผ๐‘’ label is a linear-elastic representation of a

partially cracked reinforced concrete member; the origin and the point of curvature at

the service load are the two points which define this line.

In this figure, ๐ธ๐‘๐ผ๐‘’ is computed at the service load which causes the applied moment,

๐‘€๐‘Ž. The gross moment of inertia, ๐ผ๐‘”, is taken as ๐‘โ„Ž3/12 throughout this report (for

rectangular sections); this ignores the contribution of the reinforcing bars when

analyzing bending of the uncracked section (which is a reasonable simplification for

most reinforced concrete members). The cracked moment of inertia, ๐ผ๐‘๐‘Ÿ, is the moment

of inertia assuming that the reinforcing bars resist all of the bending tension (without

yielding) and that the concrete in compression is elastic at service loads. ๐‘€๐‘๐‘Ÿ represents

the bending moment which causes the concrete to crack in bending and ฯ† represents the

curvature of the member at the point being considered.

While the section is assumed to remain elastic, the response is not linear-elastic (as

Figure 2-2 indicates). Any linear-elastic representation of a cracked member will only

be accurate for a particular service load. Section 2.4.2 discusses other relevant issues.

2.3.2 Tension Stiffening of Concrete Bending Members

Tension stiffening can be important in determining the bending deflection of a

reinforced concrete member. Within the cracked region(s), a concrete bending member

has short segments of uncracked cross-section between the cross-sections at cracks.

Page 29: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

14

The moment of inertia at a crack is different from the moment of inertia at uncracked

cross-sections. Tension stiffening accounts for the influence of the uncracked segments

a region with cracks. ๐‘€๐‘๐‘Ÿ/๐‘€(๐‘ฅ) is a rational and accurate tension stiffening factor

(Bischoff 2007); it is used to compute the section-based effective moment of inertia,

๐ผ๐‘’(๐‘ฅ), in this report. ๐‘€(๐‘ฅ) is the bending moment at the location along the beam of ๐‘ฅ.

Tension stiffening has a large effect at the service load depicted in Figure 2-3, for

example. Here, ๐‘ƒ๐‘  represents the service load and ๐‘ƒ๐‘๐‘Ÿ represents the load at cracking.

Figure 2-3 - Effect of Tension Stiffening on a Reinforced Concrete Member

(Gilbert 2007)

2.3.3 Constant Stiffness Approach

The North American approach to determine deflection for prismatic reinforced concrete

members is to use linear-elastic equations. Linear-elastic equations assume members

have a constant stiffness across the entire span. Thus, they require an effective constant

moment of inertia for concrete members that are cracked in bending. The effective

constant moment of inertia is commonly represented as ๐ผ๐‘’. An accurate weighted

average effective moment of inertia, based on integration of curvature, has been defined

as the equivalent moment of inertia, ๐ผ๐‘’โ€ฒ (Bischoff and Gross, 2011).

Page 30: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

15

Linear-elastic equations are simple, can be computed with a calculator, and offer the

benefit of understandable intermediate values for all variables involved. An

experienced engineer can determine if the intermediate values are reasonable, greatly

reducing possible errors. A method using simple equations, even if slightly inaccurate,

is also a good way of checking computer results to see if they are reasonable.

In Figure 2-4, the different moments of inertia are shown for an example continuous

member with known end-moments and properties, and supporting a uniformly

distributed load of 10 kN/m. The cracking moment is ๐‘€๐‘๐‘Ÿ = 113 kNm, which means

the member is cracked at both ends and at midspan under service loads. The service

load bending moments are: ๐‘€๐ฟ = โˆ’247 kNm (left end-moment), ๐‘€๐‘š๐‘Ž๐‘ฅ = 125 kNm

Figure 2-4 - Gross, Local-Effective, Equivalent, and Cracked Moments of Inertia

Page 31: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

16

(maximum moment in positive bending), and ๐‘€๐‘… = โˆ’165 kNm (right end-moment).

The reinforcing steel for the member represented by Figure 2-4 was calculated using a

factored moment resistance of ๐‘€๐‘Ÿ=1.6๐‘€๐‘š๐‘Ž๐‘ฅ, ๐‘€๐‘Ÿ=1.6๐‘€๐ฟ, and ๐‘€๐‘Ÿ=1.6๐‘€๐‘… for the

midspan, left-end, and right-end segments, respectively. The cracked moment of inertia

for the face of the beam that is in tension in these three segments is denoted as ๐ผ๐‘๐‘Ÿโˆ—.

๐ผ๐‘’(๐‘ฅ) represents the (local) section-based moment of inertia at the position ๐‘ฅ, and ๐ผ๐‘’โ€ฒ

represents the equivalent moment of inertia.

2.3.4 Integration Approach to Deflection

An integration approach, such as using the method of virtual work, is a logical approach

to calculating deflection because integrating curvature can accurately predict the

deflection if bending moment and stiffness along the member are known. Eurocode 2

(CEN, 2004) and some other codes and standards indicate that integration should be

used to determine deflection in concrete members. While linear-elastic deflection

equation methods offer more understandable intermediate calculations, numerical

integration is a tenable practice and should provide increased accuracy for all possible

cases. Unlike other approaches, integration-based approaches can easily account for

any variation in the quantity of tension reinforcement along of the member. The use of

integration also enables proper modelling of the negative moment regions; most other

approaches can only offer rough approximations of their effects. It is likely that much

of the opposition to this approach occurs simply because integration is rarely used in

practice by North American structural engineers.

Page 32: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

17

Analytical integration, such as the formulas obtained for this report, can be performed

by hand or computer. Numerical integration is easily performed with spreadsheets; in

work for this report, these spreadsheets proved to be robust, practical, and relatively

simple.

2.4 Effect of Materials and Load History on Deflection

Unfortunately, the cracking in the tension face of concrete members is not the only

concern related to bending deflection of concrete members. The concrete mix and field

conditions affect concrete cracking. The load history will also affect how much

deflection will occur under future loads. Reinforcing bars made from different

materials also affects deflection calculations; modifications are thus often required to

the empirical equations developed for steel reinforced concrete members. FRP

reinforcing is discussed in Section 2.5. Other potential reinforcing materials also differ

from steel, but are not commonly in use and are not discussed in this report.

2.4.1 Variation in Mix Materials and Field Conditions

Cast-in-place concrete has many different variables that affect its bending deflection.

These variables include the exact materials, mix ratios, batch timeline, and conditions

for mixing/placement/curing. All of these variables will affect the stress at which

concrete cracks in tension, ๐‘“๐‘Ÿ (the modulus of rupture). Some of these variables will

also affect the modulus of elasticity of the concrete in the compression zone. Most

concrete mixes will shrink when curing and in the long-term. Both curing-shrinkage

and the future concrete material chemical reactions will affect the amount of bending-

Page 33: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

18

moment induced tensile stress a member can sustain before cracking. Shrinkage and

creep equations are intended to account for these effects. All these effects, however, are

not perfectly understood and will not be fully controlled in the field. As such, concrete

deflection predictions are imprecise approximations (but are necessary, as noted in the

introduction to Section 2.3).

2.4.2 Effect of Load-History on Deflection

Concrete creep and pre-loading will affect the deflection of concrete members.

Members experience creep as the tension-stiffening effect and the compression face

relax slightly. Creep effects are usually considered to be a function of the initial

deflection of the sustained loads multiplied by a factor for duration (CSA 2004). Creep

is inelastic deflection and results from sustained concrete compression stresses below

the elastic limit of 0.5๐‘“๐‘โ€ฒ (where ๐‘“๐‘

โ€ฒ is the specified compressive strength of concrete).

Shrinkage, creep, and axial effects can be accounted for in other calculations not

discussed in this report. If a pre-loading exceeds the service load, this increases service

load deflection.

Continuous members are also affected by pattern-load history. Different pattern-load

cases will typically be required to give the maximum negative service moment and the

maximum positive service moment. A continuous concrete beam tested with only the

largest positive moment case will produce a different deflection than a beam that has the

largest negative moment case applied to it first. This is discussed further in Section

3.7.3.

Page 34: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

19

2.5 FRP Reinforced Members, Razaqpurโ€™s Work, and CSA S806

The behaviour of members reinforced with fibre reinforced polymer (FRP) bars and

steel bars is significantly different. Work by Razaqpur (Razaqpur et al. 2000)

demonstrates that the integration of curvature method, with solutions provided for

common cases, is a practical and effective way to calculate deflection for an FRP-

reinforced concrete member. The Canadian standard for FRP-reinforced concrete, S806

(CSA 2012), accepts this and specifies to use this method.

2.5.1 Fibre Reinforced Polymers as Concrete Reinforcing

Fibre reinforced polymer (FRP) reinforcing bars for concrete are significantly different

from steel bars. Deflection design usually governs the amount of reinforcing in these

members. FRP reinforced concrete members also typically require over-reinforced

strength design. FRP reinforcing consists of fibre polymers and resins; the tensile

strength and stiffness is primarily from the fibre ingredient. FRP materials are

characterized by high tensile strength only in the direction of the reinforcing fibres.

There are three main fibre types for FRP-reinforcement, resulting in three different

types of FRP: glass (GFRP), carbon (CFRP), and aramid (AFRP).

FRP reinforcing bars differ from steel in ways that are critical to strength design. FRP

materials do not yield; rather, they are elastic until failure (typically when the concrete

crushes). Design procedures must account for the brittle failure method. For more

information on strength design criteria, see Chapter 8 of ACI 440.1R (ACI Committee

440 2006). Some typical properties for FRP reinforcement are found in ACI 440.1R

(ACI Committee 440 2006).

Page 35: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

20

In FRP reinforced concrete member design, it is common to design for deflection and

then check strength, since the deflection requirements will usually govern. This means

that the amount of FRP reinforcement required for deflection design will usually exceed

the amount required for strength design. An FRP-reinforced concrete slab will typically

achieve the maximum permissible long-term deflection for the member at a service load

of 20% to 30% of its nominal moment resistance; similarly, an FRP-reinforced concrete

beam will have a service load of 35% to 45% of its nominal moment resistance (Vesey

and Bischoff, 2011).

The methods for determining deflection with FRP-reinforced members are very similar

to steel-reinforced members. While the usual structural analysis techniques are

permitted, a correction factor is required in order to use Bransonโ€™s effective moment of

inertia. ACI 440.1R-06 (ACI Committee 440 2006) provides an empirical modification

factor to the (๐‘€๐‘๐‘Ÿ/๐‘€๐‘Ž)3 ๐ผ๐‘” term in Branson's equation so that it does not underpredict

actual deflections with FRP-reinforced members. This correction factor is empirical

and is not a logical way to account for the lower elastic modulus of FRP, so will not

compute accurate deflections for all types of members. ACI does mention that other

approaches exist. Integration approaches and Bischoffโ€™s equation can be used with FRP

reinforcing without any correction factor or other modification.

2.5.2 Razaqpurโ€™s Work

Razaqpur et al. (2000) recommend that deflection of FRP-reinforced concrete be

calculated using integration of curvature. They assert that tension stiffening can be

neglected for FRP-reinforced concrete and use test results to support this assertion.

Page 36: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

21

They also note that Bransonโ€™s method does not work well for FRP-reinforced members.

This leads to the integration of curvature method, which is known to be a robust

method. They justify use of an idealized tri-linear moment-curvature relationship which

makes the integration less complicated and enables them to provide simple solutions for

common simply supported and fixed-cantilever cases. See Appendix C for a brief

introduction to their results and Appendix G for information about integration without

tension stiffening.

Razaqpur and Isgor (2003) published a similar work for continuous members. The

same methodology is recommended with a couple of additional simplifying

assumptions. It also provides three example solutions. Work for this report determined

that two of these example solutions contained minor algebraic errors. It was also found

that the simplifying approximations are accurate whenever tension stiffening can be

ignored. The work by Razaqpur and Isgor (2003) does, however, provide conservative

results while other common deflection calculations often underpredict bending

deflection of FRP-reinforced concrete.

2.5.3 Concrete Deflection in CSA S806

CSA S806 (CSA 2012) specifies how to calculate deflection in FRP-reinforced one-way

bending members. S806 is the Canadian standard for the Design and Construction of

Building Structures with Fibre-Reinforced Polymers. Clause 8.3.2 of this standard

states that one-way bending members must meet the typical requirements for deflection

under service load. This clause defines cracking moment using the following common

equation (where ๐‘ฆ๐‘ก is the dimension from the centroid to the tension face):

Page 37: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

22

๐‘€๐‘๐‘Ÿ =๐‘“๐‘Ÿ๐ผ๐‘”

๐‘ฆ๐‘ก where: ๐‘“๐‘Ÿ = 0.6โˆš๐‘“๐‘โ€ฒ (2 โˆ’ 1)

S806 (CSA 2012) provides a different way to determine deflection than A23.3 (CSA

2004) and similar codes. Clause 8.3.2.3 declares that deflection is to be calculated using

methods based on integration of curvature. Clause 8.3.2.4 states that maximum

deflections may be calculated using formulas that are provided. These formulas are the

results determined by Razaqpur et al. (2000) as discussed in Section 2.5.2. The standard

does not provide any formulas for members with end-moments, so integration of

curvature is required for continuous members. Clause 8.3.2.5 states that all integration

of curvature is to be performed using the tri-linear relationship as discussed in Appendix

C. Continuous member equations which use the S806 method are denoted with โ€œS806โ€

in this report; relevant integration equations are provided in Appendix G.

The method indicated in CSA S806 for predicting deflection warrants criticism. The

assumption that tension stiffening effects are negligible will yield excessively

conservative results if an FRP reinforced member is lightly-cracked because this

approach was originally validated for unrealistically high levels of service load

(Bischoff and Gross 2011). The standard should provide a solution for all levels of

service load and also provide solutions for common continuous members.

2.6 Bending Deflection in CSA A23.3-04

The Canadian standard for the Design of Concrete Structures, A23.3-04 (CSA 2004),

states a few requirements for deflection. Most of the clauses relevant to calculating

deflection are found in Clause 9.8. Clause 9.8 first indicates that a minimum thickness

Page 38: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

23

can be sufficient to control deflection. This standard then states the methods which may

be used to compute immediate deflections. After this, the standard provides equations

which combine the stiffness from the positive and negative bending segments of a

continuous member. Finally, clause 9.8 requires the designer to account for the effects

of creep.

The Concrete Design Handbook (CAC 2005) provides a design aid for the A23.3 (CSA

2004) standard. The handbook provides useful examples and explanations of design

using this standard. The Concrete Design Handbook provides the ๐พ factor for

computing deflections of continuous members, as explained in Section 2.2.3 (above).

That chapter also provides an equation for ๐ผ๐‘๐‘Ÿ and some other equations required to

calculate bending deflection for reinforced concrete members; these equations are used

for work in this report.

There are a few equations and statements in the A23.3 (CSA 2004) standard and the

Concrete Design Handbook (CAC 2005) that are likely to cause some designers to

commit errors when attempting to compute deflection; these equations and statements

are reviewed in Appendix S.

2.6.1 CSA A23.3-04, Clause 9.8.2.1, Minimum Thickness

The standard provides a table of minimum thicknesses, as a ratio relative to the clear

span, โ„“๐‘› (defined as ๐ฟ in this report), and indicates that members meeting this table will

normally meet typical deflection requirements without further calculations. If a member

is sufficiently thick relative to the span length, then the deflection will typically be

Page 39: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

24

acceptably small. The standard qualifies this statement by saying this minimum

thickness may not be sufficient if there is especially sensitive construction above the

relevant span or if superimposed loads exceed the self-weight.

2.6.2 CSA A23.3-04, Clause 9.8.2.2 and 9.8.2.3, Immediate Deflection

If the member length-to-thickness ratio or other criteria indicate that immediate

deflections should be computed, the A23.3 (CSA 2004) standard recommends the use of

an effective moment of inertia method and provides Bransonโ€™s (1965) equation. The

standard does mention that designers may alternatively use a more comprehensive

method for computing the effective moment of inertia or use integration of curvature to

determine deflection (but no further information is provided for these methods).

Update 3 to A23.3 (CSA 2004), Clause 9.8.2.3, requires that ๐‘€๐‘๐‘Ÿ for bending deflection

be calculated using one half of ๐‘“๐‘Ÿ. The resulting equation, ๐‘€๐‘๐‘Ÿ = 0.5๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก, accounts

for shrinkage restraint stresses when using Bransonโ€™s ๐ผ๐‘’ (Scanlon and Bischoff 2008).

For Bischoffโ€™s ๐ผ๐‘’โ€ฒ or ๐ผ๐‘’(๐‘ฅ) as defined in this report, the use of ๐‘€๐‘๐‘Ÿ = 0.67๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก

provides an equivalent adjustment (Scanlon and Bischoff 2008). Until 2009, the

bending deflection was to be calculated using ๐‘€๐‘๐‘Ÿ = 0.5๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก, except for two-way

slabs (see Clause 13.2.7). Because this update to Clause 9.8.2.3 occurred after work for

this report began, it is only incorporated in Section 3.7.4 and Appendix P.

2.6.3 CSA A23.3-04, Clause 9.8.2.4, Moment of Inertia for Continuous Spans

For continuous prismatic members, the Clause 9.8.2.4 provides an average effective

moment of inertia (indicated in this report as ๐ผ๐‘’ ๐‘Ž๐‘ฃ๐‘”). The effective moment of inertia at

Page 40: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

25

midspan, ๐ผ๐‘’๐‘š, is rationally defined as the maximum moment in the positive bending

segment of the member. The moment at the supports are ๐ผ๐‘’๐ฟ and ๐ผ๐‘’๐‘…. This clause states

that one of the following equations be used to account for the contribution of midspan

and end-moment cracked sections:

๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” = 0.7๐ผ๐‘’๐‘š + 0.15(๐ผ๐‘’๐ฟ + ๐ผ๐‘’๐‘…) if both ends are continuous (2 โˆ’ 2)

๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” = 0.85๐ผ๐‘’๐‘š + 0.15(๐ผ๐‘’๐ฟ) if only one end is continuous (2 โˆ’ 3)

2.6.4 CSA A23.3-04, Clause 9.8.2.5, Sustained Load Deflections

Clause 9.8.2.5 of A23.3 (CSA 2004) provides the designer with sustained load

deflection calculations which account for creep and shrinkage. The total deflection is to

be calculated as a multiple of the immediate deflection. The multiplier provided is:

(1 +๐‘†

1 + 50๐œŒโ€ฒ) (2 โˆ’ 4)

The multiplier accounts for the duration of the sustained load using the factor ๐‘†. There

is a slight reduction in the multiplier from the compression reinforcement ratio, ๐œŒโ€ฒ. The

commentary for this clause, N9.8.2.5 of A23.3 (CSA 2004), explains this calculation in

more detail.

2.7 Bransonโ€™s Work

Branson's equation (Branson 1965) is the standard equation in North America to model

the effective stiffness of a cracked reinforced concrete bending member. The critical

aspect of this task is that concrete members do not immediately change from uncracked

stiffness to fully cracked stiffness when the cracking moment is exceeded. Branson

Page 41: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

26

developed an empirical equation for the transition by testing typical rectangular beams.

His model determines an effective moment of inertia intended to be used with linear-

elastic deflection equations. Branson's equation for the effective moment of inertia is:

๐ผ๐‘’ = (๐‘€๐‘๐‘Ÿ

๐‘€๐‘Ž)3

๐ผ๐‘” + [1 โˆ’ (๐‘€๐‘๐‘Ÿ

๐‘€๐‘Ž)3

] ๐ผ๐‘๐‘Ÿ โ‰ค ๐ผ๐‘” (2 โˆ’ 5)

The applied moment, ๐‘€๐‘Ž, in Bransonโ€™s equation, should be defined as the maximum

moment of a continuous member, as this moment has the largest effect on deflection.

2.7.1 Limited Accurate Range for Bransonโ€™s Equation

Bransonโ€™s (1965) equation was calibrated for steel reinforcing ratio, ๐œŒ, of 1% to 2%,

which is also roughly the range of 2 โ‰ค ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ โ‰ค 3. Bransonโ€™s equation works well

within this calibrated range (as should be expected because it is an empirical equation).

Tests show it does not, however, work well for steel-reinforced members with ๐œŒ < 1%

or for any typical FRP reinforcing ratios (Bischoff and Scanlon 2007). Most designers

use Branson's equation without noting its limitations; this demonstrates the need for a

more robust equation.

2.7.2 Modification Factors Examples for Bransonโ€™s Equation

Modification factors exist for most member types for which Bransonโ€™s equation

performs poorly. These corrections work well for only their intended range of members.

In the latest update to A23.3 (CSA 2004), ๐‘€๐‘๐‘Ÿ is reduced by 50% for bending deflection

calculations; this over-accounts for typical shrinkage-restraint so that Bransonโ€™s ๐ผ๐‘’

equation will underpredict deflection less often. Another example is ACI 440.1R (ACI

Page 42: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

27

Committee 440 2006), which endorses the following modification factor for FRP-

reinforced concrete:

๐ผ๐‘’ = (๐‘€๐‘๐‘Ÿ

๐‘€๐‘Ž)3

๐›ฝ๐‘‘๐ผ๐‘” + [1 โˆ’ (๐‘€๐‘๐‘Ÿ

๐‘€๐‘Ž)3

] ๐ผ๐‘๐‘Ÿ โ‰ค ๐ผ๐‘” where: ๐›ฝ๐‘‘ =1

5

๐œŒ

๐œŒ๐‘< 1.0 (2 โˆ’ 6)

Here, ๐œŒ is the actual reinforcement ratio of an FRP reinforced member and ๐œŒ๐‘ is the

balanced reinforcement ratio for the same FRP reinforced member. Again, use the

maximum moment in a continuous member as the applied moment, ๐‘€๐‘Ž.

2.8 Bischoffโ€™s Work

Bischoff's work (Bischoff 2005, Bischoff 2007, Bischoff and Gross 2011, Bischoff and

Scanlon 2007) uses integration of curvature to develop an equation for an effective

moment of inertia of reinforced concrete members. As previously mentioned, Eurocode

2 (CEN 2004) and S806 (CSA 2012) recommend that the deflection of reinforced

concrete members be calculated using integration of curvature. This is a logical

approach to calculating deflection because, to the extent that moment and stiffness are

known, integration of curvature can accurately predict the deflection for any member.

2.8.1 Purpose of Bischoffโ€™s Work

Bischoffโ€™s equation has been derived to offer a rational approach for determining an

effective moment of inertia that accounts for the change in stiffness along the length of a

member. This approach also accounts for tension stiffening and the stiffness of the

reinforcement. Bischoffโ€™s equation has been derived theoretically (to the extent

possible with concrete) and tested against empirical data through a full range of

Page 43: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

28

reinforcing ratios. It works well for concrete members with 1 โ‰ค ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ โ‰ค 30 including

typical steel-reinforced, lightly steel-reinforced, and FRP-reinforced concrete members.

The section-based form of this equation, ๐ผ๐‘’(๐‘ฅ), allows the designer to use integration of

curvature to account for any loading and support conditions. Note that this method

computes immediate deflection. Long-term deflection calculations are still required.

(Bischoff and Gross 2011)

Unlike Bransonโ€™s (1965) equation, Bischoffโ€™s equation never requires modification in

order to accurately predict deflection of simply supported members. Without

modification, Branson's equation works for a limited range. Because it is pulls too

strongly toward ๐ผ๐‘” as it interpolates between ๐ผ๐‘๐‘Ÿ and ๐ผ๐‘”, it produces significant

unconservative error when ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ โ‰ซ 3. Bischoffโ€™s equation provides relative

improvement for reasons that are explained in the parallel/series springs discussions in

both Bischoff (2007) and Bischoff and Scanlon (2007).

2.8.2 Bischoffโ€™s Equation and Loading Type Factor

Bischoffโ€™s equation has a section-based form (๐ผ๐‘’(๐‘ฅ)), a member-based form (the

equivalent moment of inertia, ๐ผ๐‘’โ€ฒ ), and a simplified form (an effective moment of inertia,

๐ผ๐‘’). The section-based ๐ผ๐‘’(๐‘ฅ) provides a local moment of inertia corresponding to the

assumed moment-curvature response of the member. The equivalent moment of inertia,

๐ผ๐‘’โ€ฒ , is an exact solution resulting from integration of curvature. The ๐ผ๐‘’

โ€ฒ equation employs

a factor, , which mathematically accounts for the variation in stiffness along the

member length under a specific loading condition; this removes an approximation from

calculations for predicting the deflection of simply supported concrete bending

Page 44: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

29

members. The simplified form provides an approximation based solely on midspan

moment and works well for most situations (Bischoff 2005). All three forms of the

equation use a tension stiffening factor of ๐›ฝ = ๐‘€๐‘๐‘Ÿ/๐‘€(๐‘ฅ) and are found in Bischoff and

Gross (2011). Because the maximum positive moment for a continuous member is the

moment with the largest effect on deflection, it is used as the applied moment, ๐‘€๐‘Ž. For

loadings in this report, the equations to determine deflection using Bischoffโ€™s method

are summarized in Table 2-3.

Table 2-3 - Deflection using Bischoff's Equation

(Sources for Table 2-3: Bischoff and Gross 2011, CAC 2005, and CISC 2009)

Bischoffโ€™s section-based equation defines the local moment of inertia, ๐ผ๐‘’(๐‘ฅ), as:

๐ผ๐‘’(๐‘ฅ) =๐ผ๐‘๐‘Ÿ

1 โˆ’ ๐œ‚ (๐‘€๐‘๐‘Ÿ

๐‘€(๐‘ฅ))2 where: ๐œ‚ = 1 โˆ’

๐ผ๐‘๐‘Ÿ๐ผ๐‘” (2 โˆ’ 7)

Page 45: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

30

Bischoffโ€™s equivalent moment of inertia, ๐ผ๐‘’โ€ฒ , is defined as:

๐ผ๐‘’โ€ฒ =

๐ผ๐‘๐‘Ÿ

1 โˆ’ ๐œ‚ (๐‘€๐‘๐‘Ÿ

๐‘€๐‘Ž)2 where: ๐œ‚ = 1 โˆ’

๐ผ๐‘๐‘Ÿ๐ผ๐‘” (2 โˆ’ 8)

For the centered point load, third-point loading, and uniform loading, is defined as

given in Table 2-3. An independent derivation of the factor for a uniformly

distributed load is provided in Appendix D. Other factors can be derived similarly.

To provide a simplified approximation that improves on Bransonโ€™s (1965) equation,

setting = 1.0 produces Bischoffโ€™s equation for the effective moment of inertia:

๐ผ๐‘’ =๐ผ๐‘๐‘Ÿ

1 โˆ’ ๐œ‚ (๐‘€๐‘๐‘Ÿ

๐‘€๐‘Ž)2 where: ๐œ‚ = 1 โˆ’

๐ผ๐‘๐‘Ÿ๐ผ๐‘” (2 โˆ’ 9)

2.8.3 Discussion of Arguments Against Use of Bischoffโ€™s Equation

There are different arguments against prescribing the use of Bischoffโ€™s equations for the

effective moment of inertia in codes and standards. Some engineers have used

Bransonโ€™s equation for a long time and found that it works well for their typical

situations (with modification factors as required), so they argue that change is

unnecessary. Other arguments against using Bischoffโ€™s equation, mostly to do with the

difficulties in predicting bending stiffness, are explained and resolved in Bischoff and

Darabi (2012):

Incorporating shrinkage and the correct cracking moment, and resolving other

issues, is not more complicated with Bischoffโ€™s equation than with other methods

If these issues are correctly accounted for, then using Bischoffโ€™s equation will

provide a standard equation for all reinforcing materials and ratios

Page 46: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

31

3.0 METHODOLOGY AND RESULTS

This work aims to demonstrate a simple and accurate method to determine the

deflection of a continuous concrete member. Ideally, solutions that are both simple and

exact could be provided. Simple solutions could be worked out in full on a letter-sized

sheet of paper. These solutions would be similar to Bischoffโ€™s equivalent moment of

inertia (Bischoff and Gross 2011), ๐ผ๐‘’โ€ฒ , for simply supported members. This ๐ผ๐‘’

โ€ฒ yields

exact results that incorporate the variation in stiffness along the length of the member.

Unfortunately, simple solutions for continuous members must be approximate and will

have limits. The original goal for this work, which included finding either exact or

approximate equations suitable for all possible ranges of end-moments, was therefore

discarded.

The scope of work for this report is to provide and demonstrate the limitations within

which Bischoffโ€™s ๐ผ๐‘’โ€ฒ works for computing deflection of continuous members. This ๐ผ๐‘’

โ€ฒ , as

explained in Section 2.8.2 and provided in Equation (2-8), provides a good

approximation for continuous members under a centered point load or a uniformly

distributed load (within proposed limits). For continuous members with equal point

loads at third points, a revised equation is proposed for the integration factor, (which

is used to compute ๐ผ๐‘’โ€ฒ ), in order to improve results and limits. With relatively large end-

moments (outside proposed limits), results often become significantly unconservative,

so integration or another method must be used.

Many new approximate solutions for an effective moment of inertia, ๐ผ๐‘’, based on logic

or curve-fitting, were attempted in work for this report. These solutions were discarded

Page 47: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

32

and the relevant work is not provided because Bischoffโ€™s equation for ๐ผ๐‘’โ€ฒ was found to

be more robust and accurate for continuous members.

For this work, computer spreadsheets are used to compute the midspan deflection of

example idealized members assuming a few different values for the constant moment of

inertia, including the proposed ๐ผ๐‘’โ€ฒ . Deflection is also computed by integration of

curvature using both the S806 (CSA 2012) method and Bischoffโ€™s section-based

moment of inertia (Bischoff and Gross 2011), ๐ผ๐‘’(๐‘ฅ). The deflection is computed using

the S806 method in order to provide examples which neglect tension stiffening. For

comparison purposes, this work assumes that integration of curvature using Bischoffโ€™s

๐ผ๐‘’(๐‘ฅ), including its tension stiffening factor, computes the exact deflection for an

idealized member. All deflections computed are immediate (short-term) deflections

based on the full dead-plus-live service load. The immediate deflections using the

different approaches are compared and discussed; this leads to the conclusions provided.

3.1 Virtual Work and Moment of Inertia Methodology

In this work, deflection is computed using one of two very different methods. The

method of virtual work is used to compute deflection by integrating curvature along the

full length of the member for all numerical and analytical integration provided.

Deflections are also computed with common linear-elastic equations using different

approaches for computing the effective and equivalent constant moments of inertia.

Page 48: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

33

3.1.1 Deflection of Concrete by Integration Using Virtual Work

As indicated in Section 2.3.4, calculating deflection by using the method of virtual work

to integrate curvature is a logical approach because it will accurately predict the

deflection, at any point along the member, if the bending moment and stiffness along the

member are known. While it is often computationally intensive to use the method of

virtual work for reinforced concrete members, it is well suited for use with a computer.

A descriptive form of the equation for calculating deflection of concrete bending

members using the method of virtual work is provided in Equation (3-1).

โˆ†= โˆซ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ)๐‘‘๐‘ฅ

๐ฟ

0

(3 โˆ’ 1)

This equation determines the deflection, โˆ†, at a defined location along a member of span

length, ๐ฟ; the virtual bending moment, ๐‘š(๐‘ฅ), is obtained by applying a unit load at the

location where deflection is being computed. The variable ๐‘ฅ is defined as the distance

from the left end of the span, so 0 โ‰ค ๐‘ฅ โ‰ค ๐ฟ. The curvature function, ๐‘€(๐‘ฅ)/ ๐ธ๐‘ ๐ผ๐‘’(๐‘ฅ),

includes the service load bending moment function, ๐‘€(๐‘ฅ), the elastic modulus of

concrete, ๐ธ๐‘, and the section-based effective moment of inertia function, ๐ผ๐‘’(๐‘ฅ).

Additional explanation of the method of virtual work and Equation (3-1) is given in

Appendix B. For a description of how to calculate ๐ผ๐‘’(๐‘ฅ) per Bischoffโ€™s work, see

Equation (2-7).

Equation (3-1) is used to compute deflection using both numerical and analytical

integration; it is used for the S806 (CSA 2012) integration method and for exact results

with Bischoffโ€™s ๐ผ๐‘’(๐‘ฅ). When a constant moment of inertia is used, the ๐ผ๐‘’(๐‘ฅ) term is

Page 49: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

34

replaced with ๐ผ๐‘”, ๐ผ๐‘๐‘Ÿ, ๐ผ๐‘’, or ๐ผ๐‘’โ€ฒ , or similar. The ๐ผ๐‘” term is defined as the gross moment of

inertia and the ๐ผ๐‘๐‘Ÿ term is defined as the moment of inertia of the cracked transformed

section.

3.1.2 Deflection of Concrete Using a Constant Moment of Inertia

As described in Section 2.3.3, a constant effective moment of inertia can be useful for

engineers. Deflection equations for linear-elastic prismatic members are commonly

available. For members with end-moments, the equations for simply supported

members can be used when modified by the ๐พ factor as shown in Section 2.2.3. With

an accurate constant effective moment of inertia, these equations are easy to use and

will result in accurate deflection predictions for reinforced concrete members.

For the majority of reinforced concrete members, both the effective moment of inertia

and the equivalent moment of inertia will lie between the gross and fully cracked

moments of inertia: ๐ผ๐‘” > ๐ผ๐‘’ > ๐ผ๐‘๐‘Ÿ and ๐ผ๐‘” > ๐ผ๐‘’โ€ฒ > ๐ผ๐‘๐‘Ÿ. The latter is indicated in Figure

2-4, which shows ๐ผ๐‘”, ๐ผ๐‘๐‘Ÿ , ๐ผ๐‘’(๐‘ฅ), and the equivalent moment of inertia, ๐ผ๐‘’โ€ฒ . In the

regions where a member is uncracked, ๐ผ๐‘’(๐‘ฅ) = ๐ผ๐‘”.

Methods that use a constant moment of inertia for continuous concrete members carry

intrinsic limitations because the stiffness of concrete members varies in ways that are

sometimes difficult (or impossible) to model with constant stiffness equations; this is

explained in Section 3.7.2. To eliminate approximation and the possibility of large

errors, integration is the simplest solution.

Page 50: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

35

3.2 Generating Idealized Members

There were approximately two thousand different idealized members used for this

report. All members were produced with full and realistic properties where possible,

and were based on Canadian design standards. Initially, a few members were modelled

by copying all properties from example members found from other sources. In order to

compare computed deflection results for a huge variety of members, these different

idealized concrete bending members were generated in computer spreadsheets using an

automated member production method developed for this purpose.

For all example graphs provided, specific properties such as loads and lengths are

selected so that deflections could be calculated. However, if two different members

(with different aspect ratios, for example) have a few key properties and ratios in

common, they will have exactly the same normalized moment-deflection diagrams.

This is demonstrated graphically in Appendix O (see Figure O-3 and Figure O-4).

3.2.1 Definitions of Bending Moment Variables

In order to generate the example concrete members, a few key bending moments were

computed and used. The service load moments used for this report are the full service

loads, meaning dead load plus live load without load factors, applied to a member that

has not experienced higher bending moments at their respective locations. The factored

applied moment, factored moment resistance, and cracking moment, are intended to be

as defined in the applicable codes and standards. Most of the bending moments are

defined in automated member generating spreadsheets as a ratio to another bending

moment.

Page 51: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

36

The important service load bending moments, as used in this chapter, are:

๐‘€๐‘š is the midspan moment, determined at the midpoint of the memberโ€™s span

๐‘€๐‘š๐‘Ž๐‘ฅ is the maximum positive bending moment of an example member

- ๐‘€๐‘š๐‘Ž๐‘ฅ is equal to ๐‘€๐‘š in this report when end-moments are equal or zero

- ๐‘€๐‘š๐‘Ž๐‘ฅ is used to calculate the effective/equivalent moment of inertia

whenever ๐‘€๐‘š is used to calculate ๐ผ๐‘’ or ๐ผ๐‘’โ€ฒ for a simply supported member

๐‘€๐ฟ is the bending moment at the left end of the member for the loading provided

- ๐‘€๐ฟ is assumed to be zero or negative throughout this report

- The left end of the member is always taken to be the end of the member

having the end-moment of larger magnitude

๐‘€๐‘… is the bending moment at the right end of the member for the loading provided

- ๐‘€๐‘… is assumed to be zero or negative throughout this report

- As per the definition of ๐‘€๐ฟ above, โˆ’๐‘€๐ฟ โ‰ฅ โˆ’๐‘€๐‘… โ‰ฅ 0

๐‘€0 is the total static moment caused by the loads applied between supports

- For the loading types provided, ๐‘€0 is equal to ๐‘€๐‘š with the end-moments

released (but the load maintained); see the moment defined in Table 2-1

- Provided load between supports include: a point load of ๐‘ƒ at midspan, two

point loads of ๐‘ƒ/2 at third points, or a uniformly distributed load of ๐‘ค.

๐‘€๐‘  is a general reference to the service moment of ๐‘€๐ฟ, ๐‘€๐‘…, ๐‘€๐‘š, or ๐‘€๐‘š๐‘Ž๐‘ฅ.

- ๐‘€๐‘ :๐‘€๐‘Ÿ is the ratio of service moment to factored moment resistance

- The amount of top reinforcing in the left and right end-moment regions is

selected based an ๐‘€๐ฟ or ๐‘€๐‘…, respectively, and the aforementioned ratio

- The amount of bottom reinforcing in the positive bending region is selected

based on ๐‘€๐‘š๐‘Ž๐‘ฅ and the aforementioned ratio

Page 52: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

37

The factored bending moments, as used in this chapter, are:

๐‘€๐‘“ is the factored applied bending moment at the indicated location

- In practice, ๐‘€๐‘“ would be calculated based on National Building Code load

factors applied to the actual dead and live loads applied to a member

- For this work, ๐‘€๐‘“ = 1.375๐‘€๐‘  is assumed

๐‘€๐‘Ÿ is the factored bending moment resistance for a given segment of a member

- CSA A23.3-04 (2004) and CSA S806 (2012) are used to compute ๐‘€๐‘Ÿ

- Additional capacity of ๐‘€๐‘Ÿ = 1.145๐‘€๐‘“ is typically provided

- For typical example members, the assumed ๐‘€๐‘“ (above) and the additional

Mr capacity (above) were combined as ๐‘€๐‘Ÿ = 1.575๐‘€๐‘ 

- Where deflection governs the amount of positive moment reinforcing, a

larger ratio of ๐‘€๐‘ :๐‘€๐‘Ÿ is provided, such as ๐‘€๐‘Ÿ = 2.5๐‘€๐‘  (for Figure 3-4)

- If ๐‘€๐‘Ÿ = 1.575๐‘€๐‘  is changed to ๐‘€๐‘Ÿ = 1.30๐‘€๐‘  while the properties and loads

remain otherwise unchanged, then reinforcing is reduced and deflection

increases, but the normalized results will be essentially identical

The other key bending moment used in this chapter is ๐‘€๐‘๐‘Ÿ:

๐‘€๐‘๐‘Ÿ is the bending moment at cracking for a member

- When the applied bending moment at a local section of the member reaches

๐‘€๐‘๐‘Ÿ, the tension face of the member will crack at this section

- ๐‘€๐‘๐‘Ÿ is defined as per Equation (2-1) for all provided results in this report

except for work provided in Appendix P (which explores the effect of

reducing ๐‘€๐‘๐‘Ÿ to one half of the value computed by Equation (2-1) in order

to account for shrinkage restraint per CSA A23.3-04 (R2010))

Page 53: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

38

3.2.2 Automated Member Generation

The automated method used to generate example idealized concrete bending members is

developed in order to enable comparison of midspan deflections between similar

members. Each member of the set is defined using the same length (๐ฟ), width-to-height

ratio (๐‘: โ„Ž), reinforcing bar depth to member height ratio (๐‘‘: โ„Ž), material properties,

resistance factors, factored moment resistance to service moment ratio (๐‘€๐‘Ÿ:๐‘€๐‘ ), and

maximum positive moment to cracking moment ratio (๐‘€๐‘š๐‘Ž๐‘ฅ:๐‘€๐‘๐‘Ÿ). After the common

properties are defined, unique left and right end-moment to maximum positive moment

ratios (๐‘€๐ฟ:๐‘€๐‘š๐‘Ž๐‘ฅ and ๐‘€๐‘…:๐‘€๐‘š๐‘Ž๐‘ฅ) are provided for each member. Each set contains a

simply supported member; the load on this member is adjusted to obtain a desired

height for the members of the set.

Sets of 9 example members are generated with equal maximum positive moments and

various end-moments (where each member has an area of top reinforcing bars suitable

for the end-moments). The end-moments are selected to provide useful data points for a

plot of these similar members. In Figure 3-1, for example, the set of 9 members have

๐‘€๐‘š๐‘Ž๐‘ฅ = 195 kNm and end-moments equal to: 0, โˆ’0.25๐‘€๐‘š๐‘Ž๐‘ฅ, โˆ’0.43๐‘€๐‘š๐‘Ž๐‘ฅ,

โˆ’0.67๐‘€๐‘š๐‘Ž๐‘ฅ, โˆ’๐‘€๐‘š๐‘Ž๐‘ฅ, โˆ’1.22๐‘€๐‘š๐‘Ž๐‘ฅ, โˆ’1.5๐‘€๐‘š๐‘Ž๐‘ฅ, โˆ’1.7๐‘€๐‘š๐‘Ž๐‘ฅ, and โˆ’1.94๐‘€๐‘š๐‘Ž๐‘ฅ.

After the ratios and design properties are defined for the set of members, the automated

method then produces each member of the set as follows:

๐‘€๐‘š๐‘Ž๐‘ฅ is determined for the simply supported member

A unique load is contrived for each continuous member such that the ๐‘€๐‘š๐‘Ž๐‘ฅ

computed for each member will be equal for all members of the set

Page 54: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

39

๐‘€0, ๐‘€๐ฟ, ๐‘€๐‘…, ๐‘€๐‘š, and ๐‘€๐‘š๐‘Ž๐‘ฅ are computed for each member

๐‘€๐‘๐‘Ÿ, โ„Ž, ๐‘, ๐‘‘, and ๐ผ๐‘” are calculated and confirmed as common

The reinforcing ratio, ฯ, is computed (based on ๐‘€๐‘Ÿ:๐‘€๐‘ ) for ๐‘€๐‘š๐‘Ž๐‘ฅ, ๐‘€๐ฟ, and ๐‘€๐‘…

๐ผ๐‘๐‘Ÿ and other properties are determined at midspan and at each end

An example of the computations performed to generate a member, along with example

midspan deflections calculations for that member, is provided in Appendix J. For

members produced using the automated method, the amount of reinforcing required is

based on A23.3 (CSA 2004) or S806 (CSA 2012) and the moment ratios provided as

inputs. The reinforcing ratio is defined by solving typical design equations using other

inputs and these ratios (as demonstrated in Appendix J).

For the provided plots, which contain sets of automatically generated members, the end-

moments vary from 0 โ‰ค โˆ’๐‘€๐ฟ โ‰ค 3๐‘€๐‘š๐‘Ž๐‘ฅ, where ๐‘€๐‘… = ๐‘€๐ฟ (both ends continuous) or

๐‘€๐‘… = 0 (one end continuous). In general, results are not provided when

โˆ’๐‘€๐ฟ > 3๐‘€๐‘š๐‘Ž๐‘ฅ because they tend to diverge towards being increasingly erroneous in

this range. At these relative values of end-moment, the proportions of negative

reinforcing needed are larger than permitted and/or deflections near midspan are near

zero (where such small deflections will be within codes/standards limits).

3.3 Computing Deflection of Idealized Members

All plots provided in this chapter show values of deflection computed using different

methods and different solutions for the moment of inertia. Some of the results

computed in this work were compared to laboratory test data and found to be realistic,

Page 55: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

40

but this data is not provided. Except for work in Appendix P (where ๐‘€๐‘๐‘Ÿ is reduced by

one half or one third), shrinkage restraint was neglected for the data presented here.

The spreadsheets used to generate idealized members, as described in Section 3.2, also

compute the deflection for each member using each relevant approach. The input

properties for these spreadsheets were varied in order to determine the limits of the

proposed equations. Only a small sample of the computed results is provided.

In concrete structures, the midspan deflection is usually a good approximation for the

maximum deflection. The midspan deflection, determined using each of the different

approaches, has been plotted for each set of example members. For some load patterns

and end conditions, however, the maximum deflection of continuous members is

significantly larger than the midspan deflection. When applicable, the values of

maximum deflection are computed and plotted with the midspan deflection.

Throughout this report, deflection is denoted by the symbol ๐›ฅ as follows:

All constant stiffness equations provided denote the midspan deflection as ๐›ฅ

- ๐›ฅ is computed at exactly the midpoint of the span

If the maximum deflection does not occur at midspan, the computed value of the

maximum deflection is denoted by ๐›ฅ๐‘š๐‘Ž๐‘ฅ

For clarity, midspan deflection is shown as ๐›ฅ๐‘š๐‘–๐‘‘ in equations that include ๐›ฅ๐‘š๐‘Ž๐‘ฅ

As discussed in Section 3.1.1, deflection can be computed at any point along the

member when the method of virtual work is used to integrate curvature

All example deflection calculations and plots provided are for midspan or

maximum deflections

Page 56: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

41

For each set of members generated for this report, deflection for each member was

computed using at least six constant moment of inertia solutions and two integration of

curvature solutions. A graphical comparison of the deflection values determined using

the different approaches is provided to facilitate analysis and discussion.

Midspan deflection, computed using five different constant moment of inertia solutions,

was plotted for all sets of members as follows:

๐›ฅ๐‘”(Gross) is the midspan deflection computed using the gross moment of inertia

- Uses constant moment of inertia set equal to ๐ผ๐‘” (even if loads exceed ๐‘€๐‘๐‘Ÿ)

๐›ฅ๐‘๐‘Ÿ(Cracked) is the midspan deflection computed with the ๐ผ๐‘๐‘Ÿ moment of inertia

- Computed using entire beam with the fully cracked moment of inertia

- ๐ผ๐‘๐‘Ÿ is computed using the reinforcing ratio at the location of ๐‘€๐‘š๐‘Ž๐‘ฅ

๐›ฅ๐ผ๐‘’(Branson) is the midspan deflection computed with the common ๐ผ๐‘’ equation

- Uses Bransonโ€™s (1965) equation for the effective moment of inertia

- ๐ผ๐‘’ is computed using Equation (2-5) with an applied moment of ๐‘€๐‘š๐‘Ž๐‘ฅ

๐›ฅ๐›พ=1(Approx) is the midspan deflection computed per Bischoffโ€™s ๐ผ๐‘’ where = 1

- Uses Bischoffโ€™s effective moment of inertia (Bischoff and Gross 2011)

- ๐ผ๐‘’ is computed using Equation (2-9) with an applied moment of ๐‘€๐‘š๐‘Ž๐‘ฅ

๐›ฅ๐ผ๐‘’โ€ฒ(Proposed) or ๐›ฅ๐ผ๐‘’โ€ฒ (Bischoff) is the midspan deflection computed using ๐ผ๐‘’โ€ฒ

- ๐ผ๐‘’โ€ฒ is Bischoffโ€™s equivalent moment of inertia (Bischoff and Gross 2011)

- ๐ผ๐‘’โ€ฒ is computed using Equation (2-8) with an applied moment of ๐‘€๐‘š๐‘Ž๐‘ฅ

Midspan deflection, computed using one (or more) of these additional solutions for

constant moment of inertia, was also plotted as follows:

Page 57: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

42

๐›ฅ๐ผ๐‘’,๐›ฝ๐‘‘(ACI440) is the midspan deflection computed per ACI 440.1Rโ€™s approach

- Computed as recommended in ACI 440.1R (ACI Committee 440 2006)

- Uses the modified effective moment of inertia provided in Equation (2-6)

- Provided for FRP reinforced concrete members

๐›ฅ๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘”(A23.3) is the midspan deflection per A23.3 (CSA 2004), Clause 9.8.2.4

- Computed using effective moment of inertia per Equation (2-2) or (2-3)

- ๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” is an approximate average of the Bransonโ€™s ๐ผ๐‘’ computed at the applied

moment locations of ๐‘€๐‘š๐‘Ž๐‘ฅ, ๐‘€๐ฟ, and ๐‘€๐‘…

- ๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” is computed with Equation (2-6) for members designed with GFRP

๐›ฅ๐ผ๐‘’โˆ—โ€ฒ (Proposed) is the midspan deflection computed using ๐ผ๐‘’โˆ—โ€ฒ per Equation (3-10)

- ๐ผ๐‘’ โˆ—โ€ฒ is an empirically derived improvement to ๐ผ๐‘’

โ€ฒ

- Only used for third-point loading on a continuous member

- ๐ผ๐‘’ โˆ—โ€ฒ is computed with Equation (2-8), but with โˆ— per Equation (3-9) used in

lieu of

Midspan deflection, computed using integration of curvature (with analytical or

numerical integration) and moment of inertia solutions which vary along the member

length, was also plotted for all sets of members as follows:

๐›ฅ๐›ฝ=0(S806) is the midspan deflection computed neglecting tension stiffening

- Computed using moment of inertia as defined in the S806 (CSA 2012) (as

shown in Appendix G) for the integration method

- Intended only for FRP reinforced members by S806; provided herein for all

members to show the effect of neglecting tension stiffening

Page 58: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

43

๐›ฅ๐ผ๐‘’(๐‘ฅ)(Exact) is the midspan deflection using ๐ผ๐‘’(๐‘ฅ) per Equation (2-7)

- Computed using Bischoffโ€™s section-based moment of inertia (Bischoff and

Gross 2011), ๐ผ๐‘’(๐‘ฅ), which accounts for tension stiffening

- Assumed to be the exact midspan deflection (for comparison purposes)

Maximum deflection was plotted for members with unequal end-moments as follows:

๐›ฅ๐‘š๐‘Ž๐‘ฅ,๐ผ๐‘’โ€ฒ(Proposed) or ๐›ฅ๐‘š๐‘Ž๐‘ฅ,๐ผ๐‘’

โ€ฒ(Bischoff) is ๐›ฅ๐‘š๐‘Ž๐‘ฅ computed with ๐ผ๐‘’โ€ฒ

- Uses the same ๐ผ๐‘’โ€ฒ , per Equation (2-8), as the ๐›ฅ๐ผ๐‘’โ€ฒ midspan deflection

- Computed by a constant stiffness model for mid-point and third-point loads

- Approximated by Equation (3-19) for a uniformly distributed load

๐›ฅ๐‘š๐‘Ž๐‘ฅ,๐ผ๐‘’(๐‘ฅ)(Exact) is the maximum deflection computed using Bischoffโ€™s ๐ผ๐‘’(๐‘ฅ)

- Uses the same ๐ผ๐‘’(๐‘ฅ), per Equation (2-7), as the ๐›ฅ๐ผ๐‘’(๐‘ฅ) midspan deflection

- Computed by applying the virtual work method to integrate curvature at

many locations, then selecting the largest deflection as the maximum

- Assumed to be the exact maximum deflection (for comparison purposes)

The maximum positive moment (rather than the midspan moment) should be used to

compute a constant moment of inertia for the member. This is because the member

experiences the worst cracking in the positive bending segment at the location of the

maximum moment. If ๐‘€๐‘š is used in lieu of ๐‘€๐‘š๐‘Ž๐‘ฅ, then a smaller constant moment of

inertia will be calculated, which will usually result in unconservative predictions for

deflection. The midspan moment should only be used if it is similar to the maximum

moment (๐‘€๐‘š โ‰ˆ ๐‘€๐‘š๐‘Ž๐‘ฅ) or if the member is highly cracked at midspan (๐‘€๐‘š โ‰ซ 2๐‘€๐‘๐‘Ÿ).

Page 59: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

44

Larger end-moments or cracked lengths may result when different load patterns occur

beforehand. This is not directly accounted for in this report. The cracking that is

accounted for is based on the bending moment function which passes through ๐‘€๐ฟ, ๐‘€๐‘š,

and ๐‘€๐‘…, as provided for each member. Stiffnesses affected by other load patterns could

be included, using integration of curvature, using an ๐ผ๐‘’(๐‘ฅ) function based on the service

moment envelope. The amount of reinforcing required at the supports should then also

be determined based on the factored moment envelope. These two corrections, for other

load patterns, partially offset each other, as discussed in Appendix P.

3.3.1 Development and Use of Analytical Integration

Unless the result is approximated, complicated formulas are required in order to

calculate the midspan deflection of an idealized continuous member. Analytical

integration is feasible, however, because the exact integral along each segment of the

beam can be found by basic calculus. Members sometimes have a โ€œnegativeโ€ cracked

segment at each end, with an adjacent uncracked segment, and a โ€œpositiveโ€ cracked

segment in the middle. The service bending moment function, ๐‘€(๐‘ฅ) changes at each

point load and the virtual moment function, ๐‘š(๐‘ฅ), changes at the location at which

deflection is being computed. As a result, a uniformly loaded beam has 6 segments to

integrate, a single point-load beam has 6 segments to integrate, and a third-point-loaded

beam has 7 segments to integrate. The resulting expressions are lengthy, containing 12

input variables in many permutations. When negative moment segments remain

uncracked, different expressions are required. Discussion about analytical integration

and the expressions resulting from its use are shown in Appendix E.

Page 60: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

45

Math software was used to maintain error-free integration for this report. Maple (by

Maplesoftยฎ) was used to integrate along each beam segment for each load-type, support,

and cracking situation considered. The resulting equations were subsequently copied

into Excel (by Microsoftยฎ) spreadsheets and linked to the correct variables. The

pertinent integration segments are selected with โ€œif-thenโ€ logic in the spreadsheets and

those integration results are added together to obtain non-approximated analytical

results.

3.3.2 Discussion of Analytical Integration Simplifications

Different simplifications of integrated results are possible and can sometimes be useful.

Razaqpurโ€™s work (Razaqpur and Isgor 2003, Razaqpur et al. 2000) indicates some

useful assumptions which provide simplified approximate equations for specific load

types and support conditions. As discussed in Section 2.5, one of Razaqpurโ€™s

simplifications is to neglect the effects of tension stiffening. When tension stiffening is

taken into account, similar approximate equations can be derived and simplified for

specific cases.

Simplified equations which provide exact results (without mathematical

approximations) can be derived for some specific continuous member cases. These

exact equations, however, would be for a very specific combination of loading, cracked

segments, reinforcment ratios, and support conditions. As shown in Appendix F, the

simplest exact equation for a continuous member occurs with a midspan-point load,

where the magnitude of postive moment and end-moments are all equal (along with all

Page 61: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

46

respective reinforcing ratios). Very few simplifications are possible for most continuous

members.

3.3.3 Use of Numerical Integration

Numerical integration results for this report are calculated in spreadsheets. For

numerical integration calculations, members were divided into ๐‘— โ‰ฅ 100 equal segments.

Integration using the virtual work method was used to determine the deflection at the

desired point (such as midspan) by summing the effect that each segment has on

deflection at that point. Appendix K outlines the methodology and an example of

numerical integration as employed for this report. Equation (3-2) is Equation (3-1)

written in a form which enables accurate numerical integration.

โˆ†=โˆ‘[๐‘š(๐‘ฅ๐‘–)๐‘€(๐‘ฅ๐‘–)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ๐‘–)+๐‘š(๐‘ฅ๐‘–โˆ’1)๐‘€(๐‘ฅ๐‘–โˆ’1)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ๐‘–โˆ’1)]๐ฟ

2๐‘—

๐‘–=๐‘—

๐‘–=1

where: ๐‘ฅ๐‘– =๐‘–๐ฟ

๐‘— (3 โˆ’ 2)

and where the variables not explained previously in this chapter are defined as follows:

๐‘– - counter for each segment of the span, from 1 ๐‘ก๐‘œ ๐‘—

๐‘— - total number of equal length segments used for numerical integration

๐‘ฅ๐‘– - distance from the left end of the span to the right end of segment ๐‘–; ๐‘ฅ0 = 0

3.3.4 Comparing Results of Analytical and Numerical Integration

The difference between exact analytical integration results and computed numerical

integration results in predicted deflection should be very small. Numerical integration

causes slight approximations because every segment of the integrand is assumed to be

linear (using the effect on deflection computed from the exact properties and bending

Page 62: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

47

moments at both ends of the segment). Despite this approximation, work for this report

found that with 100 or more equal-length segments, the error from numerical integration

is negligible for concrete bending deflection calculations. If the number of segments is

selected so that a segment end occurs at each point load for the ๐‘š(๐‘ฅ) and ๐‘€(๐‘ฅ)

functions, the error caused by using numerical integration in this work was less than

0.2%. To reduce the possibility of mathematical errors, both analytical and numerical

methods were used for the majority of the work for this report.

3.4 Continuous Beam with a Centered Point Load

In this section, results using the proposed equations are compared to other solutions for

determining deflection with a centered point load. These results are based solely on one

point load at midspan; self-weight is not otherwise accounted for. Maximum moment is

not mentioned because ๐‘€๐‘š = ๐‘€๐‘š๐‘Ž๐‘ฅ for a centered point load with either equal or

unequal end-moments. Plotted members are generated as explained in Section 3.2 and

deflection values are obtained as explained in Section 3.3.

3.4.1 Proposed Solution for a Centered Point Load

The proposed approach for a continuous member with a centered point load is to use the

simply supported equivalent moment of inertia, ๐ผ๐‘’โ€ฒ , proposed by Bischoff and Gross

(2011). The equation for ๐ผ๐‘’โ€ฒ , including the factor for a simply supported member, is

used with the midspan moment and midspan properties of the continuous member.

While ๐ผ๐‘’โ€ฒ is an exact solution for simply supported members, it is an approximation for

continuous members.

Page 63: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

48

The proposed equation for the equivalent moment of inertia is:

๐ผ๐‘’โ€ฒ =

๐ผ๐‘๐‘Ÿ

1 โˆ’ ๐œ‚ (๐‘€๐‘๐‘Ÿ

๐‘€๐‘š)2 where ๐œ‚ = 1 โˆ’

๐ผ๐‘๐‘Ÿ๐ผ๐‘” (as per Equation 2 โˆ’ 8)

For simply supported and continuous members with a point load, ๐‘ƒ, applied at midspan:

= 3 โˆ’ 2๐‘€๐‘๐‘Ÿ

๐‘€๐‘š where ๐‘€0 =

๐‘ƒ๐ฟ

4 and ๐‘€๐‘š = ๐‘€๐‘š๐‘Ž๐‘ฅ = ๐‘€0 +

๐‘€๐ฟ

2+๐‘€๐‘…

2 (3 โˆ’ 3)

For a centered point load, the approximate midspan deflection is:

๐›ฅ = ๐›ฅ๐‘š๐‘–๐‘‘ = ๐›ฅ๐ผ๐‘’โ€ฒ = ๐พ๐‘€๐‘š๐ฟ

2

12๐ธ๐‘๐ผ๐‘’โ€ฒ where ๐พ = 1.5 โˆ’ 0.5

๐‘€0

๐‘€๐‘š (3 โˆ’ 4)

For unequal end-moments, where โˆ’๐‘€๐ฟ < 2๐‘€๐‘š, maximum deflection is computed as:

๐›ฅ๐‘š๐‘Ž๐‘ฅ โ‰ˆ ๐›ฅ๐‘š๐‘–๐‘‘

๐›ฅ๐‘”,๐‘š๐‘Ž๐‘ฅ

๐›ฅ๐‘”,๐‘š๐‘–๐‘‘ (3 โˆ’ 5)

In Equation 3-5, ๐›ฅ๐‘”,๐‘š๐‘Ž๐‘ฅ and ๐›ฅ๐‘”,๐‘š๐‘–๐‘‘ are the maximum and midspan deflections,

respectively, of a linear-elastic member with the same loads, span, bending moments,

and using the gross moment of inertia (although any shared constant moment of inertia

would suffice).

3.4.2 Comparison of Results: Centered Point Load and Equal End-Moments

Each graph in this section provides results computed from many deflection approaches

for continuous members under a centered point load; each graph contains a set of

members with a different ๐ผ๐‘” ๐ผ๐‘๐‘Ÿโ„ ratio. For the centered point load examples provided,

end-moments are kept equal to each other (๐‘€๐ฟ = ๐‘€๐‘…) in order to simplify the

comparison of results using the different approaches. The magnitude of the end-

moments and the amount of reinforcement at the ends of the members increase as the

Page 64: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

49

plots progress from left to right. The deflections computed using integration of

curvature based on ๐ผ๐‘’(๐‘ฅ), per Equation (2-7), are assumed to be exact for comparison

purposes. The data for the properties and deflections is provided in Appendix M. These

examples will show that the proposed ๐ผ๐‘’โ€ฒ equation provides an improved moment of

inertia for computing deflection of continuous members with linear-elastic equations.

For Figures 3-1 to 3-4, members were designed and analyzed as follows:

Members are 600 mm deep and 300 mm wide rectangular beams with a 10 m span

Specified concrete strength used was ๐‘“๐‘โ€ฒ = 36 MPa

Reinforcing bar depth, from the compression face, is ๐‘‘ = 540 mm

Steel reinforcing bars used have a yield strength of ๐‘“๐‘ฆ = 400 MPa

GFRP (glass fibre reinforced polymer) reinforcing bars used have an ultimate

strength of ๐‘“๐‘“๐‘ข = 690 MPa and an elastic modulus of ๐ธ๐‘ = 44 GPa.

The reinforcing ratio, ๐œŒ, is provided for the bottom reinforcing bars; when ๐œŒ/๐œŒ๐‘ is

provided for the GFRP reinforced members, ๐œŒ๐‘ is the balanced reinforcing ratio.

Figure 3-1 shows results of a set of example members with equal end-moments where

๐ผ๐‘”/๐ผ๐‘๐‘Ÿ = 2.28 and ๐‘€๐‘š/๐‘€๐‘๐‘Ÿ = 3.00. These member are designed with steel reinforcing

such that ๐‘€๐‘Ÿ = 1.575๐‘€๐‘  and ๐œŒ = 1.2%. In this example, there is significant deflection,

๐›ฅ๐ผ๐‘’(๐‘ฅ), when constant stiffness results are zero (at โˆ’๐‘€๐ฟ = 2๐‘€๐‘š). All effective moment

of inertia approaches are conservative by approximately 10% (which is slightly better

than using the ๐ผ๐‘๐‘Ÿ results) except where results diverge as end-moments become

significantly larger than 1.2๐‘€๐‘š. Bransonโ€™s (1965) method offers slight improvement on

using ๐ผ๐‘๐‘Ÿ but the proposed method offers far more accuracy for โˆ’๐‘€๐ฟ < 1.2๐‘€๐‘š. The

Page 65: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

50

S806 (2012) curve, which represents integration of curvature while neglecting tension

stiffening, is conservative by at least 10%, even for ๐‘€๐ฟ โ‰ซ ๐‘€๐‘š, as expected. Use of

๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” per Equation (2-2), fails to improve the accuracy of ๐ผ๐‘’, and produces an aberration

at 0.4 โ‰ˆ โˆ’๐‘€๐ฟ/๐‘€๐‘š โ‰ณ ๐‘€๐‘๐‘Ÿ/๐‘€๐‘š. This anomalous point on the ๐›ฅ๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” curve occurs where

the lightly cracked ends contribute disproportionately to the member stiffness.

Figure 3-1 โ€“ Midspan Deflection of Steel Reinforced Beams under Centered Point Load

with Ig/Icr=2.3, Mm/Mcr=3.0, and ML=MR

The set of example members generated for Figure 3-2 are steel-reinforced members

having ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ = 3.89, ๐œŒ = 0.6%, ๐‘€๐‘š/๐‘€๐‘๐‘Ÿ = 1.60, and ๐‘€๐‘Ÿ = 1.575๐‘€๐‘ . These results

again show that the effective moment of inertia approaches are conservative; results

using Bransonโ€™s (1965) ๐ผ๐‘’ are conservative by about 20% for โˆ’๐‘€๐ฟ < 1.4๐‘€๐‘š. The

proposed equation provides very accurate results when โˆ’๐‘€๐ฟ < 1.6๐‘€๐‘š. If the proposed

method is approximated by using = 1, or if tension stiffening is neglected (๐›ฝ = 0),

Page 66: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

51

results are more than 40% conservative. ๐›ฅ๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” provides no improvement (see the

discussion for Figure 3-1 regarding the data point near 0.75 โ‰ˆ โˆ’๐‘€๐ฟ/๐‘€๐‘š โ‰ณ ๐‘€๐‘๐‘Ÿ/๐‘€๐‘š).

Figure 3-2 - Midspan Deflection of Steel Reinforced Beams under Centered Point Load

with Ig/Icr=3.9, Mm/Mcr=1.6, and ML=MR

Figure 3-3 is based on members which are reinforced with GFRP reinforcing bars as

follows: ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ = 3.32, ๐œŒ = 3.2%, ๐œŒ/๐œŒ๐‘ = 5.6, ๐‘€๐‘š/๐‘€๐‘๐‘Ÿ = 2.50, ๐‘€๐‘Ÿ = 2.78๐‘€๐‘  for

bottom bars, and ๐‘€๐‘Ÿ = 1.575๐‘€๐‘  for top bars. To control deflection for this set of

members, the amount of additional reinforcing added causes the ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ ratio to be

relatively high compared to a typical case for GFRP reinforcing. Thus, the common

constant stiffness approaches are only conservative by about 20% for โ€“๐‘€๐ฟ < 0.5๐‘€๐‘š.

The proposed equation offers improvement, but it becomes overly conservative between

โ€“๐‘€๐ฟ โ‰ฅ 0.7๐‘€๐‘š and โ€“๐‘€๐ฟ โ‰ค 1.7๐‘€๐‘š. In this same range, the effective moment of inertia

approaches are even more conservative. In practice, if the inputs bending moments

Page 67: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

52

were derived from a constant stiffness model, then the results based on ๐ผ๐‘’ or ๐ผ๐‘’โ€ฒ in that

range are probably much less conservative than this graph suggests because the ends are

much less stiff than the midspan segment (which would normally increase the midspan

moment, as discussed in Section 3.7.3). The plot of ๐›ฅ๐›ฝ=0 for this example shows that

the effects of neglecting tension stiffening, at the ends and at midspan, happen to nearly

offset each other between โˆ’๐‘€๐ฟ โ‰ฅ 0.7๐‘€๐‘š and โˆ’๐‘€๐ฟ โ‰ค 1.3๐‘€๐‘š.

Figure 3-3 - Midspan Deflection of FRP Reinforced Beams under Centered Point Load

with Ig/Icr=3.3, Mm/Mcr=2.5, and ML=MR

Figure 3-4 plots computed deflection for GFRP reinforced concrete members where

๐ผ๐‘”/๐ผ๐‘๐‘Ÿ = 12.3, ๐œŒ = 0.7%, ๐œŒ/๐œŒ๐‘ = 1.2, ๐‘€๐‘š/๐‘€๐‘๐‘Ÿ = 1.60, ๐‘€๐‘Ÿ = 2.50๐‘€๐‘  for bottom bars,

and ๐‘€๐‘Ÿ = 1.575๐‘€๐‘  for top bars. The results from the different approaches vary greatly

because the effective moment of inertia at midspan is much larger than ๐ผ๐‘๐‘Ÿ. For this set

of members, the proposed approach offers accurate results when โˆ’๐‘€๐ฟ < ๐‘€๐‘š; it

Page 68: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

53

becomes conservative for โˆ’๐‘€๐ฟ > ๐‘€๐‘š because the cracked length at midspan is very

short for those members in this set. Bransonโ€™s (1965) ๐ผ๐‘’ causes erroneous

unconservative results for typical cases (โˆ’๐‘€๐ฟ < ๐‘€๐‘š), while use of ๐›ฝ๐‘‘ = 0.24 per ACI

440.1R (ACI Committee 440 2006) provides very conservative results.

Figure 3-4 - Midspan Deflection of FRP Reinforced Beams under Centered Point Load

with Ig/Icr=12, Mm/Mcr=1.6, and ML=MR

3.4.3 Summary of Results for a Centered Point Load

Table 3-1 summarizes the valid ranges for the proposed effective moment of inertia, ๐ผ๐‘’ โ€ฒ ,

with centered point loading. To provide the ranges of validity shown, results were

reviewed as each of the relevant variables was varied. Values for ๐‘€๐‘๐‘Ÿ ๐‘€๐‘šโ„ , ๐ผ๐‘” ๐ผ๐‘๐‘Ÿโ„ ,

๐‘€๐‘… ๐‘€๐ฟโ„ , ๐‘€๐‘š ๐‘€๐‘Ÿโ„ , depth divided by height, and other relevant ratios have been varied

within reasonable ranges in an attempt to provide valid ranges that are applicable to all

Page 69: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

54

realistic members. Concrete members reinforced with steel, AFRP, and GFRP bars have

also been reviewed. The valid ranges were terminated when the proposed

approximation reached 10% error. Results within the provided ranges typically result in

less than 5% error.

Table 3-1 - Valid Ranges for I'e for a Centered Point Load

Equal End-Moments (๐‘€๐ฟ = ๐‘€๐‘…)

# One End-Moment

#

Cracked Ratio

๐ผ๐‘’โ€ฒ Valid If: Iฮณ=1 Valid? ๐ผ๐‘๐‘Ÿ Valid? Ie

โ€ฒ Valid If:

3 โ‰ค๐‘€๐‘š

๐‘€๐‘๐‘Ÿ โˆ’๐‘€๐ฟ โ‰ค 1.3๐‘€๐‘š Yes Ok โˆ’๐‘€๐ฟ โ‰ค 1.5๐‘€๐‘š

1.7 โ‰ค๐‘€๐‘š

๐‘€๐‘๐‘Ÿ< 3 โˆ’๐‘€๐ฟ โ‰ค 1.4๐‘€๐‘š Ok No โˆ’๐‘€๐ฟ โ‰ค 1.5๐‘€๐‘š

1.3 โ‰ค๐‘€๐‘š

๐‘€๐‘๐‘Ÿ< 1.7 โˆ’๐‘€๐ฟ โ‰ค 1.5๐‘€๐‘š No No โˆ’๐‘€๐ฟ โ‰ค 2๐‘€๐‘š

1 โ‰ค๐‘€๐‘š

๐‘€๐‘๐‘Ÿ< 1.3 โˆ’๐‘€๐ฟ โ‰ค 1.4๐‘€๐‘š No No โˆ’๐‘€๐ฟ โ‰ค 1.5๐‘€๐‘š

# the results in this table assume ๐‘€๐ฟ โ‰ค ๐‘€๐‘… โ‰ค 0.

There is often a minor conservative error when โˆ’๐‘€๐ฟ โ‰ˆ โˆ’๐‘€๐‘… < ๐‘€๐‘š, but it appears to be

less than 5% for all cases except with FRP members with โˆ’๐‘€๐ฟ โ‰ˆ โˆ’๐‘€๐‘… < ๐‘€๐‘š/2 and

which have the amount of reinforcing bars increased in order to control deflection. This

error occurs because more of the member is uncracked for the members with end-

moment than for similar simply supported members. The results using ๐ผ๐‘’โ€ฒ are, therefore,

(slightly) larger than the integrated ๐ผ๐‘’(๐‘ฅ) result when โˆ’๐‘€๐ฟ โ‰ˆ โˆ’๐‘€๐‘… < ๐‘€๐‘š.

The proposed equations are often unconservative for โˆ’๐‘€๐ฟ โ‰ˆ โˆ’๐‘€๐‘… โ‰ซ ๐‘€๐‘š. If

deflections for โˆ’๐‘€๐ฟ > ๐‘€๐‘š are worth calculating, it may be necessary to use an

Page 70: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

55

integration method to account for the additional stiffness provided by the top reinforcing

bars at the ends of the member. The second example in Appendix L explains the error

in more detail.

The proposed equations are often overly conservative when ๐‘€๐ฟ/๐‘€๐‘๐‘Ÿ > 1 and there is

additional reinforcing in the midspan region to control deflection. It may be necessary

to use an integration method to compute deflection in these cases because it will account

for both the shortened cracked length at midspan and because the ๐ผ๐‘’(๐‘ฅ) at the member

ends is smaller than the ๐ผ๐‘’(๐‘ฅ) at midspan under the same service moments.

When โˆ’๐‘€๐ฟ โ‰ˆ โˆ’๐‘€๐‘… > 2๐‘€๐‘š, concrete members undergoing centered point loading

cannot be accurately modelled as a constant stiffness member. For such large end-

moments to occur, the concrete member will typically require more depth at the ends,

therefore it will be a non-prismatic member. Alternatively, the member will be

uncracked at midspan and the midspan deflection will be near zero or upwards, so

preliminary deflection checks would indicate that an in-depth deflection analysis is not

required.

3.5 Continuous Beam with Two Equal Point Loads at Third Points

In this section, results using the proposed equations are compared to other solutions for

determining deflection with two equal point loads at the third points. As with the

Section 3.4, self-weight is not otherwise accounted for. Plotted members are generated

as explained in Section 3.2 and deflection values are obtained as explained in Section

3.3. Unequal end-moments often cause significant errors for deflection computations

ฮณ Continuous

Page 71: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

56

for third-point loaded members; this error is very significant for all known effective and

equivalent moment of inertia approaches, so an improved equation is proposed.

3.5.1 Proposed Solution for Two Equal Loads at Third Points

The proposed solution for a continuous member with equal loading at third points

incorporates the end-moment values to determine the equivalent moment of inertia. Use

of the integration factor, , to calculate ๐ผ๐‘’ โ€ฒ as per Bischoff and Gross (2011) for simply

supported members gives a good approximation for highly cracked continuous members

(๐‘€๐‘š ๐‘€๐‘๐‘Ÿโ„ > 2). For continuous members that experience less cracking, however, the

original simply supported equations offer poor results. Consequently, an improved

equation for , denoted as โˆ— , is provided and used to compute an improved equivalent

moment of inertia, ๐ผ๐‘’โˆ—โ€ฒ . The more accurate deflection values, computed using ๐ผ๐‘’โˆ—

โ€ฒ , are

indicated as ๐›ฅ๐ผ๐‘’โˆ—โ€ฒ in Figures 3-5 to 3-8 and in Appendix N.

The proposed โˆ— equation attempts to account for two prominent errors in results based

on the ๐ผ๐‘’โ€ฒ calculated using . For third-point loading with equal end-moments, the actual

equivalent moment of inertia is smaller than ๐ผ๐‘’โ€ฒ because the ๐พ factor for constant

stiffness members will reduce deflection by too much. This occurs because the middle

third of a member is the main contributor to the deflection and the integrated area of this

segment sees no effect from the end-moments. For a similar reason, when unequal end-

moments cause the smaller of the bending moments at the third points to be near or less

than ๐‘€๐‘๐‘Ÿ, the exact member deflection is much less than the deflection computed using

๐ผ๐‘’โ€ฒ . The proposed equations provided account for some of this error within the proposed

limits, but an integration approach must be used outside these limits.

Page 72: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

57

The equation for โˆ— was empirically derived for equal third-point loading using a ratio

of the cracking moment to each end-moment. When there are no end-moments, โˆ— = ,

which is the exact integrated result for a simply supported member. Further

improvement in โˆ— is likely possible for continuous members. However, such solutions

are unlikely to be straightforward because the member response for equal third-point

loads and various end-moments is quite unlike that of a constant stiffness member.

The equation for Bischoffโ€™s equivalent moment of inertia is:

๐ผ๐‘’โ€ฒ =

๐ผ๐‘๐‘Ÿ

1 โˆ’ ๐œ‚ (๐‘€๐‘๐‘Ÿ

๐‘€๐‘š๐‘Ž๐‘ฅ)2 where ๐œ‚ = 1 โˆ’

๐ผ๐‘๐‘Ÿ๐ผ๐‘” (as per Equation 2 โˆ’ 8)

For members with two equal loads of ๐‘ƒ/2 at the third points and โˆ’๐‘€๐ฟ โ‰ฅ โˆ’๐‘€๐‘…:

= 1.7 โˆ’ 0.7 (๐‘€๐‘๐‘Ÿ

๐‘€๐‘š๐‘Ž๐‘ฅ) where ๐‘€0 =

๐‘ƒ๐ฟ

6 and ๐‘€๐‘š = ๐‘€0 +

๐‘€๐ฟ

2+๐‘€๐‘…

2 (3 โˆ’ 6)

๐‘€๐‘š๐‘Ž๐‘ฅ = ๐‘€0 +1

3๐‘€๐ฟ +

2

3๐‘€๐‘… where โˆ’ ๐‘€๐ฟ > โˆ’๐‘€๐‘… (3 โˆ’ 7)

If ๐‘€๐ฟ = ๐‘€๐‘…, the bending moment remains constant between the third-points

If โˆ’๐‘€๐ฟ > โˆ’๐‘€๐‘…, then ๐‘€๐‘š๐‘Ž๐‘ฅ will occur at ๐‘ฅ = 2๐ฟ/3

For two equal loads at the third points, the midspan deflection using Bischoffโ€™s ๐ผ๐‘’โ€ฒ for

simply supported members is computed as:

๐›ฅ = ๐›ฅ๐ผ๐‘’โˆ—โ€ฒ = ๐พ23๐‘€๐‘š๐ฟ

2

216๐ธ๐‘๐ผ๐‘’โ€ฒ where ๐พ =

27

23โˆ’

4๐‘€0

23๐‘€๐‘š (3 โˆ’ 8)

The proposed solution for midspan deflection is:

โˆ— = โˆ’ 0.1(๐‘€๐ฟ โˆ’ 1.5๐‘€๐‘…)/๐‘€๐‘๐‘Ÿ where โˆ’ ๐‘€๐ฟ โ‰ฅ โˆ’๐‘€๐‘… (3 โˆ’ 9)

Page 73: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

58

๐ผ๐‘’โˆ—โ€ฒ =

๐ผ๐‘๐‘Ÿ

1 โˆ’ โˆ— ๐œ‚ (๐‘€๐‘๐‘Ÿ

๐‘€๐‘š๐‘Ž๐‘ฅ)2 (3 โˆ’ 10)

๐›ฅ = ๐›ฅ๐‘š๐‘–๐‘‘ = ๐›ฅ๐ผ๐‘’โˆ—โ€ฒ = ๐พ23๐‘€๐‘š๐ฟ

2

216๐ธ๐‘๐ผ๐‘’โˆ—โ€ฒ where ๐พ =

27

23โˆ’

4๐‘€0

23๐‘€๐‘š (3 โˆ’ 11)

For unequal end-moments where โˆ’๐‘€๐ฟ < 2๐‘€๐‘š๐‘Ž๐‘ฅ and โˆ’๐‘€๐ฟ > โˆ’๐‘€๐‘…, the maximum

deflection is computed as per Equation (3-5).

3.5.2 Comparison of Results for Two Equal Loads at Third Points

The graphs in this section compare deflection calculation approaches for third-point

loading with four example sets of reinforced concrete members comprised of:

Steel reinforced beams with equal end-moments (๐‘€๐ฟ = ๐‘€๐‘…)

Steel reinforced beams that are continuous at only one end (๐‘€๐‘… = 0)

GFRP reinforced beams with equal end-moments (๐‘€๐ฟ = ๐‘€๐‘…)

GFRP reinforced beams that are continuous at only one end (๐‘€๐‘… = 0)

Data and additional discussion for these four members are provided in Appendix N.

Each graph contains a set of members with the same maximum moment (and relevant

properties); the magnitude of the end-moment(s) and the amount of reinforcement at the

end(s) of the members increase as the plots progress from left to right. The deflections

computed using integration of curvature based on ๐ผ๐‘’(๐‘ฅ), per Equation (2-7), are

assumed to be exact for comparison purposes. The S806 integration method is again

used for all members in order to provide results that neglect tension stiffening. The

Page 74: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

59

examples will show that the proposed ๐ผ๐‘’โˆ—โ€ฒ equation provides an improved moment of

inertia for computing deflection of continuous members with linear-elastic equations.

The examples provided in Figures 3-5 to 3-8 were designed and analyzed as rectangular

beams with ๐‘“๐‘โ€ฒ = 36 MPa. These beams were 600 mm deep, 300 mm wide, with 10 m

spans and with top and bottom reinforcement at ๐‘‘ = 540 mm. Figure 3-5 and Figure

3-6 use steel reinforcing with ๐‘“๐‘ฆ = 400 MPa. Figure 3-7 and Figure 3-8 use GFRP

reinforcing bars with ๐‘“๐‘“๐‘ข = 690 MPa and ๐ธ๐‘ = 44 GPa. The S806 (2012) integration

method, which neglects tension stiffening, is conservative in each set of members.

Figure 3-5 shows results for a set of steel-reinforced members with equal end-moments

and ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ = 2.97, ๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ = 2.20, ๐œŒ = 0.8%, and ๐‘€๐‘Ÿ = 1.575๐‘€๐‘ . For this

example, all of the effective moment of inertia methods work reasonably well for most

Figure 3-5 - Midspan Deflection of Steel Reinforced Beams under Third Point Loading

with Ig/Icr=3.0, Mm/Mcr=2.2, and ML=MR

Page 75: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

60

members; significant error occurs only when the end-moments are relatively large:

โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… > 1.5๐‘€๐‘š๐‘Ž๐‘ฅ. For this set of examples, no effective moment of inertia

methods are suitable for large end moments (even ๐›ฅ๐‘๐‘Ÿ results are unconservative for

โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… = 3๐‘€๐‘š๐‘Ž๐‘ฅ). The utility of the proposed ๐ผ๐‘’โˆ—โ€ฒ is negligible for these

members. However, these members are an example of the ๐›ฅ๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” curve failing to match

the integrated results well. The ๐›ฅ๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” curve also shows that the aberration discussed for

Figure 3-1 also occurs for equal third-point loaded members. The S806 (2012)

integration method shows that is it very conservative to neglect tension stiffening for

these members (even for large end-moments).

The set of members generated for Figure 3-6 are steel reinforced beams with one end

continuous with the same maximum positive moment properties (๐ผ๐‘”/๐ผ๐‘๐‘Ÿ, ๐œŒ, ๐‘€๐‘Ÿ/๐‘€๐‘ , and

Figure 3-6 - Midspan and Maximum Deflection of Steel Reinforced Beams under Third

Point Loading with Ig/Icr=3.0, Mmax /Mcr=2.2, and MR=0

Page 76: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

61

๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ) as the members in Figure 3-5. Figure 3-6 indicates that Bransonโ€™s (1965) ๐ผ๐‘’

approach is up to 15% conservative. The constant moment of inertia solutions are also

conservative when โˆ’๐‘€๐ฟ < 2.5๐‘€๐‘š๐‘Ž๐‘ฅ, with the exception of the proposed ๐ผ๐‘’โˆ—โ€ฒ . The

deflection values computed using ๐ผ๐‘’โˆ—โ€ฒ provide the most accurate approximations in this

graph when โˆ’๐‘€๐ฟ < 2๐‘€๐‘š๐‘Ž๐‘ฅ, which encompasses most practical members, but this

approach becomes unconservative for larger end-moments. Two curves of computed

maximum deflection, ๐›ฅ๐‘š๐‘Ž๐‘ฅ,๐ผ๐‘’(๐‘ฅ) and ๐›ฅ๐‘š๐‘Ž๐‘ฅ,๐ผ๐‘’โ€ฒ , are also provided in Figure 3-6; these

show that the maximum deflection is significantly larger than the midspan deflection for

members which have โˆ’๐‘€๐ฟ > 1.5๐‘€๐‘š๐‘Ž๐‘ฅ.

Figure 3-7 is based on members which are reinforced with GFRP reinforcing bars as

follows: ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ = 12.2, ๐œŒ = 0.7%, ๐œŒ/๐œŒ๐‘ = 1.21, ๐‘€๐‘š/๐‘€๐‘๐‘Ÿ = 1.40, ๐‘€๐‘Ÿ = 2.857๐‘€๐‘  for

Figure 3-7 - Midspan Deflection of GFRP Reinforced Beams under Third Point Loading

with Ig/Icr=12.2, Mm/Mcr=1.4, and ML=MR

Page 77: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

62

bottom bars, and ๐‘€๐‘Ÿ = 1.575๐‘€๐‘  for top bars. The results using ๐ผ๐‘’โ€ฒ are unconservative,

and become so by more than 10% when โˆ’๐‘€๐ฟ โ‰ฅ 2.0๐‘€๐‘š๐‘Ž๐‘ฅ . The S806 integration results

are too conservative to be plotted on this graph because tension stiffening is important

when ๐‘€๐‘š ๐‘€๐‘๐‘Ÿโ„ = 1.4. Results using Bransonโ€™s (1965) ๐ผ๐‘’ underpredict deflection by a

factor of about 2.5 when โˆ’๐‘€๐ฟ โ‰ค 2.0๐‘€๐‘š๐‘Ž๐‘ฅ, and by more for โˆ’๐‘€๐ฟ > 2.0๐‘€๐‘š๐‘Ž๐‘ฅ. Use of

๐›ฝ๐‘‘ = 0.24, in accordance with ACI 440.1R, yields conservative results with this

example, but a similar AFRP (aramid FRP) reinforced member gives unconservative

results for this approach, as expected based on its limitations (Bischoff and Gross 2011).

The ๐›ฅ๐ผ๐‘’โˆ—โ€ฒ curve is clearly the most accurate approach when โˆ’๐‘€๐ฟ โ‰ค 2.0๐‘€๐‘š๐‘Ž๐‘ฅ .

The set of example members used to produce Figure 3-8 have only one end continuous

but have otherwise identical properties to those used for Figure 3-7. Results using

Figure 3-8 - Midspan and Maximum Deflection of GFRP Reinforced Beams under Third

Point Loading with Ig/Icr=12.2, Mmax /Mcr=1.4, and MR=0

Page 78: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

63

Bransonโ€™s (1965) ๐ผ๐‘’ predict only 50% of the actual deflection for typical members

(โˆ’๐‘€๐ฟ < 1.5๐‘€๐‘š๐‘Ž๐‘ฅ). The ๐›ฅ๐ผ๐‘’,๐›ฝ๐‘‘ curve, with ๐›ฝ๐‘‘ = 0.24, is conservative with an error of

30% to 200% for โˆ’๐‘€๐ฟ โ‰ค 2.0๐‘€๐‘š๐‘Ž๐‘ฅ. The results using ๐ผ๐‘’โ€ฒ are very conservative for

unequal end-moments; this contrasts with the unconservative results in Figure 3-7. The

๐›ฅ๐ผ๐‘’โˆ—โ€ฒ curve is conservative by up to 25% for โˆ’๐‘€๐ฟ โ‰ค ๐‘€๐‘š๐‘Ž๐‘ฅ and up to 60% conservative

for larger end-moments, but it is clearly the most accurate constant moment of inertia

approach in Figure 3-8. As they did with Figure 3-6, the two maximum deflection

curves, ๐›ฅ๐‘š๐‘Ž๐‘ฅ,๐ผ๐‘’(๐‘ฅ) and ๐›ฅ๐‘š๐‘Ž๐‘ฅ,๐ผ๐‘’โ€ฒ , show a significant difference between ๐›ฅ๐‘š๐‘Ž๐‘ฅ and ๐›ฅ๐‘š๐‘–๐‘‘

when โˆ’๐‘€๐ฟ > 1.5๐‘€๐‘š๐‘Ž๐‘ฅ.

3.5.3 Summary of Results for Two Equal Loads at Third Points

Table 3-2 summarizes the valid ranges for the corrected proposed effective moment of

inertia, ๐ผ๐‘’ โˆ— โ€ฒ , with two equal loads at third points. Results assume ๐‘€๐ฟ โ‰ค ๐‘€๐‘… โ‰ค 0. To

provide these ranges of validity, relevant variables were tested within reasonable ranges.

Values for ๐‘€๐‘๐‘Ÿ ๐‘€๐‘šโ„ , ๐ผ๐‘” ๐ผ๐‘๐‘Ÿโ„ , ๐‘€๐‘… ๐‘€๐ฟโ„ , ๐‘€๐‘š ๐‘€๐‘Ÿโ„ , ๐‘‘/โ„Ž, and other relevant ratios were

varied to catch major divergence. Generally, the valid ranges were terminated when the

proposed approximation reached 10% error. More error is prominent for the one end-

moment cases, so overprediction errors of up to 50% are presented as valid (as noted).

All errors described are between approximate results using the noted constant moment

of inertia and the exact idealized deflection as explained in Section 3.3. For the

majority of practical members, โˆ’๐‘€๐ฟ โ‰ค 1.5๐‘€๐‘š๐‘Ž๐‘ฅ will be true for the load pattern which

governs deflection; therefore the valid ranges provided for ๐ผ๐‘’โˆ—โ€ฒ are rarely problematic.

Page 79: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

64

To compute deflections in cases outside the valid ranges, and for more accurate

predictions where ๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ < 1.2, it may be necessary to use an integration method.

Table 3-2 - Valid Ranges for I'e* for Equal Point Loads at Third Points

Equal End-Moments (๐‘€๐ฟ = ๐‘€๐‘…)

#f One End-Moment

Cracked Ratio ๐ผ๐‘’โˆ—โ€ฒ Valid If: ๐ผ๐‘’

โ€ฒ Valid If Iฮณ=1

Valid? ๐ผ๐‘’โˆ—โ€ฒ Valid If:

#a

3 โ‰ค๐‘€๐‘š๐‘Ž๐‘ฅ

๐‘€๐‘๐‘Ÿ โˆ’๐‘€๐ฟ โ‰ค 2.0๐‘€๐‘š๐‘Ž๐‘ฅ โˆ’๐‘€๐ฟ โ‰ค 2.0๐‘€๐‘š๐‘Ž๐‘ฅ Yes โˆ’๐‘€๐ฟ โ‰ค 2.0๐‘€๐‘š๐‘Ž๐‘ฅ

1.7 โ‰ค๐‘€๐‘š๐‘Ž๐‘ฅ

๐‘€๐‘๐‘Ÿ< 3 โˆ’๐‘€๐ฟ โ‰ค 2.0๐‘€๐‘š๐‘Ž๐‘ฅ โˆ’๐‘€๐ฟ โ‰ค 1.5๐‘€๐‘š๐‘Ž๐‘ฅ Ok

#b

โˆ’๐‘€๐ฟ โ‰ค 2.0๐‘€๐‘š๐‘Ž๐‘ฅ

1.3 โ‰ค๐‘€๐‘š๐‘Ž๐‘ฅ

๐‘€๐‘๐‘Ÿ< 1.7 โˆ’๐‘€๐ฟ โ‰ค 2.0๐‘€๐‘š๐‘Ž๐‘ฅ โˆ’๐‘€๐ฟ โ‰ค 1.3๐‘€๐‘š๐‘Ž๐‘ฅ Ok

#c

โˆ’๐‘€๐ฟ โ‰ค 2.0๐‘€๐‘š๐‘Ž๐‘ฅ

1.2 โ‰ค๐‘€๐‘š๐‘Ž๐‘ฅ

๐‘€๐‘๐‘Ÿ< 1.3 โˆ’๐‘€๐ฟ โ‰ค 2.0๐‘€๐‘š๐‘Ž๐‘ฅ โˆ’๐‘€๐ฟ โ‰ค 1.0๐‘€๐‘š๐‘Ž๐‘ฅ Ok

#d

โˆ’๐‘€๐ฟ โ‰ค 2.0๐‘€๐‘š๐‘Ž๐‘ฅ

1 โ‰ค๐‘€๐‘š๐‘Ž๐‘ฅ

๐‘€๐‘๐‘Ÿ< 1.2 โˆ’๐‘€๐ฟ โ‰ค 1.0๐‘€๐‘š๐‘Ž๐‘ฅ โˆ’๐‘€๐ฟ โ‰ค 1.5๐‘€๐‘š๐‘Ž๐‘ฅ Ok

#e

โˆ’๐‘€๐ฟ โ‰ค 0.5๐‘€๐‘š๐‘Ž๐‘ฅ #a

If the ๐ผ๐‘’โˆ—โ€ฒ equation yields results outside limits 0 < ๐ผ๐‘’โˆ—

โ€ฒ < ๐ผ๐‘”, use of ๐ผ๐‘” is reasonable.

Prediction with ๐ผ๐‘’โ€ฒ using =1.7-.7(๐‘€๐‘๐‘Ÿ ๐‘€๐‘š๐‘Ž๐‘ฅโ„ ) reasonable if ๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ < 2.5, ๐‘€๐‘… โ‰ˆ 0.

Overprediction exceeds 20% with ๐ผ๐‘’โ€ฒ for ๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ > 2.5, โˆ’๐‘€๐ฟ > 0.1๐‘€๐‘š๐‘Ž๐‘ฅ, ๐‘€๐‘… โ‰ˆ 0.

#b Overprediction of deflection exceeding 10% likely if โˆ’๐‘€๐ฟ < 1.0๐‘€๐‘š๐‘Ž๐‘ฅ and ๐ผ๐‘” ๐ผ๐‘๐‘Ÿโ„ > 4.

#c Overprediction of deflection exceeding 10% likely when โˆ’๐‘€๐ฟ < 0.5๐‘€๐‘š๐‘Ž๐‘ฅ

#d Overprediction of deflection, exceeding 10%, likely if ๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ < 2.5

#e Overprediction, exceeding 10%, likely if โˆ’๐‘€๐ฟ > 0.3๐‘€๐‘š๐‘Ž๐‘ฅ; ๐ผ๐‘” is ok if โˆ’๐‘€๐ฟ > ๐‘€๐‘š๐‘Ž๐‘ฅ

#f ๐ผ๐‘๐‘Ÿ provides reasonable results only when ๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ < 3

The improved result, ๐ผ๐‘’โˆ—โ€ฒ , using โˆ— = โˆ’ 0.1(๐‘€๐ฟ โˆ’ 1.5๐‘€๐‘…)/๐‘€๐‘๐‘Ÿ, was only intended to

give good results for ๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ > 1.2. For single end-moment cases where

๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ < 1.2, the limits of 0 < ๐ผ๐‘’โˆ—โ€ฒ โ‰ค ๐ผ๐‘” gives good results. For equal end-moment

cases where ๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ < 1.2, use of the original ๐ผ๐‘’โ€ฒ with = 1 yields an improvement

Page 80: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

65

in the ๐ผ๐‘’โˆ—โ€ฒ results. Use of ๐ผ๐‘’โˆ—

โ€ฒ , or assuming ๐‘€๐‘š๐‘Ž๐‘ฅ = 1.2๐‘€๐‘๐‘Ÿ when ๐‘€๐‘š๐‘Ž๐‘ฅ < 1.2๐‘€๐‘๐‘Ÿ, is

conservative and may be wise for ๐‘€๐‘š๐‘Ž๐‘ฅ โ‰ˆ ๐‘€๐‘๐‘Ÿ. Because ๐ผ๐‘’โˆ—โ€ฒ was derived empirically,

the divergence of results where ๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ < 1.2 is not easily explained.

3.6 Continuous Beam with a Uniformly Distributed Load

Results using equations for deflection of a continuous beam under a uniformly

distributed load are compared in the following section. The exact predicted deflection is

determined using numerical integration (as shown in Appendix K) and analytical

equations (as provided in Appendix E). Plotted members are generated as explained in

Section 3.2 and deflection values are obtained as explained in Section 3.3.

3.6.1 Proposed Solution for a Uniformly Distributed Load

The proposed solution for a continuous member with a uniformly distributed load is to

employ the equivalent moment of inertia, ๐ผ๐‘’โ€ฒ , proposed by Bischoff and Gross (2011).

Use of ๐ผ๐‘’โ€ฒ is an approximation for continuous members whereas it is the exact integrated

result for simply supported members. The most accurate and robust results were found

using the integration factor, , as provided in Equation (3-16). This accounts for the

variation in stiffness along the length of a simply supported member without

approximation. Both ๐ผ๐‘’โ€ฒ and are computed using the member properties at the location

of maximum positive service bending moment, ๐‘€๐‘š๐‘Ž๐‘ฅ, and an applied moment of ๐‘€๐‘š๐‘Ž๐‘ฅ.

Although deflection calculations are still reasonably accurate if |๐‘€๐ฟ โˆ’๐‘€๐‘…| โ‰ค 0.5๐‘€๐‘š,

๐‘€๐‘š๐‘Ž๐‘ฅ is more accurate and is used for all computations in this report. The stiffness at

Page 81: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

66

the ends of the span was found to have little effect on the calculation of an accurate

constant moment of inertia.

For a uniformly distributed load, using as provided in Equation (3-16), the proposed

equation for the equivalent moment of inertia is:

๐ผ๐‘’โ€ฒ =

๐ผ๐‘๐‘Ÿ

1 โˆ’ ๐œ‚ (๐‘€๐‘๐‘Ÿ

๐‘€๐‘š๐‘Ž๐‘ฅ)2 where ๐œ‚ = 1 โˆ’

๐ผ๐‘๐‘Ÿ๐ผ๐‘” (as per Equation 2 โˆ’ 8)

The following equations were used to compute bending moment for a continuous

member with a uniformly distributed load:

๐‘€0 =(๐‘‰๐ฟ + ๐‘‰๐‘…)๐ฟ

8=๐‘ค๐ฟ2

8 (3 โˆ’ 13)

๐‘€0 =๐‘€๐‘š๐‘Ž๐‘ฅ โˆ’

๐‘€๐ฟ

2 โˆ’๐‘€๐‘…

2 + โˆš๐‘€๐ฟ๐‘€๐‘… โˆ’๐‘€๐ฟ๐‘€๐‘š๐‘Ž๐‘ฅ โˆ’๐‘€๐‘…๐‘€๐‘š๐‘Ž๐‘ฅ +๐‘€๐‘š๐‘Ž๐‘ฅ2

2 (3 โˆ’ 14)

๐‘€๐‘š = ๐‘€0 +๐‘€๐ฟ

2+๐‘€๐‘…

2 and ๐‘€๐‘š๐‘Ž๐‘ฅ = ๐‘€0 +

๐‘€๐ฟ

2+๐‘€๐‘…

2+(๐‘€๐ฟ โˆ’๐‘€๐‘…)

2

16๐‘€0 (3 โˆ’ 15)

To use the equation for ๐ผ๐‘’โ€ฒ with a uniformly distributed load, the integration factor is:

=1.6๐œ‰3 โˆ’ 0.6๐œ‰4

(๐‘€๐‘๐‘Ÿ

๐‘€๐‘š๐‘Ž๐‘ฅ)2 + 2.4 ln(2 โˆ’ ๐œ‰) where ๐œ‰ = 1 โˆ’ โˆš1 โˆ’

๐‘€๐‘๐‘Ÿ

๐‘€๐‘š๐‘Ž๐‘ฅ (3 โˆ’ 16)

This factor is also provided in Table 2-3. The approximate provided in Table 2-3 was

not used in the presented results as it was found to cause a significant decrease in

accuracy for some examples.

For a uniformly distributed load, the approximate midspan deflection is:

Page 82: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

67

๐›ฅ = ๐›ฅ๐‘š๐‘–๐‘‘ = ๐›ฅ๐ผ๐‘’โ€ฒ = ๐พ5๐‘€๐‘š๐ฟ

2

48๐ธ๐‘๐ผ๐‘’โ€ฒ where ๐พ = 1.2 โˆ’ 0.2

๐‘€0

๐‘€๐‘š (3 โˆ’ 17)

Calculations for this report indicate that maximum deflection exceeds midspan

deflection by less than 5% if the maximum moment does not exceed the midspan

moment by more than 5%:

๐›ฅ๐‘š๐‘Ž๐‘ฅ

๐›ฅ๐‘š๐‘–๐‘‘< 1.05 if

๐‘€๐‘š๐‘Ž๐‘ฅ

๐‘€๐‘š< 1.05 (3 โˆ’ 18)

The maximum deflection can be approximated as follows:

๐›ฅ๐‘š๐‘Ž๐‘ฅ โ‰ˆ ๐›ฅ๐‘š๐‘–๐‘‘โˆš๐‘€๐‘š๐‘Ž๐‘ฅ

๐‘€๐‘š=5โˆš๐‘€๐‘š๐‘€๐‘š๐‘Ž๐‘ฅ

48๐ธ๐‘๐ผ๐‘’โ€ฒ (3 โˆ’ 19)

3.6.2 Comparison of Results for a Uniformly Distributed Load

The graphs in this section compare deflection calculation approaches for uniformly

distributed loading for five example sets of reinforced concrete members comprising:

Steel reinforced beams with equal end-moments (๐‘€๐ฟ = ๐‘€๐‘…)

Steel reinforced beams that are continuous at only one end (MR = 0)

Steel reinforced one-way slabs with equal end-moments (ML = MR)

Steel reinforced one-way slabs that are continuous at only one end (MR = 0)

GFRP reinforced beams with equal end-moments (๐‘€๐ฟ = ๐‘€๐‘…)

Data and additional discussion for these five members are provided in Appendix O.

Three additional examples provided in Appendix O may offer other useful information.

All data for this section have been created with ๐‘€๐ฟ โ‰ค ๐‘€๐‘… โ‰ค 0, but this does not appear

to be required by the proposed solution.

Page 83: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

68

Each graph contains a set of members with the same maximum moment (and relevant

properties); the magnitude of the end-moment(s) and the amount of reinforcement at the

end(s) of the members increases as the plots progress from left to right. The deflections

computed using integration of curvature, based on ๐ผ๐‘’(๐‘ฅ) per Equation (2-7), are

assumed to be exact for comparison purposes. The S806 (2012) integration method is

again used for all members in order to provide results that neglect tension stiffening.

The example graphs will show that deflection computed using the proposed equation for

๐ผ๐‘’โ€ฒ , as found in Equation (2-8) and computed using as per Equation (3-16), provides an

improved moment of inertia for computing deflection of continuous members with

linear-elastic equations.

Examples in this section are designed as follows:

Rectangular beams and slabs with ๐‘“๐‘โ€ฒ = 36 MPa

Figures 3-9 to 3-12 are designed with steel reinforcing bars having ๐‘“๐‘ฆ = 400 MPa

Figures 3-9 and 3-10 are 600 mm deep, 300 mm wide beams with 10 m spans and

with top and bottom reinforcement at ๐‘‘ = 540 mm

Figures 3-11 and 3-12 are 1 m strips of slabs which are 275 mm deep, span 7.5 m,

and have top and bottom reinforcing at ๐‘‘ = 233.8 mm

Figure 3-13 is designed as a 600 mm deep and 300 mm wide beam which spans

10 m and has reinforcing at ๐‘‘ = 510 mm with GFRP reinforcing bars

Figure 3-13 GFRP reinforcing bars have an ๐‘“๐‘“๐‘ข = 690 MPa and an ๐ธ๐‘ = 44 GPa

The curves depicted in Figures 3-10 and 3-12 provide results for both midspan

and maximum deflections for members with unequal end moments

Page 84: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

69

The ๐›ฅ๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” curve has only been provided in Figures 3-9 and 3-11 because other

results showed very similar results; all are unhelpful modifications to ๐ผ๐‘’

The curves provided for ๐›ฅ๐‘” and ๐›ฅ๐‘๐‘Ÿ are normally thought to be lower-bound and

upper-bound solutions for the deflection of concrete members because moment on

inertia should always vary between ๐ผ๐‘” and ๐ผ๐‘๐‘Ÿ for concrete members

Continuous concrete members are not bounded by the curves ๐›ฅ๐‘” and ๐›ฅ๐‘๐‘Ÿ; these

curves are provided for reference purposes only

Explanation provided for a common occurrence for these five plots is not repeated

on subsequent graphs. The most thorough explanation is provided for Figure 3-9

Figure 3-9 shows results for a set of steel-reinforced beams with equal end-moments

where ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ = 2.99, ๐œŒ = 0.8%, ๐‘€๐‘Ÿ = 1.575๐‘€๐‘ , and ๐‘€๐‘š/๐‘€๐‘๐‘Ÿ = 2.17. For this

example, all of the effective moments of inertia are used to compute reasonably accurate

values for deflection when โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… < 2.5๐‘€๐‘š๐‘Ž๐‘ฅ. These curves are an example of

when effective moment of inertia methods are not suitable for larger end-moments; even

using ๐ผ๐‘๐‘Ÿ yields unconservative results for โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… > 3๐‘€๐‘š๐‘Ž๐‘ฅ. The exact result,

๐›ฅ๐ผ๐‘’(๐‘ฅ), begins to diverge from the constant stiffness results as the end moments increase

beyond โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… = 2๐‘€๐‘š๐‘Ž๐‘ฅ; extrapolating these curves is evidence that the, ๐›ฅ๐ผ๐‘’(๐‘ฅ),

will be significantly larger than the constant stiffness member result of 0 mm of

deflection when โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… = 5๐‘€๐‘š. The S806 (2012) integration method, which is

conservative by more than 25% for all members plotted in this set, is the only method to

be conservative when โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… > 3๐‘€๐‘š๐‘Ž๐‘ฅ. When using Bransonโ€™s (1965) ๐ผ๐‘’, results

for this set of members are 7% conservative for โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… > 1.5๐‘€๐‘š๐‘Ž๐‘ฅ and are

Page 85: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

70

unconservative when โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… > 2.2๐‘€๐‘š๐‘Ž๐‘ฅ. Using ๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” per CSA A23.3 (2004), as

shown by the ๐›ฅ๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” curve, modifies the Bransonโ€™s ๐ผ๐‘’ in ways that do not relate to the

exact results, such as becoming very unconservative when โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… > 1.8๐‘€๐‘š๐‘Ž๐‘ฅ.

The ๐›ฅ๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” curve includes an aberration near ๐‘€๐ฟ/๐‘€๐‘š = ๐‘€๐‘๐‘Ÿ/๐‘€๐‘š that is explained in

the discussion of Figure 3-1. Use of Bischoffโ€™s ๐ผ๐‘’, shown by the curve for ๐›ฅ๐›พ=1,

provides results that are slightly more conservative than results using Bransonโ€™s ๐ผ๐‘’

approach. The proposed solution, using ๐ผ๐‘’โ€ฒ , is the most accurate approximation for the

deflection in Figure 3-9 when โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… < 2๐‘€๐‘š๐‘Ž๐‘ฅ. For โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… < 1.8๐‘€๐‘š๐‘Ž๐‘ฅ,

the curve for ๐›ฅ๐ผ๐‘’โ€ฒ maintains less than 2% error.

Figure 3-9 - Midspan Deflection of Steel Reinforced Beams under Uniformly

Distributed Load with Ig/Icr=3.0, Mm /Mcr=2.17, and ML=MR

The set of beams for Figure 3-10 has the same properties as the set of members in

Figure 3-9, except that Figure 3-10 has only one end continuous. These figures show

Page 86: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

71

that, for this set of members, the accuracy for members with one end continuous is

similar to both ends continuous. Again, large errors occur when end-moments become

relatively large (โˆ’๐‘€๐ฟ > 2๐‘€๐‘š๐‘Ž๐‘ฅ). Figure 3-10 demonstrates the difference between

midspan deflection and maximum deflection for uniformly distributed loading. The

approximate factor between midspan and maximum deflection, provided in Equation (3-

19), accurately computes the maximum deflection when supplied with an accurate

midspan deflection.

Figure 3-10 - Midspan and Maximum Deflection of Steel Reinforced Beams under

Uniformly Distributed Load with Ig/Icr=3.0, Mmax /Mcr=2.17, and MR=0

Figure 3-11 depicts the deflection values for a set of slabs with uniformly distributed

load and equal end-moments. These slabs are generated with ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ = 4.90,

๐œŒ = 0.54%, ๐‘€๐‘Ÿ = 1.575๐‘€๐‘ , and ๐‘€๐‘š/๐‘€๐‘๐‘Ÿ = 1.33. Bransonโ€™s method underestimates

deflection for these slabs by at least 10% for all values of end-moment. Tension

Page 87: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

72

stiffening should not be neglected where a member is lightly cracked (๐‘€๐‘š/๐‘€๐‘๐‘Ÿ โ‰ช 2), as

proven by the ๐›ฅ๐›ฝ=0 curve values being more than double those of the ๐›ฅ๐ผ๐‘’(๐‘ฅ) curve. For

this set of slabs, the results computed using the proposed ๐ผ๐‘’โ€ฒ have only a 3% error when

โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… < 2.8๐‘€๐‘š๐‘Ž๐‘ฅ. The use of ๐ผ๐‘’,๐‘Ž๐‘ฃ๐‘” as the effective moment of inertia shows

the same problems noted for Figure 3-9. Appendix O also provides a full example for a

set of beams, with the same property ratios mentioned for the slabs used in Figure 3-11,

where the beams have smaller deflections that these slabs, but the plot of deflections has

the exact same shape for both sets.

Figure 3-11 - Midspan Deflection of Steel Reinforced Slabs under Uniformly Distributed

Load with Ig/Icr=4.9, Mm /Mcr=1.33, and ML=MR

The slabs used in Figure 3-12 are identical to those from Figure 3-11, except that these

slabs have one end continuous rather than both ends continuous. Bransonโ€™s method

again underestimates deflection, while the ๐›ฅ๐›ฝ=0 curve again greatly exceeds the

Page 88: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

73

deflection results which consider tension stiffening. The ๐›ฅ๐ผ๐‘’โ€ฒ curve shows that the

proposed approach is again very accurate if โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… โ‰ค 3๐‘€๐‘š๐‘Ž๐‘ฅ. This curve

maintains less than a 5% error when compared to the exact result. Figure 3-12 shows

the midspan deflection for most of the outlined approaches, and shows the maximum

deflection for the proposed approach and the exact approach. In this graph, Equation

(3-19) accurately computes maximum deflection because midspan results are accurate.

Figure 3-12 - Midspan and Maximum Deflection of Steel Reinforced Slabs under

Uniformly Distributed Load with Ig/Icr=4.9, Mmax /Mcr=1.33, and MR=0

The set of example members generated for Figure 3-13 are GFRP reinforced beams

under a uniformly distributed load with equal end-moments. For these beams:

๐ผ๐‘”/๐ผ๐‘๐‘Ÿ = 16.9, ๐œŒ ๐œŒ๐‘โ„ = 1.02, ๐‘€๐‘š/๐‘€๐‘๐‘Ÿ = 1.25, ๐œŒ = 0.6, ๐‘€๐‘Ÿ = 2.674๐‘€๐‘  for the bottom

bars, and ๐‘€๐‘Ÿ = 1.575๐‘€๐‘  for the top bars. Bransonโ€™s approach severely underestimates

deflection. This clearly demonstrates that it was not intended for use with GFRP

Page 89: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

74

reinforcing bars. The results based on the proposed ๐ผ๐‘’โ€ฒ are within 5% of the exact results

for โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… < ๐‘€๐‘š๐‘Ž๐‘ฅ, and within 11% for โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… < 3๐‘€๐‘š๐‘Ž๐‘ฅ, in this example.

Appendix O provides three examples for uniformly loaded GFRP members: a set of

example slabs with ๐›ฝ๐‘‘ = 1.0, a set of example beams with ๐‘€๐‘š/๐‘€๐‘๐‘Ÿ = 2.0, and the set

of data for the beams in Figure 3-13. Using ฮฒd = 0.204 in accordance with ACI

440.1R yields conservative results with about 80% error for this set of examples.

Where ๐›ฝ๐‘‘ = 1.0 and deflection is underpredicted using Bransonโ€™s ๐ผ๐‘’ equation,

deflection calculations in accordance with ACI 440.1R do not improve results.

Figure 3-13 - Midspan and Deflection of GFRP Reinforced Beams under Uniformly

Distributed Load with Ig/Icr=17, Mm /Mcr=1.25, and ML=MR

3.6.3 Summary of Results for a Uniformly Distributed Load

Table 3-3 summarizes the valid ranges for the proposed effective moment of inertia, ๐ผ๐‘’โ€ฒ ,

with a uniformly distributed load. To provide the ranges of validity shown, results were

Page 90: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

75

reviewed as the value of each relevant variables was changed. Values for ๐‘€๐‘๐‘Ÿ ๐‘€๐‘šโ„ ,

๐ผ๐‘” ๐ผ๐‘๐‘Ÿโ„ , ๐‘€๐‘… ๐‘€๐ฟโ„ , ๐‘€๐‘š ๐‘€๐‘Ÿโ„ , depth divided by height, and other relevant ratios have been

varied within reasonable ranges in an attempt to provide valid ranges that are applicable

to all realistic members. Concrete members reinforced with steel, AFRP, and GFRP

bars have also been reviewed. Results within the provided ranges typically result in less

than 5% error. The valid ranges were terminated when the proposed approximation

reached 10% error, with one exception. The error was permitted to exceed 10%, as

conservative, for midspan deflection for a one-end continuous case where ๐‘€๐‘… โ‰ˆ 0,

โˆ’๐‘€๐ฟ โ‰ค 1.5๐‘€๐‘š๐‘Ž๐‘ฅ and โˆ’๐‘€๐ฟ โ‰ค 2.5๐‘€๐‘š๐‘Ž๐‘ฅ, and ๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ < 1.2. The maximum

deflection found using ๐›ฅ๐‘š๐‘Ž๐‘ฅ โ‰ˆ ๐›ฅ๐‘š๐‘–๐‘‘ โˆš๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘šโ„ will result in less than 10% error in

this case.

Table 3-3 - Valid Ranges for I'e for Uniformly Distributed Load

Equal End-Moments (๐‘€๐ฟ = ๐‘€๐‘…) One End-Moment

#

Cracked Ratio

๐ผ๐‘’โ€ฒ Valid If:

๐ผ =1 Valid? ๐ผ๐‘๐‘Ÿ Valid?

๐ผ๐‘’โ€ฒ Valid If:

3 โ‰ค๐‘€๐‘š๐‘Ž๐‘ฅ

๐‘€๐‘๐‘Ÿ โˆ’๐‘€๐ฟ โ‰ค 2.0๐‘€๐‘š๐‘Ž๐‘ฅ Yes Ok โˆ’๐‘€๐ฟ โ‰ค 2.3๐‘€๐‘š๐‘Ž๐‘ฅ

1.7 โ‰ค๐‘€๐‘š๐‘Ž๐‘ฅ

๐‘€๐‘๐‘Ÿ< 3 โˆ’๐‘€๐ฟ โ‰ค 2.2๐‘€๐‘š๐‘Ž๐‘ฅ Ok No โˆ’๐‘€๐ฟ โ‰ค 2.5๐‘€๐‘š๐‘Ž๐‘ฅ

1.1 โ‰ค๐‘€๐‘š๐‘Ž๐‘ฅ

๐‘€๐‘๐‘Ÿ< 1.7 โˆ’๐‘€๐ฟ โ‰ค 2.5๐‘€๐‘š๐‘Ž๐‘ฅ No No โˆ’๐‘€๐ฟ โ‰ค 2.7๐‘€๐‘š๐‘Ž๐‘ฅ

1 โ‰ค๐‘€๐‘š๐‘Ž๐‘ฅ

๐‘€๐‘๐‘Ÿ< 1.1 โˆ’๐‘€๐ฟ โ‰ค 1.5๐‘€๐‘š๐‘Ž๐‘ฅ No No โˆ’๐‘€๐ฟ โ‰ค 1.5๐‘€๐‘š๐‘Ž๐‘ฅ

# Results were tested assuming ๐‘€๐ฟ โ‰ค ๐‘€๐‘… โ‰ค 0.

If end-moments exceed proposed limits, even the proposed equations will often

underpredict deflection, so integration or another reliable method must be used. These

Page 91: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

76

approximate service load deflection equations are very useful, however, because

situations where โˆ’๐‘€๐ฟ > 2๐‘€๐‘š๐‘Ž๐‘ฅ are rare, and are very unlikely to fail service deflection

requirements.

The idealized member testing shows a minor error for deflections computed with ๐ผ๐‘’โ€ฒ

when โˆ’๐‘€๐ฟ โ‰ˆ โˆ’๐‘€๐‘… < 2๐‘€๐‘š๐‘Ž๐‘ฅ. This error appears to be less than 5% for all cases except

with FRP members having equal end-moments and at least 50% more reinforcement

than is required for ultimate limit states. This error occurs because more of the member

is uncracked for the continuous members than for similar simply supported members.

The results using ๐ผ๐‘’โ€ฒ are, therefore, (slightly) larger than the integrated ๐ผ๐‘’(๐‘ฅ) result when

โˆ’๐‘€๐ฟ โ‰ˆ โˆ’๐‘€๐‘… < ๐‘€๐‘š. When โˆ’๐‘€๐ฟ < 1.5๐‘€๐‘š๐‘Ž๐‘ฅ and ๐‘€๐‘… = 0, this minor conservative

error occurs for the same reason.

Constant stiffness solutions for concrete members often begin to diverge from exact

solutions as the end-moments increase beyond twice the maximum positive moment

(โˆ’๐‘€๐ฟ โ‰ˆ โˆ’๐‘€๐‘… > 2๐‘€๐‘š๐‘Ž๐‘ฅ). This is especially true for members where ๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ > 1.7.

This is evident in Figures 3-9 and 3-10, where exact deflections exceed ๐ผ๐‘๐‘Ÿ results when

โˆ’๐‘€๐ฟ > 2๐‘€๐‘š๐‘Ž๐‘ฅ. In cases like this, if the deflection requirements cannot be shown to be

met without an in-depth analysis, it may be necessary to use an integration method to

account for the heavily reinforced member ends.

A constant stiffness analysis would normally not be attempted when

โˆ’๐‘€๐ฟ โ‰ˆ โˆ’๐‘€๐‘… > 3๐‘€๐‘š๐‘Ž๐‘ฅ, because the concrete member depth will be uncracked at

midspan or will require more member depth at the ends. Typically, deflection for these

members will also be near zero. Accurate deflection predictions in this range require

Page 92: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

77

the use of an integration method. Section 3.7.2 provides discussion as to why it

becomes increasingly difficult, and sometimes impossible, to model a concrete beams as

a constant stiffness member when โˆ’๐‘€๐ฟ and โˆ’๐‘€๐‘… are larger than 1.5๐‘€๐‘š๐‘Ž๐‘ฅ.

3.7 Additional Findings

When preparing this report, four things were found that are critical to accurately

compute deflection and which lacked explanation in most other relevant literature. One

thing is that the difference between midspan and maximum deflection can be

significant, even exceeding 20%. Secondly, it is impossible for any constant stiffness

method to be correct for a wide range of continuous concrete members with large

negative end-moments. The third finding is that concrete members must be modelled

carefully because use of incorrect bending moments values to compute member

stiffness will often result in underpredicting deflection. Finally, the recent update to

A23.3 (2004), which changes ๐‘€๐‘๐‘Ÿ to be calculated using one half of ๐‘“๐‘Ÿ, causes

significant changes to predicted deflections for reinforced concrete members.

3.7.1 When Midspan and Maximum Deflections are Different

It is important to use maximum deflection when it is not similar to midspan deflection.

Building codes (and other similar requirements) limit the permitted maximum

deflection, not the midspan deflection, so it is necessary to determine a good

approximation for the maximum deflection when the difference is significant. For

constant stiffness members undergoing uniformly distributed loads where ๐‘€๐‘… = 0, the

difference in deflection reaches 10% at โˆ’๐‘€๐ฟ = 2.5๐‘€๐‘š๐‘Ž๐‘ฅ. For constant stiffness

Page 93: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

78

members subject to a centered point load or two equal point loads at the third-points

where ๐‘€๐‘… = 0, the difference in deflection reaches 10% at โˆ’๐‘€๐ฟ = 2๐‘€๐‘š๐‘Ž๐‘ฅ. Appendix

R provides data and more discussion on the comparison of midspan and maximum

deflection of prismatic linear-elastic members where ๐‘€๐‘… = 0, ๐‘€๐‘… = ๐‘€๐‘š๐‘Ž๐‘ฅ/2, and

where ๐‘€๐‘… = ๐‘€๐ฟ/2.

3.7.2 Accurate Constant Stiffnesses can be Impossible

For certain end-moments, midspan deflection for all constant stiffness (prismatic and

linear-elastic) members is zero. This is also true for maximum deflection, which is

different from midspan deflection if end-moments are unequal. To achieve zero

midspan deflection for a constant stiffness member, solve for ๐พ = 0 in Table 2-2. Thus

โˆ†๐‘š๐‘–๐‘‘= 0 if: โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… = 2๐‘€๐‘š for a centered point load, โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… = 5.75๐‘€๐‘š

for equal point loads at third points, and โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… = 5๐‘€๐‘š for a uniformly

distributed load. In most circumstances, the midspan deflection of a concrete beam will

not be zero in such situations because the concrete beams will not have a constant

stiffness. This makes it impossible to create an accurate effective moment of inertia for

near-zero deflection. The limits to the proposed equations reflect this fact.

Neither typical nor proposed constant stiffness solutions are accurate for continuous

concrete members with a uniformly distributed load having โˆ’๐‘€๐ฟ โ‰ˆ โˆ’๐‘€๐‘… โ‰ˆ 3๐‘€๐‘š๐‘Ž๐‘ฅ.

Using an integration method becomes critical where โˆ’๐‘€๐ฟ โ‰ˆ โˆ’๐‘€๐‘… > 2.5๐‘€๐‘š๐‘Ž๐‘ฅ and

๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ > 1.3 (outside the valid range) because results from proposed equations

become increasingly unconservative as โˆ’๐‘€๐ฟ and โˆ’๐‘€๐‘… increase relative to ๐‘€๐‘š๐‘Ž๐‘ฅ. The

ends of these members become stiffer than the proposed effective moment of inertia, ๐ผ๐‘’โ€ฒ ,

Page 94: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

79

because of the additional reinforcement required for the larger negative bending

moments. This additional stiffness in the member ends will, in turn, reduce the

curvature and rotation at the member ends and therefore increase the midspan deflection

(relative to solutions based on simply supported members). Because stiffness

throughout these members is between ๐ผ๐‘” and ๐ผ๐‘๐‘Ÿ, one would expect the solution to

always be such that ๐ผ๐‘” > ๐ผ๐‘’โ€ฒ > ๐ผ๐‘๐‘Ÿ. In this situation, however, an accurate solution for ๐ผ๐‘’

โ€ฒ

would have to reduce it to less than the midspan cracked moment of inertia, ๐ผ๐‘๐‘Ÿ. A

visual example of why a more robust solution would require ๐ผ๐‘’โ€ฒ to be become less than

๐ผ๐‘๐‘Ÿ is seen in Figure 3-9; here, when โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… = 3๐‘€๐‘š, the exact deflection exceeds

the deflection of a member with the constant stiffness of ๐ผ๐‘๐‘Ÿ. More robust effective

moment of inertia solutions, despite increased complexity, would still be limited to

certain ranges of validity for the reasons noted in the first paragraph of this section.

3.7.3 Importance of the Correct Bending Moment Function

The deflection equations provided for continuous members assume the designer has

determined the correct value for the bending moment at the supports. The equations

provided also do not take any pre-loading or pattern loading into account. If a pattern

load results in a small reduction in negative bending moment, this will in turn result in

increased positive bending moments and increased midspan deflection. Modelling the

actual stiffnesses of the member will often reduce the negative bending moments under

the worst-case loading for positive bending.

The following situation describes an example where the midspan deflection is larger

than computed. First, imagine a new uncracked beam (Beam A) loaded only to the

Page 95: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

80

positive (midspan) bending service moment case. Now, imagine an identical new

uncracked beam (Beam B) that is first loaded to the worst negative bending service

moment case, and then loaded to the same maximum positive bending service moment

case. In most cases that occur in concrete buildings, Beam B will have more midspan

deflection because the bending moment will shift to the positive bending. Notably,

there is actually less deflection in Beam B if the same bending moment function is used

to model both beams. This decrease in the model occurs because the model will

increase the rotation at the ends of the member in order to achieve the negative bending

moments that are provided to it. Mathematically, the decrease in deflection occurs

because the increased cracking at the ends of Beam B will increase the area under the

integrated (๐‘š๐‘€/๐ธ๐ผ) curve in the negative moment region (see example ๐‘š๐‘€/๐ธ๐ผ graph

that is provided in Appendix L).

More discussion about this phenomenon is given in Appendix P. One possible method

of determining the worst case bending moment function is also provided in Appendix P.

This appendix also explains why it appears to be reasonable, typically, to use only the

worst-case positive moment function.

3.7.4 Effect on Results of the CSA A23.3 Update to Clause 9.8.2.3

As mentioned previously, the prescribed cracking moment in Clause 9.8.2.3 of A23.3

(CSA 2004), R2010 version, was reduced to ๐‘€๐‘๐‘Ÿ = 0.5๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก (for use with Bransonโ€™s

๐ผ๐‘’). This change is intended to account for shrinkage restraint stresses. The use of

๐‘€๐‘๐‘Ÿ = 0.67๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก provides an equivalent adjustment for calculations based on ๐ผ๐‘’โ€ฒ or

๐ผ๐‘’(๐‘ฅ) (Scanlon and Bischoff 2008).

Page 96: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

81

Results based on a cracking moment that is reduced for shrinkage restraint stresses are

substantially different from the results presented throughout this report. Appendix P has

been added to provide discussion and examples that compare deflections determined

using ๐‘€๐‘๐‘Ÿ = ๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก to deflections determined using the reduced ๐‘€๐‘๐‘Ÿ values. The

appendix shows that the section-based, effective, and equivalent moment of inertia

values become closer to the cracked moment of inertia value; thus, all deflection results

increase and become closer to the fully cracked results. It appears that results which use

Bransonโ€™s ๐ผ๐‘’ generally shift towards ๐ผ๐‘๐‘Ÿ results by more than those which use ๐ผ๐‘’โ€ฒ or

๐ผ๐‘’(๐‘ฅ). This causes deflection calculations to produce conservative results when

๐ผ๐‘”/๐ผ๐‘๐‘Ÿ < 10. While results using Bransonโ€™s ๐ผ๐‘’ and ๐‘€๐‘๐‘Ÿ = ๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก underestimate

deflection when ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ > 4, results that use this ๐ผ๐‘’ with ๐‘€๐‘๐‘Ÿ = 0.5๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก factor are

improved because they only underestimate deflection when ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ > 12.

3.8 Summary of Results using Bransonโ€™s Method

There are many results provided in Sections 3.4, 3.5, and 3.6 that compare exact

integrations results to results using Bransonโ€™s method. Figures 3-2, 3-3, 3-5, 3-6, 3-9,

and 3-10 demonstrate that Bransonโ€™s method provides reasonably accurate results when

3 โ‰ค ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ โ‰ค 4. Figures 3-1, 3-2, and 3-3 demonstrate that Bransonโ€™s method is

sometimes more conservative than proposed methods. Figures 3-4, 3-7, 3-8, 3-11, 3-12,

and 3-13 demonstrate that Bransonโ€™s method often underpredicts deflection.

Unconservative errors in predictions also occur for large negative end-moments in

Figures 3-5, 3-6, 3-9, and 3-10. When accounting for shrinkage restraint while using

Page 97: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

82

Bransonโ€™s method, with ๐‘€๐‘๐‘Ÿ = 0.5๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก as described in Section 3.7.4, accuracy is

improved and underpredicting deflection is much less common. A complete adoption of

the proposed equations is recommended, nonetheless, because Bransonโ€™s equation is

empirical and less robust than the proposed rational equations.

Page 98: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

83

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

To determine midspan deflection of continuous members using the effective moment of

inertia method, deflection at midspan can be calculated using a factor, ๐พ (as provided in

Section 2.2.3), in conjunction with a generalized linear-elastic deflection equation.

In this report, exact deflections obtained by integration are compared to deflections

obtained by the approximate solutions for the effective moment of inertia, such as ๐ผ๐‘’, ๐ผ๐‘’โ€ฒ ,

or ๐ผ๐‘’โˆ—โ€ฒ . Because the proposed solutions are approximations for continuous members,

minor errors are unavoidable. As negative end-moments become slightly larger than the

midspan moment, proposed solutions usually underpredict deflections because ๐ผ๐‘’(๐‘ฅ)

exceeds ๐ผ๐‘’โ€ฒ at member ends. When negative moments increase beyond the proposed

limits (which generally occurs when the larger end-moment is at least double the

magnitude of the maximum positive moment, i.e. when โˆ’๐‘€๐ฟ โ‰ฅ 2๐‘€๐‘š๐‘Ž๐‘ฅ), the member is

no longer suitable for constant stiffness member deflection calculations. Because of the

complexity of the problem, only a reliable integration method can provide solutions for

all possible limitations and situations. Integration using virtual work is explained in

Appendices B, E, and K; it is demonstrated in Appendix J.

The proposed approximate solutions require adherence to the noted valid ranges.

Accurate results are only obtainable for members if the negative end-moment(s) do not

greatly exceed the maximum positive moments. When end-moments become relatively

large, such that they are outside the noted valid range, deflections will rarely be

significant.

Page 99: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

84

Bischoffโ€™s equivalent moment of inertia for simply-supported members with centered

point loading and uniformly distributed loading also works well for continuous

members. Third-point loaded members require a modified equation for ๐ผ๐‘’โ€ฒ ;

consequently, a reasonably accurate and robust equation is proposed as ๐ผ๐‘’โˆ—โ€ฒ . While other

effective moment of inertia solutions often provide adequate accuracy, results found

using the proposed equations are generally more accurate and more robust. It is

recommended that deflections be predicted using the proposed effective moment of

inertia equations for ๐ผ๐‘’โ€ฒ or ๐ผ๐‘’โˆ—

โ€ฒ when members and loading meet the valid ranges noted.

The solutions for ๐ผ๐‘’โ€ฒ and ๐ผ๐‘’โˆ—

โ€ฒ are provided in Sections 3.4.1, 3.5.1, and 3.6.1. The valid

ranges for these solutions are provided for these sections in Tables 3-1, 3-2, and 3-3,

respectively.

Branson's equation can continue to be used effectively within its limitations. If the

effects of shrinkage restraint are fully mitigated, the limitations for use of Bransonโ€™s

equation are much more severe than the limitations for the proposed equations. The

proposed equations are of similar complexity, are rationally derived, and apply for all

concrete reinforcing ratios and to both steel and FRP reinforcing bars. The limitations

for use of Bransonโ€™s equation are significantly reduced when shrinkage restraint is taken

into account, but the proposed solutions are more robust.

The requirement to include 15% of the ๐ผ๐‘’ for negative bending, at each end of each

continuous member per A23.3 clause 9.8.2.4 (CSA 2004), should be ignored for all

methods because work for this report shows that it typically reduces the accuracy of

deflection calculations.

Page 100: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

85

4.2 Recommendation for Future Work

4.2.1 Improve Deflection Equation Information Provided to Engineers

Concrete standards and handbooks should provide more information about deflection

calculations. CSA A23.3, for example, provides poor recommendations for what to do

when adjacent span lengths are not similar, and only provides a means of calculating

deflection for uniformly distributed loads. For effective moment of inertia methods, it

is crucial to state and explain the relevant limitations. Assistance should also be

provided about what to do when limitations are not met. Providing equations,

methodology, and examples of how to determine deflection using integration would

enable engineers to have a robust method at their disposal.

To encourage more accurate calculation of deflections, it would be useful to determine

what moment of inertia values, functions, and assumptions are used in common

structural engineering practice. This knowledge could subsequently be used to provide

improved instruction to engineers on accurate stiffness assumptions. Accurate

assumptions, based on load cases, would improve the ability for engineers to correctly

predict the required moment resistance and maximum deflection.

4.2.2 Improve Assumptions for Stiffness

A sequence of pattern loads on a concrete member will often cause more deflection than

selecting the worst load case for a member of constant stiffness. Load-history does not

affect constant stiffness members. Reinforced concrete members are unique and

complex because the amount of cracking and the amount of reinforcement both affect

curvature and deflection. As such, it is unlikely that a constant stiffness member

Page 101: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

86

analysis will provide the worst case deflection of a concrete member. The real worst

case for deflection will often require worst case negative bending pattern loading to

occur before the maximum positive bending service pattern.

A thorough investigation of assumptions for stiffness, including load history, should be

performed in order to determine more accurate prediction of deflections. Appendix P

provides a discussion of the effects of cracking at supports. It introduces some ways in

which concrete cracking can affect deflection. For this report, there was little work

done to study the effects of pre-loading on maximum deflections. The study performed

on the idealized members used in this work suggests that when the negative bending

moment envelope is taken into account for both the amount of cracking at supports and

the amount of negative bending reinforcement provided, then effects on deflections are

small.

The reduced cracking moment, ๐‘€๐‘๐‘Ÿ, to account for shrinkage-restraint may dramatically

reduce the errors caused by poor stiffness assumptions. This should also be

investigated.

4.2.3 Investigation of Other Possible Moment of Inertia Equations

Other equations for a constant moment of inertia were developed, investigated, and

dismissed in preliminary work for this report. Effort was concentrated on uniformly

distributed load cases, because that is the most typical loading for concrete members.

The omitted equations, based on cracked length ratios, various bending moment ratios,

and etc., were investigated in preliminary work for this report. These equations had a

Page 102: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

87

smaller valid range than proposed solutions or were far more complicated and offered

little improvement. It may be worthwhile to use the techniques provided in this report

to investigate whether any minor changes would improve the proposed equations for

uniformly distributed load or centered point load.

For equal point loads at third points, the improved/corrected equation for ๐ผ๐‘’โˆ—โ€ฒ , using โˆ—

from equation (3 โˆ’ 11), was derived empirically except that it intentionally includes

the simply supported . It is likely that a simple but more robust and accurate equation

for could be derived. For the case of a single large end-moment, considering the

shape of the positive-cracked portion of the moment diagram, improved results might be

derived by adapting the simply-supported equations for a single third-point load, a

centered point load, or a uniformly distributed load with the same total load. Where

๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ < 1.2 for equal point loads at third points, it should be determined whether

the recommended solution is to use ๐‘€๐‘š๐‘Ž๐‘ฅ = 1.2๐‘€๐‘๐‘Ÿ, to use the proposed ๐ผ๐‘’โˆ—โ€ฒ results, or

whether a better solution for ๐ผ๐‘’โˆ—โ€ฒ is required.

Page 103: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

88

REFERENCES

ACI Committee 318. 2011. Building code requirements for structural concrete and

commentary. ACI 318-05. American Concrete Institute, Farmington Hills, Mich.

ACI Committee 440. 2006. Guide for the design and construction for concrete

reinforced with FRP bars. ACI 440.1R-06. American Concrete Institute,

Farmington Hills, Mich.

Bischoff, P.H. 2007. Rational model for calculating deflection of reinforced concrete

beams and slabs. Canadian Journal of Civil Engineering, 34(8), 992โ€“1002.

Bischoff, P.H. 2005. Re-evaluation of deflection prediction for concrete beams

reinforced with steel and fiber reinforced polymer bars. Journal of Structural

Engineering, ASCE, 131(5): 752-767.

Bischoff, P.H., and Darabi, M. 2012. Unified approach for computing deflection of steel

and FRP reinforced concrete. ACI SP-284-16: 1-20.

Bischoff, P.H., and Gross, S.P. 2011. Equivalent moment of inertia based on integration

of curvature. Journal of Composites for Construction, ASCE, 15(3): 263-273.

Bischoff, P.H., and Scanlon, A. 2007. Effective moment of inertia for calculating

deflections of concrete members containing steel reinforcement and fiber-

reinforced polymer reinforcement. ACI Structural Journal, 104(1), 68โ€“75.

Branson, D.E. 1965. Instantaneous and time-dependant deflections of simple and

continuous reinforced concrete beams. Alabama Highway Department, Bureau of

Public Roads, Ala. HPR Report No. 7, Part 1.

CAC. 2005. Concrete Design Handbook. 3rd

Edition. Cement Association of Canada,

Ottawa, Ont.

CEN. 2004. Eurocode 2: design of concrete structures โ€“ Part 1-1: general rules for

buildings. European prestandard, DD ENV 1992-1-1: 2004, European Committee

for Standardization (CEN), Brussels, Belgium.

CISC. 2009. Handbook of steel construction. 9th

Edition. Canadian Institute of Steel

Construction, Markham, Ont.

CSA. 2012. Design and construction of building structures with fibre-reinforced

polymers. Standard S806-12, Canadian Standards Association (CSA), Toronto,

Ont.

CSA. 2004. Design of concrete structures. Standard A23.3-04, Canadian Standards

Association (CSA), Toronto, Ont.

Gilbert, R.I. 2007. Tension stiffening in lightly reinforced concrete slabs. Journal of

Structural Engineering, ASCE, 133(6): 899-903.

Razaqpur, A.G., Isgor, O.B. 2003. Rational method for calculating deflection of

continuous FRP R/C beams.SP-210: Deflection Control for the Future. ACI

International: 191-208.

Razaqpur, A.G., Svecova, D., and Cheung, M.S. 2000. Rational method for calculating

deflection of fibre-reinforced polymer reinforced beams. ACI Structural Journal,

97(1): 175-195.

Scanlon, A., and Bischoff, P.H. 2008. Shrinkage restraint and loading history effects on

deflections of flexural members. ACI Structural Journal, 105(4), 498โ€“506.

Vesey, S., and Bischoff, P.H. 2011. Designing FRP reinforced concrete for deflection

control. ACI SP-275-03: 1-24.

Page 104: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

89

Derivation of ๐‘ฒ for Continuous Linear-Elastic Members Appendix A

๐พ factors are used to compute deflections with generic elastic deflection equations using

a constant moment of inertia. The following is a derivation of the ๐พ factors as shown in

Table 2-2 and as introduced in Chapter 6 of the Concrete Design Handbook (CAC

2005). The midspan deflection of a continuous member is the ๐พ factor multiplied by

the midspan deflection of a simply supported member with the same span, properties,

and midspan moment. The equations for ๐พ apply to constant stiffness members with

known end-moments. See List of Symbols for equation variable definitions.

Let ฮ” be the midspan deflection caused by the load applied (as indicated in Figure A-1,

Figure A-2, and Figure A-3). Let downward deflection and downward load on the span

be positive. For the purposes of this report, the end-moments, ๐‘€๐ฟ and ๐‘€๐‘…, are zero or

negative, meaning they reduce downwards deflection at midspan. This follows the sign

convention for reinforced concrete design, where bottom reinforcing is considered

positive reinforcing, and top reinforcing is considered negative reinforcing.

Let ๐‘€0 be the total static moment, which is the difference between the average end-

moments and the midspan moment; this equals the midspan moment for a simply

support member. Also define ๐‘€๐‘š as the midspan moment. This means:

๐‘€0 = ๐‘€๐‘š โˆ’๐‘€๐ฟ +๐‘€๐‘…

2

The subsequent three sections of this appendix will show the derivation of the ๐พ factor

for the three load cases analyzed in this report.

Page 105: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

90

Calculate ๐‘ฒ for Point Load at Midspan and Generic End-Moments

Figure A-1 - Midspan Point Load on a Continuous Member

For a point load at midspan on a simply supported span (๐‘€๐ฟ = ๐‘€๐‘… = 0):

๐‘€๐‘š = ๐‘€0 =๐‘ƒ๐ฟ

4 ; โˆ†=

๐‘ƒ๐ฟ3

48๐ธ๐ผ= ๐พ

๐‘€๐‘š๐ฟ2

12๐ธ๐ผ ; ๐พ = 1

For a point load at midspan on a continuous member:

โˆ†=๐‘ƒ๐ฟ3

48๐ธ๐ผ+๐‘€๐ฟ๐ฟ

2

16๐ธ๐ผ+๐‘€๐‘…๐ฟ

2

16๐ธ๐ผ= ๐พ

๐‘€๐‘š๐ฟ2

12๐ธ๐ผ

โˆ†=๐ฟ2

12๐ธ๐ผ(๐‘ƒ๐ฟ

4+12๐‘€๐ฟ

16+12๐‘€๐‘…

16) =

๐ฟ2

12๐ธ๐ผ(๐‘€0 โˆ’

3

2(โˆ’

๐‘€๐ฟ +๐‘€๐‘…

2))

โˆ†=๐ฟ2

12๐ธ๐ผ(๐‘€0 โˆ’

3

2(๐‘€0 โˆ’๐‘€๐‘š)) =

๐ฟ2

12๐ธ๐ผ(1.5๐‘€๐‘š โˆ’ 0.5๐‘€๐‘œ)

โˆ†= (1.5 โˆ’ 0.5๐‘€0

๐‘€๐‘š)๐‘€๐‘š๐ฟ

2

12๐ธ๐ผ ; ๐พ = 1.5 โˆ’ 0.5

๐‘€0

๐‘€๐‘š

For a fixed-fixed member with a point load at midspan, ๐‘€๐‘š = โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… = ๐‘ƒ๐ฟ/8,

therefore:

๐‘€0 = 2๐‘€๐‘š ; ๐พ = 1.5 โˆ’ 0.5(2๐‘€๐‘š)

๐‘€๐‘š=1

2

โˆ†= ๐พ๐‘€๐‘š๐ฟ

2

12๐ธ๐ผ= (

1

2)๐‘€๐‘š๐ฟ

2

12๐ธ๐ผ= (

1

4)๐‘€0๐ฟ

2

12๐ธ๐ผ ; โˆ†=

1

4 of simply supported deflection

Page 106: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

91

Calculate ๐‘ฒ for Two Equal Third-Point Loads and Generic End-Moments

Figure A-2 - Equal Point Load at Third Points on a Continuous Member

For an equal point load at third points on a simply supported span (no end-moments):

๐‘€๐‘š = ๐‘€0 =๐‘ƒ๐ฟ

6 ; โˆ†=

23๐‘ƒ๐ฟ3

1296๐ธ๐ผ= ๐พ

23๐‘€๐‘š๐ฟ2

216๐ธ๐ผ ; ๐พ = 1

For a continuous member loaded equally at third points:

โˆ†=23๐‘ƒ๐ฟ3

1296๐ธ๐ผ+๐‘€๐ฟ๐ฟ

2

16๐ธ๐ผ+๐‘€๐‘…๐ฟ

2

16๐ธ๐ผ= ๐พ

23๐‘€๐‘š๐ฟ2

216๐ธ๐ผ

โˆ†=23๐ฟ2

216๐ธ๐ผ(๐‘ƒ๐ฟ

6+27๐‘€๐ฟ

46+27๐‘€๐‘…

46) =

23๐ฟ2

216๐ธ๐ผ(๐‘€0 โˆ’

27

23(โˆ’

๐‘€๐ฟ +๐‘€๐‘…

2))

โˆ†=23๐ฟ2

216๐ธ๐ผ(๐‘€0 โˆ’

27

23(๐‘€0 โˆ’๐‘€๐‘š)) =

23๐ฟ2

216๐ธ๐ผ(27

23๐‘€๐‘š โˆ’

4

23๐‘€0)

โˆ†= (27

23โˆ’

4

23

๐‘€0

๐‘€๐‘š)23๐‘€๐‘š๐ฟ

2

216๐ธ๐ผ ; ๐พ =

27

23โˆ’

4

23

๐‘€0

๐‘€๐‘š

For a fixed-fixed member loaded equally at third points, 2๐‘€๐‘š = โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… = ๐‘ƒ๐ฟ/9,

therefore:

๐‘€0 = 3๐‘€๐‘š ; ๐พ =27

23โˆ’

4

23

(3๐‘€๐‘š)

๐‘€๐‘š=15

23

โˆ†= ๐พ23๐‘€๐‘š๐ฟ

2

216๐ธ๐ผ= (

15

23)23๐‘€๐‘š๐ฟ

2

216๐ธ๐ผ= (

5

23)23๐‘€0๐ฟ

2

216๐ธ๐ผ ; โˆ†=

5

23 of simply supported deflection

Page 107: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

92

Calculate ๐‘ฒ for Uniformly Distributed Load and Generic End-Moments

Figure A-3 - Uniformly Distributed Load on a Continuous Member

For a uniformly distributed load on a simply supported span (no end-moments):

๐‘€๐‘š = ๐‘€0 =๐‘ค๐ฟ2

8 ; โˆ†=

5๐‘ค๐ฟ4

384๐ธ๐ผ= ๐พ

5๐‘€๐‘š๐ฟ2

48๐ธ๐ผ ; ๐พ = 1

For a uniformly distributed load on a continuous member:

โˆ†=5๐‘ค๐ฟ4

384๐ธ๐ผ+๐‘€๐ฟ๐ฟ

2

16๐ธ๐ผ+๐‘€๐‘…๐ฟ

2

16๐ธ๐ผ= ๐พ

5๐‘€๐‘š๐ฟ2

48๐ธ๐ผ

โˆ†=5๐ฟ2

48๐ธ๐ผ(๐‘ค๐ฟ2

8+3๐‘€๐ฟ

5+3๐‘€๐‘…

5) =

5๐ฟ2

48๐ธ๐ผ(๐‘€0 โˆ’

6

5(โˆ’

๐‘€๐ฟ +๐‘€๐‘…

2))

โˆ†=5๐ฟ2

48๐ธ๐ผ(๐‘€0 โˆ’

6

5(๐‘€0 โˆ’๐‘€๐‘š)) =

5๐ฟ2

48๐ธ๐ผ(6

5๐‘€๐‘š โˆ’

1

5๐‘€0)

โˆ†= (1.2 โˆ’ 0.2๐‘€0

๐‘€๐‘š)5๐‘€๐‘š๐ฟ

2

48๐ธ๐ผ ; ๐พ = 1.2 โˆ’ 0.2

๐‘€0

๐‘€๐‘š

For a uniform load on a fixed-fixed member, 2๐‘€๐‘š = โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… = ๐‘ค๐ฟ2/12,

therefore:

๐‘€0 = 3๐‘€๐‘š ; ๐พ = 1.2 โˆ’ 0.2(3๐‘€๐‘š)

๐‘€๐‘š=3

5

โˆ†= ๐พ5๐‘€๐‘š๐ฟ

2

48๐ธ๐ผ= (

3

5)5๐‘€๐‘š๐ฟ

2

48๐ธ๐ผ= (

1

5)5๐‘€0๐ฟ

2

48๐ธ๐ผ ; โˆ† =

1

5 of simply supported deflection

Page 108: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

93

Bending Deflection by Integration Using Virtual Work Appendix B

Deflection from flexure can be determined by integrating curvature along the beam span

using the principle of virtual work. This method can be understood and replicated

without difficulty, as explained in the following paragraphs. The generic form of this

equation used for integrating curvature using virtual work is:

โˆ†= ๐‘€๐œ™ = โˆซ๐‘š๐‘€

๐ธ๐ผ

This equation can be more descriptive if it is expanded to denote where each variable is

applicable and which variables are functions of the position along the beam, as follows:

โˆ†๐‘= โˆซ ๐‘š๐‘(๐‘ฅ) (๐‘€(๐‘ฅ)

๐ธ๐ผ(๐‘ฅ))๐‘‘๐‘ฅ

๐ฟ

0

The variable ๐‘ฅ is used to denote the position along the beam, and the function is

integrated with respect to ๐‘ฅ, as ๐‘ฅ increases from 0 to the beam length, ๐ฟ.

โˆ†๐‘ denotes that integration will determine the deflection at location ๐‘. The maximum

deflection is typically found at midspan, so that is where point ๐‘ is typically taken. The

subscript, ๐‘, indicating location is usually omitted for midspan deflection because the

midspan deflection is typical, so denoting it is considered redundant. When maximum

deflection is not at midspan, the report denotes maximum deflection as โˆ†๐‘š๐‘Ž๐‘ฅ.

The function ๐‘š๐‘(๐‘ฅ) is the virtual moment function for bending deflection when the

virtual unit load is placed at location ๐‘. As ๐‘ฅ progresses from one end of the beam to

the other, ๐‘š๐‘(๐‘ฅ) will take into account the effect that the curvature, ๐‘€(๐‘ฅ)/๐ธ๐ผ(๐‘ฅ), has

on the deflection at point ๐‘. The virtual moment function is explained in the virtual

Page 109: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

94

work section of most introductory structural engineering textbooks. For the midspan

deflection of a beam, the virtual moment function is:

๐‘š๐ฟ 2โ„ (๐‘ฅ) = ๐‘ฅ 2โ„ for ๐‘ฅ โ‰ค ๐ฟ 2โ„ and ๐‘š๐ฟ 2โ„ (๐‘ฅ) = (๐ฟ โˆ’ ๐‘ฅ) 2โ„ for ๐ฟ 2โ„ โ‰ค ๐‘ฅ โ‰ค ๐ฟ .

๐‘€(๐‘ฅ) represents the bending moment as a function of ๐‘ฅ (for the relevant load case).

The ๐‘€(๐‘ฅ) function is the typical structural design moment function determined from

statics and moment distribution.

The elastic modulus is denoted as ๐ธ. It is taken as a constant for almost all materials,

including concrete, so is considered a constant in this integration.

If there is any variation in stiffness, it is accounted for in the moment of inertia term,

๐ผ(๐‘ฅ). This variation in stiffness can come in the form of varying cross-section shape,

size, cracking, reinforcing, or similar. The ๐ผ(๐‘ฅ) term is simple for most materials; for

cracked concrete, however, it must be approximated by an effective local (section-

based) moment of inertia. A constant moment of inertia can often be used accurately for

reinforced concrete members and would not require use of the virtual work method.

The function ๐‘€(๐‘ฅ)/ ๐ธ ๐ผ(๐‘ฅ) indicates the curvature of the beam at each point, ๐‘ฅ, along

the beam. For a linear-elastic material there is a known moment curvature response; for

concrete there are assumed moment-curvature responses.

Page 110: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

95

Deflection for Simply Supported Member without Appendix C

Tension Stiffening

Razaqpur (Razaqpur et al. 2000, Razaqpur and Isgor 2003) developed equations and

simplifications for FRP-reinforced members. These are used in this report. His work

assumes no tension stiffening effect and no permanent deflection. As such, members

are assumed to follow the idealized moment-curvature relationship seen in Figure C-1:

Figure C-1 - Idealized Moment-Curvature for FRP-Reinforced Member

Razaqpurโ€™s method requires integration of curvature using virtual work or a similar

technique. The solutions by Razaqpur et al. (2000) are provided for simply supported

members in S806 (CSA 2012) and in the following table, Table C-1. In this table,

Razaqpurโ€™s equations are converted to the variable notation of this report. Razaqpurโ€™s

format for these equations requires loads, ๐‘ƒ or ๐‘ค, and length of the uncracked segments,

๐ฟ๐‘”. Rearranged equations, which are instead based on midspan moment, ๐‘€๐‘š, and the

cracking moment, ๐‘€๐‘๐‘Ÿ, are also provided in Table C-1. Cantilever cases are not

provided in this table. For continuous members, the relevant equations for the three

load cases used in this report are provided in Appendix G.

Page 111: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

96

Table C-1 - Deflection Equations for Idealized FRP-Reinforced Members

See List of Symbols for variables not defined in this appendix.

Page 112: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

97

Derivation of Bischoff's ๐œธ Factor for a Uniformly Appendix D

Distributed Load

The following is an independent check of the derivation of Bischoff's factor (Bischoff

and Gross 2011) for a uniformly distributed load. The method of virtual work is used,

as described in Appendix B, to determine the deflection of the member. Because the

member is symmetric about midspan, the derivation integrates the virtual work to

midspan and doubles this value.

To determine the virtual moment function, ๐‘š(๐‘ฅ), a unit load is applied at the point of

maximum deflection, which is midspan. The member midspan is located at ๐ฟ/2.

๐‘š(๐‘ฅ) =๐‘ฅ

2 ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ โ‰ค

๐ฟ

2

A simply supported member with uniformly distributed loading, ๐‘ค, has a bending

moment function, ๐‘€(๐‘ฅ), equal to:

๐‘€(๐‘ฅ) =๐‘ค๐‘ฅ๐ฟ โˆ’ ๐‘ค๐‘ฅ2

2

Deflection, โˆ†๐‘”, if the member were to remain uncracked, equals:

โˆ†๐‘”= 2โˆซ ๐‘š(๐‘ฅ) (๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘”)๐‘‘๐‘ฅ

๐ฟ2

0

= 2โˆซ ๐‘ฅ (๐‘ค๐‘ฅ๐ฟ โˆ’ ๐‘ค๐‘ฅ2

2๐ธ๐‘๐ผ๐‘”)๐‘‘๐‘ฅ

๐ฟ2

0

=5๐‘ค๐ฟ4

384๐ธ๐‘๐ผ๐‘๐‘Ÿ(๐ผ๐‘๐‘Ÿ๐ผ๐‘”)

Additional deflection from the cracked segments can be found from the change in

curvature, ๐›ฟ๐œ™, relative to the uncracked curvature, as defined by this generic equation:

๐›ฟ๐œ™ = ๐›ฟ๐‘€

๐ธ๐ผ=

๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ)โˆ’๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘”=๐œ‚๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘๐‘Ÿ[1 โˆ’ (

๐‘€๐‘๐‘Ÿ

๐‘€(๐‘ฅ))2

] ; ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐œ‚ = 1 โˆ’๐ผ๐‘๐‘Ÿ๐ผ๐‘”

Integrating the change in curvature over the length of the cracked region results in the

additional deflection from cracking, ๐›ฟฮ”๐‘๐‘Ÿ:

Page 113: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

98

๐›ฟฮ”๐‘๐‘Ÿ = 2โˆซ ๐‘š(๐‘ฅ)(๐›ฟ๐œ™)๐‘‘๐‘ฅ

๐ฟ2

๐ฟ๐‘๐‘Ÿ

= 2โˆซ๐‘ฅ

2(๐œ‚ (

๐‘ค๐‘ฅ๐ฟ โˆ’ ๐‘ค๐‘ฅ2

2 )

๐ธ๐‘๐ผ๐‘๐‘Ÿ[1 โˆ’ (

๐‘€๐‘๐‘Ÿ

(๐‘ค๐‘ฅ๐ฟ โˆ’ ๐‘ค๐‘ฅ2)/2)2

])๐‘‘๐‘ฅ

๐ฟ2

๐ฟ๐‘๐‘Ÿ

๐›ฟฮ”๐‘๐‘Ÿ =๐œ‚๐‘ค

2๐ธ๐‘๐ผ๐‘๐‘Ÿโˆซ ๐‘ฅ2

(

(๐ฟ โˆ’ ๐‘ฅ) [1 โˆ’ (๐‘€๐‘๐‘Ÿ

2

๐‘ค2๐‘ฅ2

4(๐ฟ โˆ’ ๐‘ฅ)2

)]

)

๐‘‘๐‘ฅ

๐ฟ2

๐ฟ๐‘๐‘Ÿ

๐›ฟฮ”๐‘๐‘Ÿ =๐œ‚๐‘ค

2๐ธ๐‘๐ผ๐‘๐‘Ÿโˆซ ๐ฟ๐‘ฅ2 โˆ’ ๐‘ฅ3 โˆ’

4๐‘ค2๐‘€๐‘๐‘Ÿ

2

๐ฟ โˆ’ ๐‘ฅ๐‘‘๐‘ฅ

๐ฟ2

๐ฟ๐‘๐‘Ÿ

๐›ฟฮ”๐‘๐‘Ÿ =๐œ‚๐‘ค

2๐ธ๐‘๐ผ๐‘๐‘Ÿ(๐ฟ๐‘ฅ3

3|๐ฟ๐‘๐‘Ÿ

๐ฟ2

โˆ’๐‘ฅ4

4|๐ฟ๐‘๐‘Ÿ

๐ฟ2

+4

๐‘ค2๐‘€๐‘๐‘Ÿ

2 ln(๐ฟ โˆ’ ๐‘ฅ)|๐ฟ๐‘๐‘Ÿ

๐ฟ2) ; let ๐ฟ๐‘๐‘Ÿ = ๐œ‰

๐ฟ

2

๐›ฟฮ”๐‘๐‘Ÿ =๐œ‚๐‘ค

2๐ธ๐‘๐ผ๐‘๐‘Ÿ(8๐ฟ4

192โˆ’8๐œ‰3๐ฟ4

192โˆ’3๐ฟ4

192+3๐œ‰4๐ฟ4

192+192

1924๐‘€๐‘๐‘Ÿ

2 ๐ฟ4

64๐‘€๐‘š2 ln (

๐ฟ โˆ’๐ฟ2

๐ฟ โˆ’ ๐œ‰๐ฟ2

))

๐›ฟฮ”๐‘๐‘Ÿ =5๐œ‚๐‘ค๐ฟ4

384๐ธ๐‘๐ผ๐‘๐‘Ÿ(1 +

3๐œ‰4

5โˆ’8๐œ‰3

5โˆ’12

5

๐‘€๐‘๐‘Ÿ2

๐‘€๐‘š2 ln(2 โˆ’ ๐œ‰))

These two values are summed to give the midspan deflection, ฮ”:

ฮ” = ฮ”๐‘” + ๐›ฟฮ”๐‘๐‘Ÿ

ฮ” =5๐‘ค๐ฟ4

384๐ธ๐‘๐ผ๐‘๐‘Ÿ(๐ผ๐‘๐‘Ÿ๐ผ๐‘”) +

5๐œ‚๐‘ค

384๐ธ๐‘๐ผ๐‘๐‘Ÿ(1 + 0.6๐œ‰4 โˆ’ 1.6๐œ‰3 โˆ’ 2.4

๐‘€๐‘๐‘Ÿ2

๐‘€๐‘š2 ln(2 โˆ’ ๐œ‰))

ฮ” =5๐‘ค๐ฟ4

384๐ธ๐‘๐ผ๐‘๐‘Ÿ[1 โˆ’ ๐œ‚

๐‘€๐‘๐‘Ÿ2

๐‘€๐‘š2 (

1.6๐œ‰3 โˆ’ 0.6๐œ‰4

๐‘€๐‘๐‘Ÿ2/๐‘€๐‘š

2 + 2.4 ln(2 โˆ’ ๐œ‰))]

Set ฮ” = 5๐‘ค๐ฟ4/384๐ธ๐‘๐ผ๐‘’โ€ฒ and solve for the effective moment of inertia, ๐ผ๐‘’

โ€ฒ :

๐ผ๐‘’โ€ฒ =

๐ผ๐‘๐‘Ÿ

1 โˆ’ ๐œ‚ (๐‘€๐‘๐‘Ÿ

๐‘€๐‘š)2 where =

1.6๐œ‰3 โˆ’ 0.6๐œ‰4

(๐‘€๐‘๐‘Ÿ

๐‘€๐‘š)2 + 2.4 ln(2 โˆ’ ๐œ‰)

Note: ๐‘€๐‘š =๐‘ค๐ฟ2

8 ; ๐œ‚ = 1 โˆ’

๐ผ๐‘๐‘Ÿ๐ผ๐‘” ; ๐œ‰ = 1 โˆ’ โˆš1 โˆ’๐‘€๐‘๐‘Ÿ/๐‘€๐‘š

Page 114: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

99

Analytical Integration for Midspan Deflection Appendix E

When mathematically possible, analytical integration can be used to generate exact-

result equations for deflection; this is referred to as analytical integration in this report.

Analytical integration can be used to find the deflection at any point on a cracked

concrete member if the local stiffness and bending moment along the member are

known. This appendix provides detail of the analytical integration setup and results for

midspan deflection; these results are used throughout this report. The results provide

the midspan deflection for the given load case, using only the bending moment function

provided, with no pre-loading effects. Figure E-1, Figure E-3, and Figure E-2 each

show examples for the bending moment function, the various moments of inertia, and

special lengths required for integration.

Figure E-1 - Lengths to Integration Segments for Example Midspan Point Load

Page 115: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

100

Figure E-2 - Lengths to Integration Segments for Example Equal Third-Point Loads

Figure E-3 - Lengths to Integration Segments for Example Uniform Load

Page 116: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

101

For cases as indicated Figure E-1 and Figure E-3, the total midspan deflection is:

๐›ฅ = ๐›ฅ1 + ๐›ฅ2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5 + ๐›ฅ6 where:

๐›ฅ1 = โˆซ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ)๐‘‘๐‘ฅ

๐ฟ

0

๐›ฅ2 = โˆซ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘”๐‘‘๐‘ฅ

๐ฟ

๐ฟ

๐›ฅ3 = โˆซ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ)๐‘‘๐‘ฅ

๐ฟ

๐ฟ

๐›ฅ4 = โˆซ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ)๐‘‘๐‘ฅ

๐ฟ

๐ฟ

๐›ฅ5 = โˆซ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘”๐‘‘๐‘ฅ

๐ฟ

๐ฟ

๐›ฅ6 = โˆซ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ)๐‘‘๐‘ฅ

๐ฟ

๐ฟ

The virtual work method used here, and its integration variables, are described in

Appendix B. The lengths ๐ฟ1 through ๐ฟ5 can be calculated as a ratio (based on total

moment and end-moments) of the member length, ๐ฟ.

As shown in Figure E-2, third-point loading is more complicated than the other two

situations. The cases with third-point loading requires more than six integration terms

because the integrating function also changes at ๐ฟ/3 and 2๐ฟ/3. These additional terms

are shown with the S806 (CSA 2012) method in Appendix G. A second complication is

that more variables would actually need to be added to account for situations where

midspan cracking begins or ends between the third-points. Because of this second

complication, the exact results for third-point loading were obtained using only

numerical integration for data provided in this report.

Bending Moment and Virtual Moment Equations

For all loads, the net midspan moment is:

๐‘€๐‘š =๐‘€๐ฟ

2+๐‘€๐‘…

2+๐‘€0

For all loads, virtual moment for midspan deflection is:

for 0 โ‰ค ๐‘ฅ โ‰ค๐ฟ

2 โˆถ ๐‘š(๐‘ฅ) =

๐‘ฅ

2

Page 117: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

102

for ๐ฟ

2โ‰ค ๐‘ฅ โ‰ค ๐ฟ โˆถ ๐‘š(๐‘ฅ) =

๐ฟ โˆ’ ๐‘ฅ

2

For single midspan point load:

for 0 โ‰ค ๐‘ฅ โ‰ค๐ฟ

2 โˆถ ๐‘€(๐‘ฅ) = ๐‘€๐ฟ + (2๐‘€0 โˆ’๐‘€๐ฟ +๐‘€๐‘…)

๐‘ฅ

๐ฟ

for ๐ฟ

2โ‰ค ๐‘ฅ โ‰ค ๐ฟ โˆถ ๐‘€(๐‘ฅ) = ๐‘€๐‘… + (2๐‘€0 โˆ’๐‘€๐‘… +๐‘€๐ฟ)

๐ฟ โˆ’ ๐‘ฅ

๐ฟ

For equal third-point loading:

for 0 โ‰ค ๐‘ฅ โ‰ค๐ฟ

3 โˆถ ๐‘€(๐‘ฅ) = ๐‘€๐ฟ + (3๐‘€0 โˆ’๐‘€๐ฟ +๐‘€๐‘…)

๐‘ฅ

๐ฟ

for ๐ฟ

3โ‰ค ๐‘ฅ โ‰ค

2๐ฟ

3 โˆถ ๐‘€(๐‘ฅ) = ๐‘€0 +๐‘€๐ฟ + (๐‘€๐‘… โˆ’๐‘€๐ฟ)

๐‘ฅ

๐ฟ

for 2๐ฟ

3โ‰ค ๐‘ฅ โ‰ค ๐ฟ โˆถ ๐‘€(๐‘ฅ) = 3๐‘€0 +๐‘€๐ฟ + (๐‘€๐‘… โˆ’๐‘€๐ฟ โˆ’ 3๐‘€0)

๐‘ฅ

๐ฟ

For a uniformly distributed load:

๐‘€(๐‘ฅ) = ๐‘€๐ฟ + (4๐‘€0 โˆ’๐‘€๐ฟ +๐‘€๐‘…)๐‘ฅ

๐ฟ โˆ’ 4๐‘€0

๐‘ฅ2

๐ฟ2

For all loads, this work uses the following local effective moment of inertia:

for โˆ’๐‘€๐‘๐‘Ÿ โ‰ค ๐‘€(๐‘ฅ) โ‰ค ๐‘€๐‘๐‘Ÿ โˆถ ๐ผ๐‘’(๐‘ฅ) = ๐ผ๐‘”

for โˆ’๐‘€๐‘๐‘Ÿ < ๐‘€(๐‘ฅ) or ๐‘€(๐‘ฅ) > ๐‘€๐‘๐‘Ÿ โˆถ ๐ผ๐‘’(๐‘ฅ) =๐ผ๐‘๐‘Ÿ

1 โˆ’ ๐œ‚ (๐‘€๐‘๐‘Ÿ

๐‘€(๐‘ฅ))2 where ๐œ‚ = 1 โˆ’

๐ผ๐‘๐‘Ÿ๐ผ๐‘”

Lengths to where the Function being Integrated Changes

Centered Point Load:

๐ฟ1 through ๐ฟ5 are the lengths to where the function being integrated changes for a

member with a centered point load, as per Figure E-1. For this case, these lengths can

be substituted neatly and are removed from the final deflection equations. The

equations for the end/total moment ratios are ๐›ผ๐ฟ = ๐‘€๐ฟ/๐‘€0 and ๐›ผ๐‘… = ๐‘€๐‘…/๐‘€0.

Page 118: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

103

๐ฟ1 =โˆ’๐›ผ๐ฟ๐‘€0 โˆ’๐‘€๐‘๐‘Ÿ

(2 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)๐‘€0๐ฟ ; ๐ฟ2 =

โˆ’๐›ผ๐ฟ๐‘€0 +๐‘€๐‘๐‘Ÿ

(2 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)๐‘€0๐ฟ ; ๐ฟ3 =

๐ฟ

2

๐ฟ4 = ๐ฟ +๐›ผ๐‘…๐‘€0 โˆ’๐‘€๐‘๐‘Ÿ

(2 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)๐‘€0๐ฟ ; ๐ฟ5 = ๐ฟ +

๐›ผ๐‘…๐‘€0 +๐‘€๐‘๐‘Ÿ

(2 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)๐‘€0๐ฟ

For equal third-point loading:

For the deflection of a member with equal point load at third-points, ๐ฟ1 through ๐ฟ5, per

Figure E-2, are simple ratios (based on total and end-moments) of the member length, ๐ฟ.

These simple ratios can also be substituted in neatly, so they can be removed from the

final equations. The equation for ๐ฟ2 is only valid when ๐‘€(๐‘ฅ = ๐ฟ 3โ„ ) > ๐‘€๐‘๐‘Ÿ and the

equation for ๐ฟ4 is only valid when ๐‘€(๐‘ฅ = 2๐ฟ 3โ„ ) > ๐‘€๐‘๐‘Ÿ. The equations for the

alternate situations for ๐ฟ2 and ๐ฟ4 are similar but are not provided.

๐ฟ1 =โˆ’๐‘€๐ฟ โˆ’๐‘€๐‘๐‘Ÿ

๐‘€๐‘… โˆ’๐‘€๐ฟ + 3๐‘€0๐ฟ ; ๐ฟ2 =

โˆ’๐‘€๐ฟ +๐‘€๐‘๐‘Ÿ

๐‘€๐‘… โˆ’๐‘€๐ฟ + 3๐‘€0๐ฟ ; ๐ฟ3 =

๐ฟ

2

๐ฟ4 =๐‘€๐ฟ โˆ’ 3๐‘€0 +๐‘€๐‘๐‘Ÿ

๐‘€๐‘… โˆ’๐‘€๐ฟ โˆ’ 3๐‘€0๐ฟ ; ๐ฟ5 =

๐‘€๐ฟ โˆ’ 3๐‘€0 โˆ’๐‘€๐‘๐‘Ÿ

๐‘€๐‘… โˆ’๐‘€๐ฟ โˆ’ 3๐‘€0๐ฟ

In this report, these lengths are used in Appendix G. The length to cracking if positive-

bending cracking begins (or ends) between the third-points is not difficult, but those

lengths are not used in this report.

For a uniformly distributed load:

The following are the equations for the lengths, ๐ฟ1 through ๐ฟ5 per Figure E-3, to where

the function being integrated changes for a member with a uniformly distributed load.

In this case, ๐ฟ1, ๐ฟ2, ๐ฟ4, and ๐ฟ5 are complicated expressions, so they remain in the final

equations. Again note that ๐ฟ3 = ๐ฟ/2, ๐›ผ๐ฟ = ๐‘€๐ฟ/๐‘€0, and ๐›ผ๐‘… = ๐‘€๐‘…/๐‘€0.

Page 119: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

104

๐ฟ1 = (4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘… โˆ’โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 + 16๐‘€๐‘๐‘Ÿ

๐‘€0+ 16๐›ผ๐ฟ)

๐ฟ

8

๐ฟ2 = (4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘… โˆ’โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 โˆ’ 16๐‘€๐‘๐‘Ÿ

๐‘€0+ 16๐›ผ๐ฟ)

๐ฟ

8

๐ฟ4 = (4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘… +โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 โˆ’ 16๐‘€๐‘๐‘Ÿ

๐‘€0+ 16๐›ผ๐ฟ)

๐ฟ

8

๐ฟ5 = (4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘… +โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 + 16๐‘€๐‘๐‘Ÿ

๐‘€0+ 16๐›ผ๐ฟ)

๐ฟ

8

Midspan Deflection of Midspan-Point Loaded Member with End-Moments

๐›ฅ1 =๐ฟ2 (๐›ผ๐ฟ

3๐‘€03 โˆ’ 3๐›ผ๐ฟ๐‘€๐‘๐‘Ÿ

2๐‘€0 + (6๐œ‚๐ฟ โˆ’ 2)๐‘€๐‘๐‘Ÿ3 + 6๐œ‚๐ฟ๐›ผ๐ฟ๐‘€๐‘๐‘Ÿ

2๐‘€0 [1 + ln (โˆ’๐‘€๐‘๐‘Ÿ

๐›ผ๐ฟ๐‘€0)])

12๐ธ๐‘๐ผ๐‘๐‘Ÿ ๐ฟ(2 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2๐‘€02

๐›ฅ2 =๐ฟ2๐‘€๐‘๐‘Ÿ

3

3๐ธ๐‘๐ผ๐‘”(2 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2๐‘€0

2

๐›ฅ3 =๐ฟ2

48๐ธ๐‘๐ผ๐‘๐‘Ÿ ๐‘š(๐›ผ๐ฟ โˆ’ ๐›ผ๐‘… โˆ’ 2)2๐‘€02 (12๐›ผ๐ฟ๐‘€๐‘๐‘Ÿ

2๐‘€0 + 24๐œ‚๐‘š๐‘€๐‘๐‘Ÿ3 โˆ’ 8๐‘€๐‘๐‘Ÿ

3

+๐‘€03(8 โˆ’ 2๐›ผ๐ฟ

3 โˆ’ 6๐›ผ๐ฟ2 โˆ’ 3๐›ผ๐ฟ

2๐›ผ๐‘… + 12๐›ผ๐‘… + 6๐›ผ๐‘…2 + ๐›ผ๐‘…

3)

โˆ’ 12๐œ‚๐‘š๐‘€๐‘๐‘Ÿ2๐‘€0 (๐›ผ๐‘… + 2 + ๐›ผ๐ฟ [1 + 2 ln (

2๐‘€๐‘๐‘Ÿ

๐‘€0(๐›ผ๐ฟ + ๐›ผ๐‘… + 2))]))

๐›ฅ4 =๐ฟ2

48๐ธ๐‘๐ผ๐‘๐‘Ÿ ๐‘š(๐›ผ๐‘… โˆ’ ๐›ผ๐ฟ โˆ’ 2)2๐‘€02 (12๐›ผ๐‘…๐‘€๐‘๐‘Ÿ

2๐‘€0 + 24๐œ‚๐‘š๐‘€๐‘๐‘Ÿ3 โˆ’ 8๐‘€๐‘๐‘Ÿ

3

+๐‘€03(8 โˆ’ 2๐›ผ๐‘…

3 โˆ’ 6๐›ผ๐‘…2 โˆ’ 3๐›ผ๐‘…

2๐›ผ๐ฟ + 12๐›ผ๐ฟ + 6๐›ผ๐ฟ2 + ๐›ผ๐ฟ

3)

โˆ’ 12๐œ‚๐‘š๐‘€๐‘๐‘Ÿ2๐‘€0 (๐›ผ๐ฟ + 2 + ๐›ผ๐‘… [1 + 2 ln (

2๐‘€๐‘๐‘Ÿ

๐‘€0(๐›ผ๐ฟ + ๐›ผ๐‘… + 2))]))

๐›ฅ5 =๐ฟ2๐‘€๐‘๐‘Ÿ

3

3๐ธ๐‘๐ผ๐‘”(2 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

๐›ฅ6 =๐ฟ2 (๐›ผ๐‘…

3๐‘€03 โˆ’ 3๐›ผ๐‘…๐‘€๐‘๐‘Ÿ

2๐‘€0 + (6๐œ‚๐‘… โˆ’ 2)๐‘€๐‘๐‘Ÿ3 + 6๐œ‚๐‘…๐›ผ๐‘…๐‘€๐‘๐‘Ÿ

2๐‘€0 [1 + ln (โˆ’๐‘€๐‘๐‘Ÿ

๐›ผ๐‘…๐‘€0)])

12๐ธ๐‘๐ผ๐‘๐‘Ÿ ๐‘…(2 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

Page 120: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

105

When the left end moment < ๐‘€๐‘๐‘Ÿ:

๐›ฅ1&2 =๐ฟ2(2๐‘€๐‘๐‘Ÿ

3 โˆ’ 3๐›ผ๐ฟ๐‘€๐‘๐‘Ÿ2๐‘€0 + ๐›ผ๐ฟ

3๐‘€03)

12๐ธ๐‘๐ผ๐‘”(2 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2๐‘€02

When the right end moment < ๐‘€๐‘๐‘Ÿ:

๐›ฅ5&6 =๐ฟ2(2๐‘€๐‘๐‘Ÿ

3 โˆ’ 3๐›ผ๐‘…๐‘€๐‘๐‘Ÿ2๐‘€0 + ๐›ผ๐‘…

3๐‘€03)

12๐ธ๐‘๐ผ๐‘”(2 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

Total midspan deflection (note these results are only valid if ๐‘€๐‘š > ๐‘€๐‘๐‘Ÿ):

๐›ฅ = ๐›ฅ1 + ๐›ฅ2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5 + ๐›ฅ6 (If both ends and midspan are cracked)

๐›ฅ = ๐›ฅ1&2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5&6 (If only midspan is cracked)

๐›ฅ = ๐›ฅ1&2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5 + ๐›ฅ6 (If only right end and midspan are cracked)

๐›ฅ = ๐›ฅ1 + ๐›ฅ2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5&6 (If only left end and midspan are cracked)

Midspan Deflection of Third-Point Loaded Member with End-Moments

The equations for midspan deflection of equal third-point loading are not provided as

part of this report. While solutions with the added complication are practicable, this

complication does not affect numerical integration, so the numerical solution was used

exclusively for third-point loading throughout this report.

Midspan Deflection of Member with Uniform Load and End-Moments

For a uniformly distributed load, the lengths from the right end of the beam to the end of

negative cracking and to the beginning of positive cracking are more convenient than

using ๐ฟ4 and ๐ฟ5, as provided previously in this appendix. Therefore use:

๐ฟ๐‘…4 = ๐ฟ โˆ’ ๐ฟ4 ; ๐ฟ๐‘…5 = ๐ฟ โˆ’ ๐ฟ5

Then, similar to the centered point load case, define:

Page 121: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

106

๐›ฅ1 = (๐‘€0๐ฟ

2

48๐ธ๐‘๐ผ๐‘๐‘Ÿ๐ฟ)

(

3๐‘›๐ฟ (

๐‘€๐‘๐‘Ÿ

๐‘€0)2

ln (๐›ผ๐ฟ๐ฟ

2 โˆ’ 4๐ฟ12 + 4๐ฟ1๐ฟ โˆ’ ๐›ผ๐ฟ๐ฟ1๐ฟ + ๐›ผ๐‘…๐ฟ1๐ฟ

๐›ผ๐ฟ๐ฟ2)

+1

๐ฟ4(12๐›ผ๐ฟ๐ฟ1

2๐ฟ2 + 32๐ฟ13๐ฟ โˆ’ 24๐ฟ1

4 โˆ’ 8๐›ผ๐ฟ๐ฟ13๐ฟ + 8๐›ผ๐‘…๐ฟ1

3๐ฟ)

+3๐‘›๐ฟ(๐›ผ๐ฟ โˆ’ 4 โˆ’ ๐›ผ๐‘…)

โˆš(4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ)2 + 16๐›ผ๐‘…(๐‘€๐‘๐‘Ÿ

๐‘€0)2

โˆ— ln

(

โˆš(4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ)2 + 16๐›ผ๐‘… โˆ’ (โˆ’4 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)

โˆš(4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ)2 + 16๐›ผ๐‘… + (โˆ’4 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)

โˆš(4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ)2 + 16๐›ผ๐‘… โˆ’ (๐›ผ๐ฟ โˆ’ 4 + 8๐ฟ1 ๐ฟโ„ โˆ’ ๐›ผ๐‘…)

โˆš(4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ)2 + 16๐›ผ๐‘… + (๐›ผ๐ฟ โˆ’ 4 + 8๐ฟ1 ๐ฟโ„ โˆ’ ๐›ผ๐‘…))

)

๐›ฅ2 = ๐‘€0๐ฟ

2

2๐ธ๐‘๐ผ๐‘”((4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…) (

๐ฟ23 โˆ’ ๐ฟ1

3

3๐ฟ3) + ๐›ผ๐ฟ (

๐ฟ22 โˆ’ ๐ฟ1

2

2๐ฟ2) โˆ’ (

๐ฟ24 โˆ’ ๐ฟ1

4

๐ฟ4))

๐›ฅ3 = (๐‘€0๐ฟ

2

96๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘š)

(

6๐œ‚๐‘š (

๐‘€๐‘๐‘Ÿ

๐‘€0)2

ln ((โˆ’๐›ผ๐ฟ โˆ’ 2 โˆ’ ๐›ผ๐‘…)๐ฟ

2

2 (โˆ’๐›ผ๐ฟ๐ฟ2 + 4๐ฟ22 + ๐ฟ2๐ฟ(๐›ผ๐ฟ โˆ’ 4 โˆ’ ๐›ผ๐‘…))

)

+1

๐ฟ4(โˆ’24๐›ผ๐ฟ๐ฟ2

2๐ฟ2 + 16๐›ผ๐ฟ๐ฟ23๐ฟ + 48๐ฟ2

4 โˆ’ 64๐ฟ23๐ฟ โˆ’ 16๐›ผ๐‘…๐ฟ2

3๐ฟ

+ 5๐ฟ4 + 2๐›ผ๐‘…๐ฟ4 + 4๐›ผ๐ฟ๐ฟ

4) +6๐‘›๐‘š(๐›ผ๐ฟ โˆ’ 4 โˆ’ ๐›ผ๐‘…)

โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 + 16๐›ผ๐ฟ(๐‘€๐‘๐‘Ÿ

๐‘€0)2

โˆ— ln

(

โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 + 16๐›ผ๐ฟ โˆ’ (๐›ผ๐ฟ โˆ’ 4 + 8๐ฟ2 ๐ฟโ„ โˆ’ ๐›ผ๐‘…)

โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 + 16๐›ผ๐ฟ + (๐›ผ๐ฟ โˆ’ 4 + 8๐ฟ2 ๐ฟโ„ โˆ’ ๐›ผ๐‘…)

โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 + 16๐›ผ๐ฟ โˆ’ (๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)

โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 + 16๐›ผ๐ฟ + (๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…) )

)

Page 122: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

107

๐›ฅ4 = (๐‘€0๐ฟ

2

96๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘š)

(

6๐œ‚๐‘š (

๐‘€๐‘๐‘Ÿ

๐‘€0)2

ln ((โˆ’๐›ผ๐‘… โˆ’ 2 โˆ’ ๐›ผ๐ฟ)๐ฟ

2

2(โˆ’๐›ผ๐‘…๐ฟ2 + 4๐ฟ๐‘…42 + ๐ฟ๐‘…4๐ฟ(๐›ผ๐‘… โˆ’ 4 โˆ’ ๐›ผ๐ฟ))

)

+1

๐ฟ4(โˆ’24๐›ผ๐‘…๐ฟ๐‘…4

2 ๐ฟ2 + 16๐›ผ๐‘…๐ฟ๐‘…43 ๐ฟ + 48๐ฟ๐‘…4

4 โˆ’ 64๐ฟ๐‘…43 ๐ฟ โˆ’ 16๐›ผ๐ฟ๐ฟ๐‘…4

3 ๐ฟ

+ 5๐ฟ4 + 2๐›ผ๐ฟ๐ฟ4 + 4๐›ผ๐‘…๐ฟ

4) +6๐‘›๐‘š(๐›ผ๐‘… โˆ’ 4 โˆ’ ๐›ผ๐ฟ)

โˆš(4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ)2 + 16๐›ผ๐‘…(๐‘€๐‘๐‘Ÿ

๐‘€0)2

โˆ— ln

(

โˆš(4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ)2 + 16๐›ผ๐‘… โˆ’ (๐›ผ๐‘… โˆ’ 4 + 8๐ฟ๐‘…4 ๐ฟโ„ โˆ’ ๐›ผ๐ฟ)

โˆš(4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ)2 + 16๐›ผ๐‘… + (๐›ผ๐‘… โˆ’ 4 + 8๐ฟ๐‘…4 ๐ฟโ„ โˆ’ ๐›ผ๐ฟ)

โˆš(4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ)2 + 16๐›ผ๐‘… โˆ’ (๐›ผ๐‘… โˆ’ ๐›ผ๐ฟ)

โˆš(4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ)2 + 16๐›ผ๐‘… + (๐›ผ๐‘… โˆ’ ๐›ผ๐ฟ) )

)

๐›ฅ5 = ๐‘€0๐ฟ

2

2๐ธ๐‘๐ผ๐‘”((4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ) (

๐ฟ๐‘…43 โˆ’ ๐ฟ๐‘…5

3

3๐ฟ3) + ๐›ผ๐‘… (

๐ฟ๐‘…42 โˆ’ ๐ฟ๐‘…5

2

2๐ฟ2) โˆ’ (

๐ฟ๐‘…44 โˆ’ ๐ฟ๐‘…5

4

๐ฟ4))

๐›ฅ6 = (๐‘€0๐ฟ

2

48๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘…)

(

1

๐ฟ4(12๐›ผ๐‘…๐ฟ๐‘…5

2 ๐ฟ2 + 32๐ฟ๐‘…53 ๐ฟ โˆ’ 24๐ฟ๐‘…5

4 โˆ’ 8๐›ผ๐‘…๐ฟ๐‘…53 ๐ฟ + 8๐›ผ๐ฟ๐ฟ๐‘…5

3 ๐ฟ)

+ 3๐‘›๐‘… (๐‘€๐‘๐‘Ÿ

๐‘€0)2

ln (๐›ผ๐‘…๐ฟ

2 โˆ’ 4๐ฟ๐‘…52 + 4๐ฟ๐‘…5๐ฟ โˆ’ ๐›ผ๐‘…๐ฟ๐‘…5๐ฟ + ๐›ผ๐ฟ๐ฟ๐‘…5๐ฟ

๐›ผ๐‘…๐ฟ2)

+3๐‘›๐‘…(๐›ผ๐‘… โˆ’ 4 โˆ’ ๐›ผ๐ฟ)

โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 + 16๐›ผ๐ฟ(๐‘€๐‘๐‘Ÿ

๐‘€0)2

โˆ— ln

(

โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 + 16๐›ผ๐ฟ โˆ’ (โˆ’4 + ๐›ผ๐‘… โˆ’ ๐›ผ๐ฟ)

โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 + 16๐›ผ๐ฟ + (โˆ’4 + ๐›ผ๐‘… โˆ’ ๐›ผ๐ฟ)

โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 + 16๐›ผ๐ฟ โˆ’ (๐›ผ๐‘… โˆ’ 4 + 8๐ฟ๐‘…5 ๐ฟโ„ โˆ’ ๐›ผ๐ฟ)

โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 + 16๐›ผ๐ฟ + (๐›ผ๐‘… โˆ’ 4 + 8๐ฟ๐‘…5 ๐ฟโ„ โˆ’ ๐›ผ๐ฟ))

)

Page 123: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

108

When the left end moment < ๐‘€๐‘๐‘Ÿ โˆถ

๐›ฅ1&2 =๐‘€0๐ฟ

2

2๐ธ๐‘๐ผ๐‘”((4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)๐ฟ2

3

3๐ฟ3 โˆ’

๐ฟ24

๐ฟ4+๐›ผ๐ฟ๐ฟ2

2

2๐ฟ2)

When the right end moment < ๐‘€๐‘๐‘Ÿ โˆถ

๐›ฅ5&6 =๐‘€0๐ฟ

2

2๐ธ๐‘๐ผ๐‘”((4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ)๐ฟ๐‘…4

3

3๐ฟ3 โˆ’

๐ฟ๐‘…44

๐ฟ4+๐›ผ๐‘…๐ฟ๐‘…4

2

2๐ฟ2)

Total midspan deflection (note these results are only valid if ๐‘€๐‘š > ๐‘€๐‘๐‘Ÿ):

๐›ฅ = ๐›ฅ1 + ๐›ฅ2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5 + ๐›ฅ6 (If both ends and midspan are cracked)

๐›ฅ = ๐›ฅ1&2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5&6 (If only midspan is cracked)

๐›ฅ = ๐›ฅ1&2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5 + ๐›ฅ6 (If only right end and midspan are cracked)

๐›ฅ = ๐›ฅ1 + ๐›ฅ2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5&6 (If only left end and midspan are cracked)

Page 124: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

109

Analytical Results Simplified for Fixed-Fixed Midspan Appendix F

Point Load

This appendix provides an example of simplifying the equations provided in Appendix

E for the midspan deflection of a midspan point-loaded member. This prismatic

member example is assumed to be: fixed-fixed such that ๐‘€๐‘š = โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘…, cracked

(๐‘€๐‘š > ๐‘€๐‘๐‘Ÿ), not previously loaded, reinforced with equal top and bottom reinforcing,

and far more simplifiable than typical.

Equations: ๐‘€0 = 2๐‘€๐‘š ; ๐œ‚ = ๐œ‚๐ฟ = ๐œ‚๐‘… = 1 โˆ’ ๐ผ๐‘๐‘Ÿ/๐ผ๐‘” ; ๐ผ๐‘๐‘Ÿ = ๐ผ๐‘๐‘Ÿ ๐ฟ = ๐ผ๐‘๐‘Ÿ ๐‘š = ๐ผ๐‘๐‘Ÿ ๐‘…

๐œ‰1 = 1 + ln(2๐‘€๐‘๐‘Ÿ

๐‘€0) ; ๐œ‰2 = 1 โˆ’ ln (

2๐‘€๐‘๐‘Ÿ

๐‘€0) ; ๐œ‰1 + ๐œ‰2 = 2

๐›ฅ1 = ๐›ฅ6 =โˆ’๐‘€0

8

3

+ 3๐‘€0

2 ๐‘€๐‘๐‘Ÿ

2

+ 6๐œ‚๐‘€๐‘๐‘Ÿ3 โˆ’ 2๐‘€๐‘๐‘Ÿ

3 โˆ’ 6๐œ‚๐‘€0

2 ๐‘€๐‘๐‘Ÿ2๐œ‰

1

48๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘€02/๐ฟ2

๐›ฅ2 = ๐›ฅ5 =๐ฟ2๐‘€๐‘๐‘Ÿ

3

12๐ธ๐‘๐ผ๐‘”๐‘€02

๐›ฅ3 = ๐›ฅ4 =โˆ’6๐‘€๐‘๐‘Ÿ

2๐‘€0 โˆ’ 18๐œ‚๐‘€๐‘๐‘Ÿ2๐‘€0 + 24๐œ‚๐‘€๐‘๐‘Ÿ

3 โˆ’ 8๐‘€๐‘๐‘Ÿ3 +

52๐‘€0

3 โˆ’ 12๐œ‚๐‘€๐‘๐‘Ÿ2๐‘€0๐œ‰2

192๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘€02/๐ฟ2

๐›ฅ =16๐ฟ2๐‘€๐‘๐‘Ÿ

3

96๐ธ๐‘๐ผ๐‘”๐‘€02

+๐ฟ2

96๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘€02 (โˆ’

๐‘€0

2

3

+ 6๐‘€๐‘๐‘Ÿ2๐‘€0 + 24๐œ‚๐‘€๐‘๐‘Ÿ

3 โˆ’ 8๐‘€๐‘๐‘Ÿ3

โˆ’ 12๐œ‚๐‘€๐‘๐‘Ÿ2๐‘€0๐œ‰1)

+๐ฟ2

96๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘€02 (5

2๐‘€0

3 โˆ’ 6๐‘€๐‘๐‘Ÿ2๐‘€0 โˆ’ 12๐œ‚๐‘€๐‘๐‘Ÿ

2๐‘€0๐œ‰2 + 24๐œ‚๐‘€๐‘๐‘Ÿ3

โˆ’ 8๐‘€๐‘๐‘Ÿ3)

๐›ฅ =๐ฟ2

96๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘€02 (2๐‘€0

3 โˆ’ 24๐œ‚๐‘€๐‘๐‘Ÿ2๐‘€0 + 48๐œ‚๐‘€๐‘๐‘Ÿ

3 โˆ’ 16๐‘€๐‘๐‘Ÿ3) +

16๐ฟ2๐‘€๐‘๐‘Ÿ3

96๐ธ๐‘๐ผ๐‘”๐‘€02

Page 125: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

110

๐›ฅ =๐ฟ2(2๐‘€0

3 โˆ’ 24๐œ‚๐‘€๐‘๐‘Ÿ2๐‘€0)

96๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘€02 +

16๐ฟ2๐‘€๐‘๐‘Ÿ3

96๐ธ๐‘๐‘€02 (

3๐œ‚ โˆ’ 1

๐ผ๐‘๐‘Ÿ+1

๐ผ๐‘”)

๐›ฅ =(๐‘€0

3 โˆ’ 12๐œ‚๐‘€๐‘๐‘Ÿ2๐‘€0 + 16๐œ‚๐‘€๐‘๐‘Ÿ

3)๐ฟ2

48๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘€02

Interestingly, this case simplifies to using a identical to the simply supported solution:

๐›ฅ = ๐พ๐‘€๐‘š๐ฟ

2

12๐ธ๐‘๐ผ๐‘’โ€ฒ where ๐พ =

1

2 ; ๐ผ๐‘’

โ€ฒ =๐ผ๐‘๐‘Ÿ

(1 โˆ’ ๐œ‚(๐‘€๐‘๐‘Ÿ ๐‘€๐‘šโ„ )2) ; = 3 โˆ’ 2

๐‘€๐‘๐‘Ÿ

๐‘€๐‘š

Page 126: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

111

Integration using CSA S806 / Razaqpurโ€™s Method Appendix G

The S806 (CSA 2012) method was intended only for FRP reinforced concrete members,

but it is used in this report to demonstrate the effect of tension stiffening on both steel

and FRP reinforced members. The method is explained and some equations for

deflection of continuous members, neglecting tension stiffening, are provided in this

appendix.

The S806 method does not account for tension stiffening in the cracked region of the

member; thus, ๐ผ๐‘๐‘Ÿ is used when the moment exceeds ๐‘€๐‘๐‘Ÿ. This is equivalent to

providing a tension stiffening factor of ๐›ฝ = 0; this is drastically different than

๐›ฝ = ๐‘€๐‘๐‘Ÿ/๐‘€(๐‘ฅ) as provided by Bischoff and Gross (2011). This assumption is

reasonable when ๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ > 3 and is overly conservative otherwise. Razaqpur et al.

(2000) provide simplified results for simply supported members using the S806 method.

Razaqpur and Isgor (2003) also provide simplified equations for three typical

continuous members. Razaqpurโ€™s work includes other simplifying assumptions that are

not used in this report.

The equations which follow in this appendix (referred to in this report as the S806

integration method) are derived by integrating curvature, while ignoring tension

stiffening, to provide deflection equations for the cases indicated. Derivation and use of

the S806 method are similar to Bischoffโ€™s method (Bischoff and Gross 2011). Using

virtual work, the deflection is found by using the same steps as described in Appendix

E, except the moment of inertia at a crack, ๐ผ๐‘๐‘Ÿ, is used for the full cracked segments of

Page 127: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

112

the member. In this appendix, ๐‘€(๐‘ฅ) is as defined in Appendix E and the virtual load

function, ๐‘š(๐‘ฅ), is again defined to provide midspan deflection.

For certain continuous member cases, such as most cases with equal end-moments,

equations resulting from using the S806 method can be simplified. Razaqpur also

recommends simplifying equations by removing some portions of the calculation which

approximately cancel each other out. Razaqpur also assumes that the reinforcing bar

area for the end-moment and the midspan moment are equal. The differences caused by

these simplifying assumptions are typically much less significant than ignoring tension

stiffening.

S806 method for centered point load:

Figure G-1 - Lengths to Integration Segments for Example Centered Point Load

Page 128: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

113

Results using the S806 method for a continuous member with a centered point load

follow. Appendix E provides equations for ๐ฟ1, ๐ฟ2, ๐ฟ4, and ๐ฟ5 with this loading.

๐›ฅ1 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘๐‘Ÿ๐ฟ๐‘‘๐‘ฅ

๐ฟ

0

=๐ฟ2(๐›ผ๐ฟ

3๐‘€03 โˆ’ 3๐›ผ๐ฟ๐‘€๐‘๐‘Ÿ

2๐‘€0 โˆ’ 2๐‘€๐‘๐‘Ÿ3)

12๐ธ๐‘๐ผ๐‘๐‘Ÿ๐ฟ(2 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2๐‘€02

๐›ฅ2 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘”๐‘‘๐‘ฅ

๐ฟ

๐ฟ

=๐ฟ2๐‘€๐‘๐‘Ÿ

3

3๐ธ๐‘๐ผ๐‘”(2 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2๐‘€02

๐›ฅ3 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘๐‘Ÿ๐‘š๐‘‘๐‘ฅ

๐ฟ2

๐ฟ

=๐ฟ2 (12๐›ผ๐ฟ๐‘€๐‘๐‘Ÿ

2๐‘€0 โˆ’ 8๐‘€๐‘๐‘Ÿ3 +๐‘€0

3(8 โˆ’ 2๐›ผ๐ฟ3 โˆ’ 6๐›ผ๐ฟ

2 โˆ’ 3๐›ผ๐ฟ2๐›ผ๐‘… + 12๐›ผ๐‘… + 6๐›ผ๐‘…

2 + ๐›ผ๐‘…3))

48๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘š(2 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2๐‘€02

๐›ฅ4 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘๐‘Ÿ๐‘š๐‘‘๐‘ฅ

๐ฟ

๐ฟ2

=๐ฟ2 (12๐›ผ๐‘…๐‘€๐‘๐‘Ÿ

2๐‘€0 โˆ’ 8๐‘€๐‘๐‘Ÿ3 +๐‘€0

3(8 โˆ’ 2๐›ผ๐‘…3 โˆ’ 6๐›ผ๐‘…

2 โˆ’ 3๐›ผ๐‘…2๐›ผ๐ฟ + 12๐›ผ๐ฟ + 6๐›ผ๐ฟ

2 + ๐›ผ๐ฟ3))

48๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘š(2 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

๐›ฅ5 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘”๐‘‘๐‘ฅ

๐ฟ

๐ฟ

=๐ฟ2๐‘€๐‘๐‘Ÿ

3

3๐ธ๐‘๐ผ๐‘”(2 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

๐›ฅ6 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘๐‘Ÿ๐‘…๐‘‘๐‘ฅ

๐ฟ

๐ฟ

=๐ฟ2(๐›ผ๐‘…

3๐‘€03 โˆ’ 3๐›ผ๐‘…๐‘€๐‘๐‘Ÿ

2๐‘€0 โˆ’ 2๐‘€๐‘๐‘Ÿ3)

12๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘…(2 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

๐›ฅ1&2 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘”๐‘‘๐‘ฅ

๐ฟ

0

=๐ฟ2(๐›ผ๐ฟ

3๐‘€03 โˆ’ 3๐›ผ๐ฟ๐‘€๐‘๐‘Ÿ

2๐‘€0 + 2๐‘€๐‘๐‘Ÿ3)

12๐ธ๐‘๐ผ๐‘”(2 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2๐‘€02

๐›ฅ5&6 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘”๐‘‘๐‘ฅ

๐ฟ

๐ฟ

=๐ฟ2(๐›ผ๐‘…

3๐‘€03 โˆ’ 3๐›ผ๐‘…๐‘€๐‘๐‘Ÿ

2๐‘€0 + 2๐‘€๐‘๐‘Ÿ3)

12๐ธ๐‘๐ผ๐‘”(2 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

Total midspan deflection:

๐›ฅ = ๐›ฅ1 + ๐›ฅ2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5 + ๐›ฅ6 (If both ends and midspan are cracked)

๐›ฅ = ๐›ฅ1&2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5&6 (If only midspan is cracked)

๐›ฅ = ๐›ฅ1&2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5 + ๐›ฅ6 (If only right end and midspan are cracked)

๐›ฅ = ๐›ฅ1 + ๐›ฅ2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5&6 (If only left end and midspan are cracked)

Page 129: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

114

S806 method for equal third-point loading:

Figure L.2 โ€“ Lengths to Integration Segments for Example Third-Point Loads

Results using the S806 method for an equal third-point loaded continuous member

follow. Appendix E provides equations for ๐ฟ1, ๐ฟ2, ๐ฟ4, and ๐ฟ5 with this loading.

๐›ฅ1 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘๐‘Ÿ๐ฟ๐‘‘๐‘ฅ

๐ฟ

0

=๐ฟ2(๐›ผ๐ฟ

3๐‘€03 โˆ’ 3๐›ผ๐ฟ๐‘€๐‘๐‘Ÿ

2๐‘€0 โˆ’ 2๐‘€๐‘๐‘Ÿ3)

12๐ธ๐‘๐ผ๐‘๐‘Ÿ๐ฟ(32 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2๐‘€02

๐›ฅ2 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘”๐‘‘๐‘ฅ

๐ฟ

๐ฟ

=๐ฟ2๐‘€๐‘๐‘Ÿ

3

3๐ธ๐‘๐ผ๐‘”(3 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2๐‘€02

Page 130: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

115

๐›ฅ3๐ด = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘๐‘Ÿ๐‘š๐‘‘๐‘ฅ

๐ฟ3

๐ฟ

=๐ฟ2(81๐›ผ๐ฟ๐‘€๐‘๐‘Ÿ

2๐‘€0 โˆ’ 54๐‘€๐‘๐‘Ÿ3)

324๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘š(3 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2๐‘€02

+๐ฟ2๐‘€0

3(54 โˆ’ 36๐›ผ๐ฟ2 โˆ’ 20๐›ผ๐ฟ

3 โˆ’ 12๐›ผ๐ฟ2๐›ผ๐‘… + 18๐›ผ๐ฟ๐›ผ๐‘… + 3๐›ผ๐ฟ๐›ผ๐‘…

2)

324๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘š(3 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2๐‘€02

+๐ฟ2๐‘€0

3(27๐›ผ๐ฟ โˆ’ 54๐›ผ๐‘… + 18๐›ผ๐‘…2 + 2๐›ผ๐‘…

3)

324๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘š(3 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2๐‘€0

2

๐›ฅ3๐ต = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘๐‘Ÿ๐‘š๐‘‘๐‘ฅ

๐ฟ2

๐ฟ3

=๐ฟ2๐‘€0(26๐›ผ๐ฟ + 19๐›ผ๐‘… + 45)

1296๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘š

๐›ฅ3๐ถ = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘๐‘Ÿ๐‘š๐‘‘๐‘ฅ

2๐ฟ3

๐ฟ2

=๐ฟ2๐‘€0(19๐›ผ๐ฟ + 26๐›ผ๐‘… + 45)

1296๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘š

๐›ฅ3๐ท = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘๐‘Ÿ๐‘š๐‘‘๐‘ฅ

๐ฟ

2๐ฟ3

=๐ฟ2(324๐›ผ๐ฟ๐‘€๐‘๐‘Ÿ(๐›ผ๐‘… โˆ’ 2๐›ผ๐ฟ)๐‘€0

2 + 81(๐›ผ๐‘… โˆ’ 4๐›ผ๐ฟ)๐‘€๐‘๐‘Ÿ2๐‘€0 โˆ’ 54๐‘€๐‘๐‘Ÿ

3)

324๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘š(3 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

+๐ฟ2๐‘€0

3(54 + 18๐›ผ๐ฟ2 โˆ’ 430๐›ผ๐ฟ

3 + 327๐›ผ๐ฟ2๐›ผ๐‘… + 18๐›ผ๐ฟ๐›ผ๐‘… โˆ’ 12๐›ผ๐ฟ๐›ผ๐‘…

2)

324๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘š(3 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

+๐ฟ2๐‘€0

3(54๐›ผ๐ฟ + 27๐›ผ๐‘… โˆ’ 36๐›ผ๐‘…2 โˆ’ 20๐›ผ๐‘…

3)

324๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘š(3 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

๐›ฅ5 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘”๐‘‘๐‘ฅ

๐ฟ

๐ฟ

=๐ฟ2(12๐›ผ๐ฟ๐‘€0

2 +๐‘€๐‘๐‘Ÿ2 โˆ’ 6๐›ผ๐ฟ๐›ผ๐‘…๐‘€0

2)๐‘€๐‘๐‘Ÿ

3๐ธ๐‘๐ผ๐‘”(3 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

Page 131: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

116

๐›ฅ6 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘๐‘Ÿ๐‘…๐‘‘๐‘ฅ

๐ฟ

๐ฟ

=๐ฟ2 ((16๐›ผ๐ฟ

3 โˆ’ 12๐›ผ๐ฟ2๐›ผ๐‘… + ๐›ผ๐‘…

3)๐‘€03 โˆ’ 3(๐›ผ๐‘… โˆ’ 4๐›ผ๐ฟ)๐‘€๐‘๐‘Ÿ

2๐‘€0)

12๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘…(3 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

+๐ฟ2(12(๐›ผ๐ฟ๐›ผ๐‘… โˆ’ 2๐›ผ๐ฟ

2)๐‘€02๐‘€๐‘๐‘Ÿ โˆ’ 2๐‘€๐‘๐‘Ÿ

3)

12๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘…(3 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

๐›ฅ1&2 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘”๐‘‘๐‘ฅ

๐ฟ

0

=๐ฟ2(๐›ผ๐ฟ

3๐‘€03 โˆ’ 3๐›ผ๐ฟ๐‘€๐‘๐‘Ÿ

2๐‘€0 + 2๐‘€๐‘๐‘Ÿ3)

12๐ธ๐‘๐ผ๐‘”(3 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2๐‘€0

2

๐›ฅ5&6 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘”๐‘‘๐‘ฅ

๐ฟ

๐ฟ

=๐ฟ2 ((16๐›ผ๐ฟ

3 โˆ’ 12๐›ผ๐ฟ2๐›ผ๐‘… + ๐›ผ๐‘…

3)๐‘€03 โˆ’ 3(๐›ผ๐‘… โˆ’ 4๐›ผ๐ฟ)๐‘€๐‘๐‘Ÿ

2๐‘€0)

12๐ธ๐‘๐ผ๐‘”(3 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

+๐ฟ2(12(2๐›ผ๐ฟ

2 โˆ’ ๐›ผ๐ฟ๐›ผ๐‘…)๐‘€02๐‘€๐‘๐‘Ÿ + 2๐‘€๐‘๐‘Ÿ

3)

12๐ธ๐‘๐ผ๐‘”(3 + ๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2๐‘€02

Total midspan deflection:

Note these results are only valid if ๐‘€(๐ฟ 3โ„ ) > ๐‘€๐‘๐‘Ÿ and ๐‘€(2๐ฟ 3โ„ ) > ๐‘€๐‘๐‘Ÿ.

If both ends and midspan are cracked:

๐›ฅ = ๐›ฅ1 + ๐›ฅ2 + ๐›ฅ3๐ด + ๐›ฅ3๐ต + ๐›ฅ3๐ถ + ๐›ฅ3๐ท + ๐›ฅ5 + ๐›ฅ6

If only midspan is cracked:

๐›ฅ = ๐›ฅ1&2 + ๐›ฅ3๐ด + ๐›ฅ3๐ต + ๐›ฅ3๐ถ + ๐›ฅ3๐ท + ๐›ฅ5&6

If only right end and midspan are cracked:

๐›ฅ = ๐›ฅ1&2 + ๐›ฅ3๐ด + ๐›ฅ3๐ต + ๐›ฅ3๐ถ + ๐›ฅ3๐ท + ๐›ฅ5 + ๐›ฅ6

If only left end and midspan are cracked:

๐›ฅ = ๐›ฅ1 + ๐›ฅ2 + ๐›ฅ3๐ด + ๐›ฅ3๐ต + ๐›ฅ3๐ถ + ๐›ฅ3๐ท + ๐›ฅ5&6

Page 132: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

117

S806 method for a uniformly distributed load:

Figure L.3 โ€“ Lengths to Integration Segments for Example Uniform Load

Results using the S806 method for a continuous member with a uniformly distributed

load follow. Appendix E provides equations for ๐ฟ1, ๐ฟ2, ๐ฟ4, and ๐ฟ5 with this loading.

๐ฟ3 = ๐ฟ 2โ„ ; ๐ฟ๐‘…4 = ๐ฟ โˆ’ ๐ฟ4 ; ๐ฟ๐‘…5 = ๐ฟ โˆ’ ๐ฟ5.

๐›ฅ1 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘๐‘Ÿ๐ฟ๐‘‘๐‘ฅ

๐ฟ

0

=๐‘€0๐ฟ

2

2๐ธ๐‘๐ผ๐‘๐‘Ÿ๐ฟ((4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)๐ฟ1

3

3๐ฟ3 โˆ’

๐ฟ14

๐ฟ4+๐›ผ๐ฟ๐ฟ1

2

2๐ฟ2)

Page 133: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

118

๐›ฅ2 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘”๐‘‘๐‘ฅ

๐ฟ

๐ฟ

=๐‘€0๐ฟ

2

2๐ธ๐‘๐ผ๐‘”((4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…) (

๐ฟ23 โˆ’ ๐ฟ1

3

3๐ฟ3) + ๐›ผ๐ฟ (

๐ฟ22 โˆ’ ๐ฟ1

2

2๐ฟ2)

โˆ’ (๐ฟ2

4 โˆ’ ๐ฟ14

๐ฟ4))

๐›ฅ3 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘๐‘Ÿ๐‘š๐‘‘๐‘ฅ

๐ฟ2

๐ฟ

=๐‘€0๐ฟ

2

2๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘š((4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…) (

๐ฟ33 โˆ’ ๐ฟ2

3

3๐ฟ3) + ๐›ผ๐ฟ (

๐ฟ32 โˆ’ ๐ฟ2

2

2๐ฟ2)

โˆ’ (๐ฟ3

4 โˆ’ ๐ฟ24

๐ฟ4))

๐›ฅ4 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘๐‘Ÿ๐‘š๐‘‘๐‘ฅ

๐ฟ

๐ฟ2

=๐‘€0๐ฟ

2

2๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘š((4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ) (

๐ฟ33 โˆ’ ๐ฟ๐‘…4

3

3๐ฟ3) + ๐›ผ๐‘… (

๐ฟ32 โˆ’ ๐ฟ๐‘…4

2

2๐ฟ2)

โˆ’ (๐ฟ3

4 โˆ’ ๐ฟ๐‘…44

๐ฟ4))

๐›ฅ5 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘”๐‘‘๐‘ฅ

๐ฟ

๐ฟ

=๐‘€0๐ฟ

2

2๐ธ๐‘๐ผ๐‘”((4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ) (

๐ฟ๐‘…43 โˆ’ ๐ฟ๐‘…5

3

3๐ฟ3) + ๐›ผ๐‘… (

๐ฟ๐‘…42 โˆ’ ๐ฟ๐‘…5

2

2๐ฟ2)

โˆ’ (๐ฟ๐‘…44 โˆ’ ๐ฟ๐‘…5

4

๐ฟ4))

Page 134: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

119

๐›ฅ6 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘๐‘Ÿ๐‘…๐‘‘๐‘ฅ

๐ฟ

๐ฟ

=๐‘€0๐ฟ

2

2๐ธ๐‘๐ผ๐‘๐‘Ÿ๐‘…((4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)๐ฟ๐‘…5

3

3๐ฟ3 โˆ’

๐ฟ๐‘…54

๐ฟ4+๐›ผ๐ฟ๐ฟ๐‘…5

2

2๐ฟ2)

๐›ฅ1&2 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘”๐‘‘๐‘ฅ

๐ฟ

0

=๐‘€0๐ฟ

2

2๐ธ๐‘๐ผ๐‘”((4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)๐ฟ2

3

3๐ฟ3 โˆ’

๐ฟ24

๐ฟ4+๐›ผ๐ฟ๐ฟ2

2

2๐ฟ2)

๐›ฅ5&6 = โˆซm(๐‘ฅ)๐‘€(๐‘ฅ)

E ๐ผ๐‘”๐‘‘๐‘ฅ

๐ฟ

๐ฟ

=๐‘€0๐ฟ

2

2๐ธ๐‘๐ผ๐‘”((4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ)๐ฟ๐‘…4

3

3๐ฟ3 โˆ’

๐ฟ๐‘…44

๐ฟ4+๐›ผ๐‘…๐ฟ๐‘…4

2

2๐ฟ2)

Total midspan deflection (note these results are only valid if ๐‘€๐‘š > ๐‘€๐‘๐‘Ÿ :

๐›ฅ = ๐›ฅ1 + ๐›ฅ2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5 + ๐›ฅ6 (If both ends and midspan are cracked)

๐›ฅ = ๐›ฅ1&2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5&6 (If only midspan is cracked)

๐›ฅ = ๐›ฅ1&2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5 + ๐›ฅ6 (If only right end and midspan are cracked)

๐›ฅ = ๐›ฅ1 + ๐›ฅ2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5&6 (If only left end and midspan are cracked)

Page 135: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

120

Example Simply Supported Constant Stiffness Beam Appendix H

The three loadings used in this report each produce slightly different deflected shapes,

so they have been provided here, with identical midspan deflection, for comparison.

This example models a simply supported uncracked concrete beam of uniform cross-

section as a perfect prismatic linear-elastic member. The load for each case is selected

to result in the equal midspan deflection for: a single midspan point load (1PL), two

equal point loads at third points (2PL), and a uniformly distributed load (UDL). The

small variation in deflection along the beams, as seen in the following deflection-

exaggerated graph, results from the different curvature of the three load configurations.

See List of Symbols for symbol definitions. Equations used are as follows:

๐ผ =๐‘โ„Ž3

12 ๐ธ = 4500โˆš๐‘“๐‘โ€ฒ ๐‘€1๐‘ƒ๐ฟ =

๐‘ƒ1๐‘ƒ๐ฟ๐ฟ

4 ๐‘€2๐‘ƒ๐ฟ =

๐‘ƒ2๐‘ƒ๐ฟ๐ฟ

6 ๐‘€๐‘ˆ๐ท๐ฟ =

๐‘ค๐‘ˆ๐ท๐ฟ๐ฟ2

8

For a midspan point load:

โˆ†(๐‘ฅ) =

{

๐‘–๐‘“ (๐‘ฅ โ‰ค๐ฟ

2) โˆถ

๐‘ƒ1๐‘ƒ๐ฟ ๐‘ฅ(3๐ฟ2 โˆ’ 4๐‘ฅ2)

48๐ธ๐ผ

๐‘’๐‘™๐‘ ๐‘’ โˆถ ๐‘ƒ1๐‘ƒ๐ฟ(๐ฟ โˆ’ ๐‘ฅ)(3๐ฟ2 โˆ’ 4(๐ฟ โˆ’ ๐‘ฅ)2)

48๐ธ๐ผ }

For two point load at third points:

โˆ†(๐‘ฅ) =

{

๐‘–๐‘“ (๐‘ฅ โ‰ค๐ฟ

3) โˆถ

2๐‘ƒ2๐‘ƒ๐ฟ ๐‘ฅ (59๐ฟ2 โˆ’ ๐‘ฅ2) + ๐‘ƒ2๐‘ƒ๐ฟ๐‘ฅ (

89๐ฟ2 โˆ’ ๐‘ฅ2)

36๐ธ๐ผ

๐‘–๐‘“ (๐ฟ

3< ๐‘ฅ โ‰ค

2๐ฟ

3) โˆถ

๐‘ƒ2๐‘ƒ๐ฟ(๐ฟ โˆ’ ๐‘ฅ) (8๐ฟ2

9 โˆ’ (๐ฟ โˆ’ ๐‘ฅ)2) + ๐‘ƒ2๐‘ƒ๐ฟ๐‘ฅ (89 ๐ฟ

2 โˆ’ ๐‘ฅ2)

36๐ธ๐ผ

๐‘’๐‘™๐‘ ๐‘’ โˆถ ๐‘ƒ2๐‘ƒ๐ฟ(๐ฟ โˆ’ ๐‘ฅ) (

8๐ฟ2

9 โˆ’ (๐ฟ โˆ’ ๐‘ฅ)2) + 2๐‘ƒ2๐‘ƒ๐ฟ(๐ฟ โˆ’ ๐‘ฅ) (5๐ฟ2

9 โˆ’ (๐ฟ โˆ’ ๐‘ฅ)2)

36๐ธ๐ผ }

For a uniformly distributed load:

โˆ†(๐‘ฅ)๐‘“๐‘œ๐‘Ÿ ๐‘ˆ๐ท๐ฟ =๐‘ค๐‘ˆ๐ท๐ฟ ๐‘ฅ(๐‘ฅ

3 โˆ’ 2๐ฟ๐‘ฅ2 + ๐ฟ3)

24๐ธ๐ผ

Page 136: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

121

Table H-1 - Equal Midspan Deflection Example for CPL, 2PL, and UDL

Spreadsheet Function: Compare deflected shapes for a constant stiffness beam with three

h = 800 mm example load types; load selected for equal midspan deflection

b = 400 mm L = 10000 mm fc' = 36 MPa

Ig = mm4 # of beam sections : 20 Ec = 27000 MPaฮ” lef t ฮ”right

For One PL at Midspan For Two Equal PL at 1/3 pts Uniformly Distributed

P1PL= 59725 N P2PL / 2 = 35050 N wUDL= 9.556 N / mm

M1PL= 149 kN m M2PL= 117 kN m MUDL= 119 kN m

x ฮ”(x) for 1 PL ฮ”(x) for 2 PL ฮ”(x) for UDL

0 0.00 0.00 0.00 0.00 0.00

500 0.40 0.23 0.19 0.42 0.43

1000 0.80 0.46 0.37 0.83 0.85

1500 1.18 0.68 0.55 1.22 1.24

2000 1.53 0.87 0.72 1.59 1.60

2500 1.86 1.04 0.87 1.91 1.92

3000 2.14 1.18 1.01 2.19 2.20

3500 2.37 1.28 1.13 2.41 2.41

4000 2.55 1.34 1.23 2.57 2.57

4500 2.66 1.36 1.31 2.67 2.67

5000 2.70 1.35 1.35 2.70 2.70

5500 2.66 1.31 1.36 2.67 2.67

6000 2.55 1.23 1.34 2.57 2.57

6500 2.37 1.13 1.28 2.41 2.41

7000 2.14 1.01 1.18 2.19 2.20

7500 1.86 0.87 1.04 1.91 1.92

8000 1.53 0.72 0.87 1.59 1.60

8500 1.18 0.55 0.68 1.22 1.24

9000 0.80 0.37 0.46 0.83 0.85

9500 0.40 0.19 0.23 0.42 0.43

10000 0.00 0.00 0.00 0.00 0.00

1.71E+010

Deflection of simply supported constant stiffness member

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ฮ”(D

efl

ecti

on

)

x (Position)

ฮ”(x) for 1 PL

ฮ”(x) for 2 PL

ฮ”(x) for UDL

Page 137: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

122

Example Constant Stiffness Beam with End-Moments Appendix I

The following linear-elastic prismatic beam is loaded with different uniformly

distributed loads to provide a comparison of deflected shapes with different end-

moment conditions. The deflected shapes can be compared easily because the load was

strategically set to different values for each end-moment condition such that the

midspan deflections are equal. Solutions with end-moments are determined using the

principle of superposition. For case 2, ๐‘€๐‘… is set to โˆ’๐‘€0. For case 3 and case 4, ๐‘€๐ฟ

equals ๐‘€๐‘… and they are set to โˆ’๐‘€0/2 and โˆ’2๐‘€0/3 for those cases, respectively. See

List of Symbols for symbol definitions. The spreadsheet equations include:

๐ผ๐‘” =๐‘โ„Ž3

12 ; ๐ธ๐‘ = 4500โˆš๐‘“๐‘โ€ฒ ; ๐‘€๐‘๐‘Ÿ =

๐‘“๐‘Ÿ๐ผโ„Žโ„Ž2

=๐‘โ„Ž2โˆš๐‘“๐‘โ€ฒ

10 ; ๐‘€0 =

๐‘ค๐‘ˆ๐ท๐ฟ๐ฟ2

8

โˆ†๐‘€๐ฟ(๐‘ฅ) =

๐‘€๐ฟ๐‘ฅ(๐‘ฅ2 โˆ’ 3๐ฟ๐‘ฅ + 2๐ฟ2)

6๐ฟ๐ธ๐‘๐ผ๐‘” for

โˆ†๐‘€๐‘…(๐‘ฅ) =

๐‘€๐‘…(๐ฟ โˆ’ ๐‘ฅ)((๐ฟ โˆ’ ๐‘ฅ)2 โˆ’ 3๐ฟ(๐ฟ โˆ’ ๐‘ฅ) + 2๐ฟ2)

6๐ฟ๐ธ๐‘๐ผ๐‘” for

โˆ†๐‘ˆ๐ท๐ฟ(๐‘ฅ) =๐‘ค๐‘ˆ๐ท๐ฟ ๐‘ฅ(๐‘ฅ

3 โˆ’ 2๐ฟ๐‘ฅ2 + ๐ฟ3)

24๐ธ๐‘๐ผ๐‘” for

โˆ†1(๐‘ฅ) = โˆ†๐‘ˆ๐ท๐ฟ(๐‘ฅ)

โˆ†2(๐‘ฅ) = โˆ†๐‘€๐‘…(๐‘ฅ) + โˆ†๐‘ˆ๐ท๐ฟ(๐‘ฅ)

โˆ†3(๐‘ฅ) = โˆ†4(๐‘ฅ) = โˆ†๐‘€๐ฟ(๐‘ฅ) + โˆ†๐‘€๐‘…

(๐‘ฅ) + โˆ†๐‘ˆ๐ท๐ฟ(๐‘ฅ)

Page 138: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

123

Table I-1 - Equal Midspan Deflection Example for Continuous UDL

Spreadsheet Function: Show deflected shapes for a uniform beam under 4 example loads

h = 400 mm (with end-moments) set to equal midspan deflection

b = 200 mm # of beam sections : 20 fc' = 36 MPa Mcr = 19.2 kNm

Ig = mm4 L = 10000 mm Ec = 27000 MPa

wUDL= 0.442 wUDL= 1.105 N / mm wUDL= 1.105 N / mm wUDL= 2.21 N / mm

MUDL= 6 M0= 13.8 kN m M0= 13.8 kN m M0= 27.6 kN m

ML= 0.0 kN m ML= -6.9 kN m ML= -18.4 kN m

MR= -13.8 kN m MR= -6.9 kN m MR= -18.4 kN m

x ฮ”M_R ฮ”UDL ฮ”2(x) ฮ”M_L ฮ”M_R ฮ”UDL ฮ”3(x) ฮ”M_L ฮ”M_R ฮ”UDL ฮ”4(x)

0 0 0 0.00 0 0 0 0.00 0 0 0 0.00

500 -0.40 0.80 0.40 -0.37 -0.20 0.80 0.23 -0.99 -0.53 1.59 0.07

1000 -0.79 1.57 0.78 -0.68 -0.40 1.57 0.49 -1.82 -1.06 3.14 0.26

1500 -1.17 2.30 1.13 -0.94 -0.59 2.30 0.77 -2.51 -1.56 4.60 0.52

2000 -1.53 2.97 1.43 -1.15 -0.77 2.97 1.05 -3.07 -2.05 5.93 0.82

2500 -1.87 3.56 1.69 -1.31 -0.94 3.56 1.31 -3.50 -2.50 7.12 1.12

3000 -2.18 4.06 1.88 -1.43 -1.09 4.06 1.54 -3.80 -2.91 8.12 1.41

3500 -2.45 4.46 2.01 -1.50 -1.23 4.46 1.74 -4.00 -3.27 8.93 1.65

4000 -2.69 4.76 2.07 -1.53 -1.34 4.76 1.88 -4.09 -3.58 9.52 1.84

4500 -2.87 4.94 2.07 -1.53 -1.43 4.94 1.97 -4.09 -3.82 9.87 1.96

5000 -3.00 5.00 2.00 -1.50 -1.50 5.00 2.00 -4.00 -4.00 9.99 2.00

5500 -3.07 4.94 1.87 -1.43 -1.53 4.94 1.97 -3.82 -4.09 9.87 1.96

6000 -3.07 4.76 1.69 -1.34 -1.53 4.76 1.88 -3.58 -4.09 9.52 1.84

6500 -3.00 4.46 1.46 -1.23 -1.50 4.46 1.74 -3.27 -4.00 8.93 1.65

7000 -2.85 4.06 1.21 -1.09 -1.43 4.06 1.54 -2.91 -3.80 8.12 1.41

7500 -2.62 3.56 0.94 -0.94 -1.31 3.56 1.31 -2.50 -3.50 7.12 1.12

8000 -2.30 2.97 0.67 -0.77 -1.15 2.97 1.05 -2.05 -3.07 5.93 0.82

8500 -1.89 2.30 0.41 -0.59 -0.94 2.30 0.77 -1.56 -2.51 4.60 0.52

9000 -1.37 1.57 0.20 -0.40 -0.68 1.57 0.49 -1.06 -1.82 3.14 0.26

9500 -0.74 0.80 0.06 -0.20 -0.37 0.80 0.23 -0.53 -0.99 1.59 0.07

10000 0 0 0.00 0 0 0 0.00 0 0 0 0.00

0.32

0.00

3) Uniformly Distributed

Small Equal End-Moments

2) UDL with Large

Right End-Moment

1.62

1.42

1.19

0.92

0.63

1.97

2.00

1.97

1.90

1.79

1.07E+009

Deflection of member with increasing load and end-moments

4) Uniformly Distributed

Large Equal End-Moments

1) Graph

Simple UDL

ฮ”1(x)

0.00

0.32

0.63

0.92

1.19

1.42

1.62

1.79

1.90

0

0.5

1

1.5

2

2.5

0 2000 4000 6000 8000 10000

ฮ”(D

efl

ecti

on

)

x (Position)

ฮ” with ML = MR = 0

ฮ” with ML = 0 ; MR = -Mm

ฮ” with ML = MR = -Mm

ฮ” with ML = MR = -2Mmฮ” with ๐‘€๐ฟ = ๐‘€๐‘… =โˆ’2๐‘€๐‘š

ฮ” with ๐‘€๐ฟ = ๐‘€๐‘… =โˆ’๐‘€๐‘š

ฮ” with ๐‘€๐ฟ = 0 ; ๐‘€๐‘… = โˆ’๐‘€๐‘š

ฮ” with ๐‘€๐ฟ = ๐‘€๐‘… =0

Page 139: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

124

Example Generation and Deflection Computation for an Appendix J

Idealized Concrete Bending Member

In order to compare the deflection for a wide range of concrete bending members,

idealized members were produced throughout this project. The predicted deflection was

calculated using the following methods: the full analytical approach per Appendix E,

the full numerical approach per Appendix K, and simplified approaches based on

Bransonโ€™s (1965) work, the S806 (CSA 2012) method, and the proposed equations.

Most of the example concrete bending members were produced using the steps shown

in this appendix.

In order to indicate practical results throughout the research, all members are produced

with full properties. The intention is that all members have realistic properties. This

work is based primarily on Canadian design standards, so ultimate limits states

methodology and calculations from A23.3 (CSA 2004) and S806 (CSA 2012) are used.

Some input values were assumed throughout, but generally these inputs can be changed

with negligible effect on the relative results presented in the report. A specified

compressive strength of concrete of 36 MPa is used typically, but 25 MPa to 64 MPa

was used where convenient. For the example below, changing ๐‘“๐‘โ€ฒ from 36 MPa to

25 MPa results in more depth and the midspan deflection changing from 14.35 mm to

13.05 mm. However, this change does not change non-dimensionalized results and

only causes a slight change of scale in the vertical axis for the graphs which compare

approximate and exact deflections.

Page 140: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

125

The following is an example of a steel reinforced concrete bending member with a

uniformly distributed load where the ๐‘€๐‘š = โˆ’๐‘€๐ฟ and ๐‘€๐‘… = 0, but it begins by

designing an example simply supported member with the same maximum moment.

For this example, the concrete properties and ultimate limit states design constants are:

๐œ™๐‘ = 0.65 ; ๐‘“๐‘โ€ฒ = 36 MPa ; ๐ธ๐‘ = 4500โˆš๐‘“๐‘โ€ฒ = 27 GPa

ฮฑ1 = 0.85 โˆ’ 0.0015๐‘“๐‘โ€ฒ = 0.796 ; ฮฒ1 = 0.97 โˆ’ 0.0025๐‘“๐‘

โ€ฒ = 0.880

๐œ™๐‘  = 0.85 ; ๐‘“๐‘ฆ = 400 MPa ; ๐ธ๐‘  = 200 GPa ; ๐‘› = ๐ธ๐‘ /๐ธ๐‘ = 7.407

The example span length, ๐ฟ, and simply supported example load, ๐‘ค0, for this member

are arbitrarily defined as:

๐ฟ = 10.0 m ; ๐‘ค0 = 10 kN mโ„ ; therefore ๐‘€0,0 =๐‘ค0๐ฟ

2

8= 125 kNm

The uniformly distributed load used to produce member properties is ๐‘ค0. The simply

supported midspan bending moment, ๐‘€0,0, applies to each set of compared members.

Set the following ratios for this example beam:

๐‘€๐‘๐‘Ÿ

๐‘€0,0= 0.7 ; ๐‘ = 0.5 โ„Ž ; ๐‘‘ = 0.85 โ„Ž

Produce a member concrete size using above information and A23.3 (CSA 2004)

definitions:

๐‘€๐‘๐‘Ÿ = 0.7๐‘€0,0 = 87.5 kNm ; ๐‘“๐‘Ÿ = 0.6โˆš๐‘“๐‘โ€ฒ = 3.6 MPa

๐‘€๐‘๐‘Ÿ =๐‘“๐‘Ÿ๐‘โ„Ž

2

6= 0.3 (โ„Ž3) ; โ„Ž = โˆš

87,500,000

0.3

= 663 mm

๐‘ = 0.5 โ„Ž = 332 mm ; ๐‘‘ = 0.85 โ„Ž = 564 mm ; ๐ผ๐‘” =๐‘โ„Ž3

12= 8.06 x 109 mm4

Page 141: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

126

Next, a service load to moment resistance ratio is defined as follows:

๐‘€๐‘ /๐‘€๐‘Ÿ = 0.635

The required reinforcement bars can now be calculated. The maximum positive

moment is at midspan for this first member, which is simply supported, therefore

๐‘€๐‘š๐‘Ž๐‘ฅ = ๐‘€๐‘š = ๐‘€0,0. The reinforcing steel design at midspan is:

๐พ๐‘Ÿ =๐‘€๐‘Ÿ

๐‘๐‘‘2=๐‘€0,0

๐‘๐‘‘2๐‘€๐‘“

๐‘€๐‘ = 1.87 MPa ; ๐พ๐‘Ÿ = (1 โˆ’

๐œŒ๐œ™๐‘ ๐‘“๐‘ฆ

2๐›ผ1๐œ™๐‘๐‘“๐‘โ€ฒ)๐œŒ๐œ™๐‘ ๐‘“๐‘ฆ

๐œŒ =๐›ผ1๐œ™๐‘๐‘“๐‘

โ€ฒ โˆ’ โˆš(๐›ผ1๐œ™๐‘๐‘“๐‘โ€ฒ)2 โˆ’ 2๐›ผ1๐œ™๐‘๐‘“๐‘โ€ฒ๐พ๐‘Ÿ๐œ™๐‘ ๐‘“๐‘ฆ

= 0.00580 ; ๐ด๐‘  = ๐œŒ๐‘๐‘‘ = 1085 mm2

For FRP design in this work, GFRP reinforcement was used and designed for concrete

crushing failure. To achieve reasonably low deflections, extra reinforcing was added to

the bottom steel by using ๐‘€๐‘Ÿ > ๐‘€๐‘“. The GFRP reinforcement design for midspan is:

๐‘“๐‘“๐‘ข = 690 MPa ; ๐œ™๐‘ = 0.75 ; ํœ€๐‘๐‘ข = 0.0035 ; ๐ธ๐‘ = 44 GPa ; ๐‘› = 1.63 ; ๐‘€๐‘Ÿ ๐‘€๐‘“โ„ = 2.0

๐‘ =๐‘‘

๐›ฝ1โˆ’โˆš

๐‘‘2

๐›ฝ12 โˆ’

2๐‘€๐‘Ÿ

๐›ผ1๐›ฝ12๐œ™๐‘๐‘“๐‘โ€ฒ๐‘

= 144.9 mm ; ๐ด๐‘“ =๐›ผ1๐›ฝ1๐œ™๐‘๐‘“๐‘

โ€ฒ๐‘๐‘2

๐œ™๐‘ํœ€๐‘๐‘ข(๐‘‘ โˆ’ ๐‘)๐ธ๐‘= 2555 mm2

๐œŒ =๐ด๐‘“

๐‘๐‘‘= 0.014 < ๐œŒ๐‘“๐‘ =

๐›ผ1๐›ฝ1๐œ™๐‘๐‘“๐‘โ€ฒํœ€๐‘๐‘ข

๐œ™๐‘๐‘“๐‘“๐‘ข (ํœ€๐‘๐‘ข +๐‘“๐‘“๐‘ข๐ธ๐‘“)

= 0.0062 (concrete crushes)

The serviceability stress limit and sustained load (creep-rupture) stress limit should be

checked. For the report, it is assumed that serviceability and creep-rupture stress limits

are met, but this should be confirmed for real cases (example calculations follow). For

this example, assume ๐‘€๐‘ ๐‘ข๐‘  = 80 kNm and calculate:

๐‘˜ = โˆš๐œŒ2๐‘›2 + 2๐œŒ๐‘› โˆ’ ๐œŒ๐‘› = 0.202

Page 142: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

127

๐‘“๐‘(๐‘†๐ฟ๐‘†) =๐‘€๐‘š

๐ด๐‘“ (1 โˆ’๐‘˜3) ๐‘‘

= 81 MPa โ‰ค ๐‘“๐‘†๐ฟ๐‘† = 0.25๐‘“๐‘“๐‘ข = 172 MPa (therefore ok)

๐‘“๐‘(๐‘ ๐‘ข๐‘ ) =๐‘€๐‘ ๐‘ข๐‘ 

๐ด๐‘“ (1 โˆ’๐‘˜3)๐‘‘

= 52 MPa โ‰ค ๐‘“๐‘“,๐‘  = 0.002๐ธ๐‘“ = 88 MPa (therefore ok)

For FRP, ๐‘› = ๐ธ๐‘“/๐ธ๐‘ and ๐ด๐‘“ (not ๐ด๐‘ ) would be used in subsequent calculations. Instead,

the steel reinforced member example is continued in this appendix.

Based on equations from page 6-31 of the Concrete Design Handbook (CAC 2005):

๐‘˜๐‘‘ = (โˆš2๐‘‘ (๐‘

๐‘›๐ด๐‘ ) + 1 โˆ’ 1) (

๐‘

๐‘›๐ด๐‘ )โ„ = 142.8 mm

๐ผ๐‘๐‘Ÿ =๐‘(๐‘˜๐‘‘)3

3+ ๐‘›๐ด๐‘ (๐‘‘ โˆ’ ๐‘˜๐‘‘)2 = 1.75 x 109 mm4

Deflection results using different methods can now be compared. Some constant

stiffness methods assume the ๐ธ๐ผ term is equal to ๐ธ๐‘๐ผ๐‘”, ๐ธ๐‘๐ผ๐‘๐‘Ÿ, ๐ธ๐‘๐ผ๐‘’ (๐ต๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘œ๐‘›), or

๐ธ๐‘๐ผ๐‘’ (๐ต๐‘–๐‘ ๐‘โ„Ž๐‘œ๐‘“๐‘“)โ€ฒ . The exact midspan deflection can be computed using the analytical

results indicated in Appendix E. Alternatively, or for a check, numerical integration can

also be used (example calculations provided in Appendix K).

โˆ†๐‘ข๐‘›๐‘๐‘Ÿ๐‘Ž๐‘๐‘˜๐‘’๐‘‘=5๐‘ค๐ฟ4

384๐ธ๐‘๐ผ๐‘”= 5.98 mm ; โˆ†๐‘“๐‘ข๐‘™๐‘™๐‘ฆ ๐‘๐‘Ÿ๐‘Ž๐‘๐‘˜๐‘’๐‘‘=

5๐‘ค๐ฟ4

384๐ธ๐‘๐ผ๐‘๐‘Ÿ= 27.64 mm

Referring to results from Bransonโ€™s (1965) work:

๐ผ๐‘’ = (๐‘€๐‘๐‘Ÿ

๐‘€๐‘š)3

๐ผ๐‘” + [1 โˆ’ (๐‘€๐‘๐‘Ÿ

๐‘€๐‘š)3

] ๐ผ๐‘๐‘Ÿ = 3.91 x 109 mm4 ; โˆ†=5๐‘ค๐ฟ4

384๐ธ๐‘๐ผ๐‘’= 12.3 mm

Referring to results from Bischoffโ€™s (Bischoff and Gross 2011) work:

Page 143: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

128

๐œ‚ = 1 โˆ’๐ผ๐‘๐‘Ÿ๐ผ๐‘”

= 0.783 ; ๐œ‰ = 1 โˆ’ โˆš1 โˆ’๐‘€๐‘๐‘Ÿ

๐‘€๐‘š= 0.452

=1.6๐œ‰3 โˆ’ 0.6๐œ‰4

(๐‘€๐‘๐‘Ÿ

๐‘€๐‘š)2 + 2.4 ln(2 โˆ’ ๐œ‰) = 1.30

๐ผ๐‘’โ€ฒ =

๐ผ๐‘๐‘Ÿ

1 โˆ’ ๐œ‚ (๐‘€๐‘๐‘Ÿ

๐‘€๐‘š)2 = 3.48 x 109 mm4 ; โˆ†=

5๐‘ค๐ฟ4

384๐ธ๐‘๐ผ๐‘’โ€ฒ=5๐‘€๐‘š๐ฟ

2

48๐ธ๐‘๐ผ๐‘’โ€ฒ= 13.85 mm

Next, use the analytical equations per Appendix E (see List of Symbols where required):

๐›ผ๐ฟ = ๐‘€๐ฟ ๐‘€0โ„ = 0 and ๐›ผ๐‘… = ๐‘€๐‘… ๐‘€0โ„ = 0 (Simply Supported Member)

๐ฟ2 = (4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘… โˆ’โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 โˆ’ 16๐›ผ๐‘๐‘Ÿ + 16๐›ผ๐ฟ)๐ฟ

8= 2261 mm

๐ฟ4 = (4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘… +โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 โˆ’ 16๐›ผ๐‘๐‘Ÿ + 16๐›ผ๐ฟ)๐ฟ

8= 7739 mm

๐›ฅ1+2 =๐‘€0๐ฟ

2

2๐ธ๐‘๐ผ๐‘”((4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)๐ฟ2

3

3๐ฟ3 โˆ’

๐ฟ24

๐ฟ4+๐›ผ๐ฟ๐ฟ2

2

2๐ฟ2) = 0.37 mm

๐›ฅ3 = 6.56 mm (see Appendix E for full equation)

๐›ฅ4 = 6.56 mm (see Appendix E for full equation)

๐›ฅ5+6 =๐‘€0๐ฟ

2

2๐ธ๐‘๐ผ๐‘”((4 โˆ’ ๐›ผ๐‘… + ๐›ผ๐ฟ)๐ฟ๐‘…โˆ’4

3

3๐ฟ3 โˆ’

๐ฟ๐‘…โˆ’44

๐ฟ4+๐›ผ๐‘…๐ฟ๐‘…โˆ’4

2

2๐ฟ2) = 0.37 mm

๐›ฅ = ๐›ฅ1+2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5+6 = 13.85 mm

After a simply supported member has been designed and analyzed, the next step

performed is to design continuous members with the same midspan properties as the

simply supported member. To generate this set of continuous members, the load is

increased relative to the simply supported situation. The load is increased in a precise

manner so that the increase in the total static bending moment, ๐‘€0, will offset the

Page 144: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

129

negative bending moment(s) and the maximum positive bending moment will be

maintained. Variables ๐›ผ๐ฟ = ๐‘€๐ฟ ๐‘€0โ„ and ๐›ผ๐‘… = ๐‘€๐‘… ๐‘€0โ„ are introduced and used for each

member because they are useful mathematically. Typically, a set of 9 to 15 example

members are generated using the subsequent equations, with 0 โ‰ฅ ๐›ผ๐ฟ โ‰ฅ โˆ’3 and ๐›ผ๐‘… = 0.

Calculations are provided for ๐›ผ๐ฟ = โˆ’1 and ๐›ผ๐‘… = 0, so ๐‘€๐ฟ = โˆ’๐‘€๐‘š๐‘Ž๐‘ฅ and ๐‘€๐‘… = 0. The

calculation of the uniform load required, ๐‘ค, is determined based on common structural

analysis equations and the end-moment to total moment ratio as follows:

๐›ผ๐ฟ =๐‘€๐ฟ

๐‘€0= โˆ’0.686 ; ๐›ผ๐‘… =

๐‘€๐‘…

๐‘€0= 0 ; ๐‘ค =

๐‘ค0

1 +๐›ผ๐ฟ2 +

๐›ผ๐‘…2 +

(๐›ผ๐ฟ โˆ’ ๐›ผ๐‘…)2

16

= 14.58 N

mm

Similarly, to maintain the same midspan moment with a centered point load:

๐‘ƒ =๐‘ƒ0

1 +๐›ผ๐ฟ2 +

๐›ผ๐‘…2

Likewise, to maintain the same maximum moment with equal third-point loading:

๐‘ƒ =๐‘ƒ0

1 +๐›ผ๐ฟ3 +

2๐›ผ๐‘…3

(requires โˆ’๐›ผ๐ฟ > โˆ’๐›ผ๐‘…)

For the example beam with a uniformly distributed beam and end continuous, the load

๐‘ค is then used to determine the total service, end, midspan, and maximum moments:

๐‘€0 =๐‘ค๐ฟ2

8= 182 kNm ; ๐‘€๐ฟ = ๐›ผ๐ฟ๐‘€0 = โˆ’125 kNm ; ๐‘€๐‘… = ๐›ผ๐‘…๐‘€0 = 0 kNm

๐‘€๐‘š = ๐‘€0 +(๐‘€๐ฟ +๐‘€๐‘…)

2= 120 kNm ; ๐‘€๐‘š๐‘Ž๐‘ฅ = ๐‘€๐‘š +

(๐‘€๐ฟ +๐‘€๐‘…)2

16๐‘€0= 125 kNm

Page 145: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

130

Proceed to calculate the properties for this continuous member. As intended, the

maximum positive moment, concrete dimensions, ๐‘€๐‘๐‘Ÿ, ๐ผ๐‘”, positive ๐ด๐‘ , ๐ผ๐‘๐‘Ÿ, and such

remain the same as the simply supported example. For both positive and negative

bending, again use ๐‘€๐‘Ÿ = ๐‘€๐‘“. The calculations preformed above using ๐‘€0,0 must now

use ๐‘€๐‘š๐‘Ž๐‘ฅ for the continuous member. At the right end of the member, where ๐‘€๐‘… = 0,

simply use ๐ผ = ๐ผ๐‘” = 8.06 x 109 mm4. Again determine the cross-section as follows:

๐‘€๐‘๐‘Ÿ = 87.5 kNm ; โ„Ž = 663 mm ; ๐‘ = 332 mm ; ๐ผ๐‘” = 8.06 x 109 mm4

๐‘‘ = 564 mm ; ๐พ๐‘Ÿ = 1.87 MPa ; ๐œŒ = 0.00580 ; ๐ด๐‘  +๐‘ฃ๐‘’ = 1085 mm2

๐‘˜๐‘‘ = 142.8 mm ; ๐ผ๐‘๐‘Ÿ๐‘š = 1.75 x 109 mm4

Because the left end negative moment is the same magnitude as the maximum positive

moment, as ๐‘€๐‘š๐‘Ž๐‘ฅ = โˆ’๐‘€๐ฟ and ๐‘€๐‘Ÿ = ๐‘€๐‘“, the same properties occur at the left end:

๐พ๐‘Ÿ โˆ’๐‘ฃ๐‘’ =โˆ’๐‘€๐ฟ

๐‘๐‘‘2๐‘€๐‘“

๐‘€๐‘ = 1.87 MPa ; ๐œŒ = 0.00580 ; ๐ด๐‘  โˆ’๐‘ฃ๐‘’ = 1085 mm2

๐‘˜๐‘‘ = 142.8 mm ; ๐ผ๐‘๐‘Ÿ๐ฟ = 1.75 x 109 mm4

Note that if the end-moment design requires more than the maximum allowable steel,

this means the original midspan design section makes a uniform concrete cross-section

impossible. If this occurs, one solution may be to return to the step where the example

sets ๐‘€๐‘๐‘Ÿ/๐‘€0,0 = 0.7, increase this value as required, and revise subsequent calculations.

As indicated in the Concrete Design Handbook (CAC 2005) and in Appendix A:

โˆ†= ๐พ5๐‘€๐‘š๐ฟ

2

48๐ธ๐ผ where ๐พ = 1.2 โˆ’ 0.2

๐‘€0

๐‘€๐‘š ; hence ๐พ = 0.896

Page 146: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

131

Calculate midspan deflection using different assumptions for ๐ธ๐ผ:

โˆ†๐‘ข๐‘›๐‘๐‘Ÿ๐‘Ž๐‘๐‘˜๐‘’๐‘‘= ๐พ5๐‘€๐‘š๐ฟ

4

48๐ธ๐‘๐ผ๐‘”= 5.36 mm ; โˆ†๐‘“๐‘ข๐‘™๐‘™๐‘ฆ ๐‘๐‘Ÿ๐‘Ž๐‘๐‘˜๐‘’๐‘‘= ๐พ

5๐‘€๐‘š๐ฟ4

48๐ธ๐‘๐ผ๐‘๐‘Ÿ= 24.75 mm

Since the midspan (maximum positive) moment and end-moment (and reinforcing) are

the same, CSA A23.3-04 clause 9.8.2.4 will simplify to 0.85๐ผ๐‘’๐‘š + 0.15๐ผ๐‘’๐ฟ = ๐ผ๐‘’.

Therefore the result using Bransonโ€™s equation is:

๐ผ๐‘’ = (๐‘€๐‘๐‘Ÿ

๐‘€๐‘š๐‘Ž๐‘ฅ)3

๐ผ๐‘” + [1 โˆ’ (๐‘€๐‘๐‘Ÿ

๐‘€๐‘š๐‘Ž๐‘ฅ)3

] ๐ผ๐‘๐‘Ÿ = 3.91x109 mm4 ; โˆ†= ๐พ5๐‘€๐‘š๐ฟ

4

48๐ธ๐‘๐ผ๐‘’= 11.04 mm

Referring to results using Bischoffโ€™s equations, base the ๐ผ๐‘’โ€ฒ calculation on the maximum

positive moment, so the results are also the same as with the simply supported example:

๐œ‚ = 0.783 ; ๐œ‰ = 0.452 ; = 1.299 ; ๐ผ๐‘’โ€ฒ = 3.48 x 109 mm4

Unlike Bischoffโ€™s results for simply supported members, this report introduces an

approximation by using the for simply supported members. Work for this report

determined that the exact for a continuous member was excessively complicated

(except for very specific cases, such as ๐‘€๐‘š = โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘… with relevant reinforcement

being equal). The simply supported works almost as well as the exact result for any

realistic member for which it is possible to obtain an effective constant moment of

inertia.

โˆ†= ๐พ5๐‘€๐‘š๐ฟ

4

48๐ธ๐‘๐ผ๐‘’โ€ฒ= 11.87 mm

Again obtaining results using exact analytical equations from Appendix E:

๐ฟ1 = (4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘… โˆ’โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 + 16๐‘€๐‘๐‘Ÿ/๐‘€๐‘š + 16๐›ผ๐ฟ)๐ฟ

8= 457 mm

Page 147: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

132

๐ฟ2 = (4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘… โˆ’โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 โˆ’ 16๐‘€๐‘๐‘Ÿ/๐‘€๐‘š + 16๐›ผ๐ฟ)๐ฟ

8= 3588 mm

๐ฟ4 = (4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘… +โˆš(4 โˆ’ ๐›ผ๐ฟ + ๐›ผ๐‘…)2 โˆ’ 16๐‘€๐‘๐‘Ÿ/๐‘€๐‘š + 16๐›ผ๐ฟ)๐ฟ

8= 8125 mm

๐›ฅ1 = โˆ’0.04 mm (see Appendix E for full equation)

๐›ฅ2 = 0.50 mm (see Appendix E for full equation)

๐›ฅ3 = 3.24 mm (see Appendix E for full equation)

๐›ฅ4 = 7.59 mm (see Appendix E for full equation)

๐›ฅ5+6 = 0.25 mm (see Appendix E for full equation)

๐›ฅ = ๐›ฅ1 + ๐›ฅ2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5+6 = 11.54 mm

For comparison, calculate numerical integration results for this example member (using

the method shown in Appendix K):

Using 10 segments: ๐›ฅ = โˆซ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ)๐‘‘๐‘ฅ

๐ฟ

0

โ‰ˆโˆ‘ ๐›ฅ๐‘—๐‘—=10

๐‘—=1= 11.75 mm

Using 100 segments: ๐›ฅ = โˆซ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ)๐‘‘๐‘ฅ

๐ฟ

0

โ‰ˆโˆ‘ ๐›ฅ๐‘—๐‘—=100

๐‘—=1= 11.54 mm

Using the S806 method, introduced in Appendix G:

๐ฟ1 = 457 mm ; ๐ฟ2 = 3588 mm ; ๐ฟ3 = 5000 mm ; ๐ฟ4 = 8125 mm

๐›ฅ1 = โˆ’0.11 mm (see Appendix G for full equation)

๐›ฅ2 = 0.50 mm (see Appendix G for full equation)

๐›ฅ3 = 6.88 mm (see Appendix G for full equation)

๐›ฅ4 = 13.44 mm (see Appendix G for full equation)

๐›ฅ5+6 = 0.25 mm (see Appendix G for full equation)

๐›ฅ = ๐›ฅ1 + ๐›ฅ2 + ๐›ฅ3 + ๐›ฅ4 + ๐›ฅ5+6 = 20.96 mm

Page 148: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

133

As indicated throughout the report, failing to account for tension stiffening is often

overly conservative. The error using Bransonโ€™s equation for this particular situation is

unconservative but is reasonably small because 2 < ๐ผ๐‘” ๐ผ๐‘๐‘Ÿโ„ < 5. The following table

summarizes the results from this appendix and Appendix K.

Table J-1 - Summary of Appendix J and Appendix K Results for Continuous Member

Moment of Inertia ๐›ฅ % difference

๐ผ๐‘” 5.36 โˆ’46.4%

๐ผ๐‘๐‘Ÿ 24.75 +114% ๐ผ๐‘’ ๐ต๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘œ๐‘› 11.04 โˆ’4.3%

๐ผ๐‘’ ๐ต๐‘–๐‘ ๐‘โ„Ž๐‘œ๐‘“๐‘“โ€ฒ 11.87 +2.9%

๐ผ๐‘’(๐‘ฅ)๐‘Ÿ๐‘Ž๐‘ง๐‘Ž๐‘ž๐‘๐‘ข๐‘Ÿ 20.96 +82%

๐ผ๐‘’(๐‘ฅ)๐‘›๐‘ข๐‘š๐‘’๐‘Ÿ๐‘–๐‘๐‘Ž๐‘™:10 11.75 +1.8%

๐ผ๐‘’(๐‘ฅ)๐‘›๐‘ข๐‘š๐‘’๐‘Ÿ๐‘–๐‘๐‘Ž๐‘™:100 11.543 +0.001%

๐ผ๐‘’(๐‘ฅ)๐‘Ž๐‘›๐‘Ž๐‘™๐‘ฆ๐‘ก๐‘–๐‘๐‘Ž๐‘™ 11.542 โˆ’

Page 149: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

134

Methodology and Example using Numerical Integration Appendix K

Numerical integration was often used to determine deflection in work for this report.

Like analytical integration, numerical integration is performed using the method of

virtual work to calculate the exact result. For this method, the member is cut into a

number, ๐‘—, of segments and the deflection effects from all segments are added together.

Rounding errors inherent to numerical integration can be safely assumed to be

negligible for ๐‘— โ‰ฅ 100 (accuracy within 0.2% as long as a section is cut at the location

of each large point load). Other symbol definitions remain the same as with the

analytical approach and as defined in the List of Symbols.

๐›ฅ = โˆซ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ)๐‘‘๐‘ฅ

๐ฟ

0

โ‰ˆโˆ‘ [๐‘š(๐‘ฅ๐‘–)๐‘€(๐‘ฅ๐‘–)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ๐‘–)+๐‘š(๐‘ฅ๐‘–โˆ’1)๐‘€(๐‘ฅ๐‘–โˆ’1)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ๐‘–โˆ’1)]๐ฟ

2๐‘—

๐‘–=๐‘—

๐‘–=1

where ๐‘ฅ๐‘– =๐‘–๐ฟ

๐‘— and ๐‘ฅ๐‘–โˆ’1 =

๐‘– โˆ’ 1

๐‘—๐ฟ

To further explain this method, the following example uses it for the continuous

member provided in Appendix J. The member has the following properties and loads:

๐œ™๐‘ = 0.65 ; ๐‘“๐‘โ€ฒ = 36 MPa ; ๐ธ๐‘ = 27 GPa ; ฮฑ1 = 00.796 ; ฮฒ1 = 0.880

๐œ™๐‘  = 0.85 ; ๐‘“๐‘ฆ = 400 MPa ; ๐ธ๐‘  = 200 GPa ; ๐‘› =๐ธ๐‘ ๐ธ๐‘

= 7.407 ; ๐‘“๐‘Ÿ = 3.6 MPa

๐ฟ = 10 m ; ๐‘ค = 14.58 ; ๐‘€0 = 182 kNm ; ๐‘€๐‘… = 0 ; ๐‘€๐ฟ

๐‘€0= โˆ’0.686 ; ๐‘€๐ฟ = โˆ’125 kNm

๐‘€๐‘š = ๐‘€0 +(๐‘€๐ฟ +๐‘€๐‘…)

2= 120 kNm ; ๐‘€๐‘š๐‘Ž๐‘ฅ = ๐‘€๐‘š +

(๐‘€๐ฟ +๐‘€๐‘…)2

16๐‘€0= 125 kNm

๐‘€๐‘ 

๐‘€๐‘“= 0.635 ;

๐‘€0

๐‘€๐‘๐‘Ÿ= 1.43 ; ๐‘€๐‘๐‘Ÿ = 87.5 kNm ; โ„Ž = 663 mm

๐‘ = โ„Ž 2โ„ = 332 mm ; ๐‘‘ = 0.85(โ„Ž) = 564 mm ; ๐ผ๐‘” = 8.06 x 109 mm4

Page 150: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

135

At the location of maximum positive moment (near midspan):

๐พ๐‘Ÿ =๐‘€๐‘š๐‘Ž๐‘ฅ

๐‘๐‘‘2๐‘€๐‘“

๐‘€๐‘ = 1.87 MPa ; ๐œŒ = 0.00580 ; ๐ด๐‘  +๐‘ฃ๐‘’ = 1085 mm2

๐‘˜๐‘‘ = 142.8 mm ; ๐ผ๐‘๐‘Ÿ๐‘š = 1.75 x 109 mm4 ; ๐œ‚๐‘š = 1 โˆ’๐ผ๐‘๐‘Ÿ๐‘š๐ผ๐‘”

= 0.783

At member span ends, the right end is uncracked and the design at the left end is:

๐พ๐‘Ÿ =๐‘€๐ฟ

๐‘๐‘‘2๐‘€๐‘“

๐‘€๐‘ = 1.87 MPa ; ๐œŒ = 0.00580 ; ๐ด๐‘  โˆ’๐‘ฃ๐‘’ = 1085 mm2

๐‘˜๐‘‘ = 142.8 mm ; ๐ผ๐‘๐‘Ÿ๐ฟ = 1.75 x 109 mm4 ; ๐œ‚๐ฟ = 1 โˆ’๐ผ๐‘๐‘Ÿ๐ฟ๐ผ๐‘”

= 0.783

The same functions as for analytical integration are required for numerical integration:

๐‘€(๐‘ฅ) = ๐‘€๐ฟ + (4๐‘€0 โˆ’๐‘€๐ฟ +๐‘€๐‘…)๐‘ฅ

๐ฟโˆ’ 4๐‘€0

๐‘ฅ2

๐ฟ2

๐‘“๐‘œ๐‘Ÿ

{

๐‘ฅ <๐ฟ

2 and ๐‘€(๐‘ฅ) < โˆ’๐‘€๐‘๐‘Ÿ ๐ผ๐‘’(๐‘ฅ) =

๐ผ๐‘๐‘Ÿ๐ฟ

1 โˆ’ ๐œ‚๐ฟ (๐‘€๐‘๐‘Ÿ

๐‘€(๐‘ฅ))2

โˆ’๐‘€๐‘๐‘Ÿ โ‰ค ๐‘€(๐‘ฅ) โ‰ค ๐‘€๐‘๐‘Ÿ ๐ผ๐‘’(๐‘ฅ) = ๐ผ๐‘”

๐‘€(๐‘ฅ) > ๐‘€๐‘๐‘Ÿ ๐ผ๐‘’(๐‘ฅ) =๐ผ๐‘๐‘Ÿ๐‘š

1 โˆ’ ๐œ‚๐‘š (๐‘€๐‘๐‘Ÿ

๐‘€(๐‘ฅ))2

For midspan deflection, set the virtual moment function as follows:

๐‘“๐‘œ๐‘Ÿ

{

๐‘ฅ โ‰ค๐ฟ

2๐‘š(๐‘ฅ) =

๐‘ฅ

2

๐‘ฅ >๐ฟ

2 ๐‘š(๐‘ฅ) =

๐ฟ โˆ’ ๐‘ฅ

2

Page 151: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

136

Generate 10 equal segments for this example as follows:

๐›ฅ๐‘š๐‘–๐‘‘ = โˆซ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ)๐‘‘๐‘ฅ

๐ฟ

0

โ‰ˆโˆ‘ ๐›ฅ๐‘–๐‘–=10

๐‘–=1

๐›ฅ๐‘— =๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘–โˆ’12๐ธ๐‘

[๐‘š(๐‘ฅ๐‘–)๐‘€(๐‘ฅ๐‘–)

๐ผ๐‘’(๐‘ฅ๐‘–)+๐‘š(๐‘ฅ๐‘–โˆ’1)๐‘€(๐‘ฅ๐‘–โˆ’1)

๐ผ๐‘’(๐‘ฅ๐‘–โˆ’1)]

Table K-1 - Midspan Deflection Example using 10 Segment Numerical Integration

๐‘– ๐‘ฅ๐‘– ๐‘š(๐‘ฅ๐‘–) ๐‘€(๐‘ฅ๐‘–) ๐ผ๐‘’(๐‘ฅ๐‘–) ๐‘š(๐‘ฅ๐‘–)๐‘€(๐‘ฅ๐‘–) ๐›ฅ๐‘–

mm kN m mm4 ๐ผ๐‘’(๐‘ฅ๐‘–) mm

0 0 0 โˆ’125 2.83x109 0 โˆ—1 1000 500 โˆ’47 8.06x109 โˆ’2.91 โˆ’0.052 2000 1000 17 8.06x109 2.06 โˆ’0.023 3000 1500 66 8.06x109 12.2 0.264 4000 2000 100 4.38x109 45.6 1.075 5000 2500 120 3.00x109 99.6 2.696 6000 2000 125 2.84x109 88 3.477 7000 1500 115 3.17x109 54.6 2.648 8000 1000 92 6.15x109 14.9 1.299 9000 500 53 8.06x109 3.29 0.3410 10000 0 0 8.06x109 0 0.06

๐›ฅ๐‘š๐‘–๐‘‘ โ‰ˆโˆ‘ ๐›ฅ๐‘–๐‘–=10

๐‘–=1 = 11.75 mm

Generating 100 equal segments provides the results partially shown in Table K-2.

Table K-2 - Midspan Deflection Example using 100 Segment Numerical Integration

๐‘– ๐‘ฅ๐‘– ๐‘š(๐‘ฅ๐‘–) ๐‘€(๐‘ฅ๐‘–) ๐ผ๐‘’(๐‘ฅ๐‘–) ๐‘š(๐‘ฅ๐‘–)๐‘€(๐‘ฅ๐‘–) ๐›ฅ๐‘–

mm kN m mm4 ๐ผ๐‘’(๐‘ฅ๐‘–) mm

0 0 0 โˆ’125 2.83x109 0 โˆ—1 100 50 โˆ’117 3.13x109 โˆ’1.86 โˆ’0.003 2 200 100 โˆ’108 3.58x109 โˆ’3.02 โˆ’0.009 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ50 5000 2500 120 3.00x109 99.6 0.360โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ59 5900 2050 125 2.83x109 90.4 0.339โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ99 9900 50 6 8.06x109 0.04 0.0003 100 10000 0 0 8.06x109 0.00 0.0000

Page 152: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

137

๐›ฅ๐‘š๐‘–๐‘‘ = โˆซ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ)๐‘‘๐‘ฅ

๐ฟ

0

โ‰ˆโˆ‘ ๐›ฅ๐‘–๐‘–=100

๐‘–=1 = 11.543 mm

Maximum deflection, if required, can be found by trial-and-error or other methods. For

this example, the maximum deflection can be found at position ๐ฟโˆ†๐‘š๐‘Ž๐‘ฅ= 5.5 m. Most

other functions remain the same, but the virtual moment function must be set as follows:

๐‘“๐‘œ๐‘Ÿ

{

๐‘ฅ โ‰ค ๐ฟโˆ†๐‘š๐‘Ž๐‘ฅ๐‘š(๐‘ฅ) = (1 โˆ’

๐ฟโˆ†๐‘š๐‘Ž๐‘ฅ

๐ฟ)๐‘ฅ

2

๐‘ฅ > ๐ฟโˆ†๐‘š๐‘Ž๐‘ฅ ๐‘š(๐‘ฅ) = (

๐ฟโˆ†๐‘š๐‘Ž๐‘ฅ

๐ฟ)๐ฟ โˆ’ ๐‘ฅ

2

Use the same 100 equal segments for the maximum deflection as follows:

Table K-3 - Maximum Deflection Example using 100 Segment Numerical Integration

๐‘– ๐‘ฅ๐‘– ๐‘š(๐‘ฅ๐‘–) ๐‘€(๐‘ฅ๐‘–) ๐ผ๐‘’(๐‘ฅ๐‘–) ๐‘š(๐‘ฅ๐‘–)๐‘€(๐‘ฅ๐‘–) ๐›ฅ๐‘–

mm kN m mm4 ๐ผ๐‘’(๐‘ฅ๐‘–) mm

0 0 0 โˆ’125 2.83x109 0 โˆ’1 100 45 โˆ’117 3.13x109 โˆ’1.68 โˆ’0.003 2 200 90 โˆ’108 3.58x109 โˆ’2.72 โˆ’0.008 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ50 5000 2250 120 3.00x109 89.6 0.324โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ55 5500 2475 124 2.86x109 107.4 0.392โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ99 9900 55 6 8.06x109 0.04 0.0004 100 10000 0 0 8.06x109 0.00 0.0000

๐›ฅ๐‘š๐‘Ž๐‘ฅ = โˆซ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ)

๐ธ๐‘๐ผ๐‘’(๐‘ฅ)๐‘‘๐‘ฅ

๐ฟ

0

โ‰ˆโˆ‘ ๐›ฅ๐‘–๐‘–=100

๐‘–=1 = 11.768 mm

In this case, there is only 2% error if the midspan deflection is assumed to equal the

maximum deflection.

Page 153: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

138

Examples Graphs of the Integrated Function Appendix L

Two examples are given in this appendix; one example features a good approximation

and lies within the proposed range of validity while the other example features a poor

approximation and lies outside of the proposed limits. These members are each a 1 m

wide strip of steel reinforced concrete slab with a centered point load and equal end-

moments. The midspan deflection is the maximum deflection for both members.

Graphs for both demonstrate the complexity of attempting to approximate the variable

stiffness of a cracked concrete bending member as a constant stiffness member.

Both examples include the following properties:

๐œ™๐‘ = 0.65 ; ๐‘“๐‘โ€ฒ = 36 MPa ; ๐‘“๐‘Ÿ = 3.6 MPa ; ๐ธ๐‘ = 27 GPa ; ฮฑ1 = 0.796

๐œ™๐‘  = 0.85 ; ๐‘“๐‘ฆ = 400 MPa ; ๐ธ๐‘  = 200 GPa ; ๐‘› = ๐ธ๐‘ /๐ธ๐‘ = 7.407

๐ฟ = 10 m ; ๐‘ = 1000 mm ; โ„Ž = 178 mm ; ๐‘‘ = 146 mm

๐ผ๐‘” = 470 x 106 mm4 ; ๐‘€๐‘๐‘Ÿ = 19.0 kNm

The first example presents the fully fixed-fixed case, ๐‘€๐‘š = โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘…, as follows:

๐‘€๐‘š

๐‘€๐‘๐‘Ÿ= 1.515 ; ๐‘ƒ = 23 kN ;

๐‘€๐ฟ

๐‘€0= โˆ’0.5 ;

๐‘€๐‘…

๐‘€0= โˆ’0.5 ; ๐พ = 0.50

๐‘€0 = 57.5 kNm ; ๐‘€๐ฟ = โˆ’28.8 kNm ; ๐‘€๐‘š = 28.8 kNm ; ๐‘€๐‘… = โˆ’28.8 kNm

Select 15Mโ€™s at 200 mm (top & bottom). Then: ๐ด๐‘  = 1000 mm2 ; ๐œŒ = 0.685%

๐‘˜๐‘‘ = 39.7 mm ; ๐ผ๐‘๐‘Ÿ = 104 x 106 mm4 ; ๐พ๐‘Ÿ = 2.18

๐‘€๐‘Ÿ = ๐พ๐‘Ÿ๐‘๐‘‘2 = 46.5 kNm ; Assume ๐‘€๐‘“ โ‰ˆ 1.4๐‘€๐‘  = 40.3 kNm (โˆด ok)

Page 154: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

139

The proposed equations, based on results from work by Bischoff and Gross (2011):

๐œ‚ = 1 โˆ’๐ผ๐‘๐‘Ÿ๐ผ๐‘”

= 0.778 ; = 3 โˆ’ 2๐‘€๐‘๐‘Ÿ

๐‘€๐‘š= 1.68

๐ผ๐‘’โ€ฒ =

๐ผ๐‘๐‘Ÿ

1 โˆ’ ๐œ‚ (๐‘€๐‘๐‘Ÿ

๐‘€๐‘š)2 = 243 x 106 mm4 ; โˆ† = ๐พ

๐‘€๐‘š๐ฟ2

12๐ธ๐‘๐ผ๐‘’โ€ฒ= 18.24 mm

Using 100 section numerical integration, โˆ†๐ผ๐‘’(๐‘ฅ)= 18.28 mm and โˆ†๐ผ๐‘’โ€ฒ= 18.26 mm.

Figure L-1 - Integrated Function and Accurate Deflection Example

Page 155: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

140

The graphs in the first example show that the midspan deflection is accurate despite the

differences in the functions that are integrated to obtain it. The graph for deflection, โˆ†,

shows the proposed solution (indicated using ๐ผ๐‘’โ€ฒ ). There are small errors locally, using

the approximation, near the ends of the member and again each side of midspan. The

approximate solution is only intended to determine the maximum deflection, so these

errors are typically irrelevant. The lines shown in the lower graph, for both

๐‘š(๐‘ฅ)๐‘€(๐‘ฅ) ๐ธ๐ผ๐‘’(๐‘ฅ)โ„ and ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ) ๐ธ๐ผ๐‘’โ€ฒโ„ , are integrated to obtain the midspan

deflection results, โˆ†๐ผ๐‘’(๐‘ฅ) and โˆ†๐ผ๐‘’โ€ฒ . The approximation works well despite these pre-

integration functions being significantly different because the average stiffness of the

simply supported member with the same midspan moment is very close to the average

stiffness of the actual continuous member.

The second example is a case with increased midspan cracking (๐‘€๐‘š/๐‘€๐‘๐‘Ÿ = 2.22) and

end-moments (1.86๐‘€๐‘š = โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘…). Other properties that are different include:

๐‘ƒ = 48 kN ; ๐‘€๐ฟ ๐‘€0โ„ = โˆ’0.65 ; ๐‘€๐‘… ๐‘€0โ„ = โˆ’0.65 ; ๐พ = 0.071

๐‘€0 = 120 kNm ; ๐‘€๐ฟ = โˆ’78 kNm ; ๐‘€๐‘š = 42 kNm ; ๐‘€๐‘… = โˆ’78 kNm

For bottom steel (midspan), select 20Mโ€™s at 200 mm. Then: ๐ด๐‘  = 1500 mm2

๐œŒ = 1.03% ; ๐‘˜๐‘‘ = 46.9 mm ; ๐ผ๐‘๐‘Ÿ = 143 x 106 mm4 ; ๐พ๐‘Ÿ = 3.17

Assume ๐‘€๐‘“ = 1.4๐‘€๐‘  = 58.8 kNm ; ๐‘€๐‘Ÿ = 67.5 kNm (ok)

For top steel (ends), select 20Mโ€™s at 100 mm. Then: ๐ด๐‘  = 3000 mm2

๐œŒ = 2.06% ; ๐‘˜๐‘‘ = 61.3 mm ; ๐ผ๐‘๐‘Ÿ = 236 x 106 mm4 ; ๐พ๐‘Ÿ = 5.68

Assume ๐‘€๐‘“ = 1.4๐‘€๐‘  = 109 kNm ; ๐‘€๐‘Ÿ = 121 kNm (ok)

Page 156: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

141

The proposed equations, again based on relevant midspan values, are:

๐œ‚ = 1 โˆ’๐ผ๐‘๐‘Ÿ๐ผ๐‘”

= 0.695 ; = 3 โˆ’ 2๐‘€๐‘๐‘Ÿ

๐‘€๐‘š= 2.095

๐ผ๐‘’โ€ฒ =

๐ผ๐‘๐‘Ÿ

1 โˆ’ ๐œ‚ (๐‘€๐‘๐‘Ÿ

๐‘€๐‘š)2 = 204 x 106 mm4 ; โˆ† = ๐พ

๐‘€๐‘š๐ฟ2

12๐ธ๐‘๐ผ๐‘’โ€ฒ= 4.53 mm

Using 100 sections for numerical integration, midspan results are:

โˆ†๐ผ๐‘’(๐‘ฅ)= 9.88 mm ; โˆ†๐ผ๐‘’โ€ฒ= 4.57 mm ; โˆ†๐ผ๐‘๐‘Ÿ= 6.5 mm

.

Figure L-2 - Integrated Function and Inaccurate Deflection Example

Page 157: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

142

The graphs for the second example show the deflected shapes using ๐ผ๐‘’(๐‘ฅ), ๐ผ๐‘’โ€ฒ , and ๐ผ๐‘๐‘Ÿ.

The proposed approximation is far less accurate for this example. The midspan

deflection found using ๐ผ๐‘’โ€ฒ is only half of the real member deflection found using ๐ผ๐‘’(๐‘ฅ).

This is not surprising considering that actual deflections are larger than deflections

found using ๐ผ๐‘๐‘Ÿ. This member cannot be accurately modelled as a constant stiffness

member. In this example, the source of the large error is within the negative bending

segments. This error can be visually identified by the additional area near the ends of

the ๐‘š(๐‘ฅ)๐‘€(๐‘ฅ) ๐ธ๐ผโ„ graph.

Another example (not shown in this appendix) of when all constant stiffness approaches

will fail is a centered point load where 2๐‘€๐‘š = โˆ’๐‘€๐ฟ = โˆ’๐‘€๐‘…. For this case, constant

stiffness equations result in โˆ†๐‘š๐‘Ž๐‘ฅ= 0 mm. Because of the varying stiffness, the real

midspan deflection is typically non-zero and hence unattainable by linear-elastic

deflection equations. Alternatively, the actual deflection can be near zero when the

constant stiffness equations inherently give deflections that are much larger in

magnitude.

Page 158: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

143

Centered Point Load Examples โ€“ Data for Section 3.4 Appendix M

This appendix provides the data and graphs for the example prismatic concrete members

with centered point loads that were provided in Section 3.4 of this report. The provided

members are beams because they are more likely to be controlled by a centered point

load. The calculations in this appendix use the general methodology indicated in

Appendix J.

All members in this appendix are shown for the same concrete cross-section and the

same range of end-moments (relative to midspan moment). The concrete cross-section

used is 300 mm wide by 600 mm deep with tension reinforcing at a depth of 540 mm

and compression reinforcing neglected. The end-moments are kept equal (๐‘€๐ฟ = ๐‘€๐‘…) in

order to eliminate errors caused by the actual maximum deflection not being at midspan

and to simplify discussion of differences in results from different methods. The range

of end-moments provided is 2 < โˆ’๐‘€๐ฟ ๐‘€๐‘šโ„ โ‰ค 0; this range exceeds both the proposed

valid range and the range required for the majority of center point loaded members.

The first two sets of examples are steel reinforced members. The first set is developed

with a cracking to service moment ratio of ๐‘€๐‘š/๐‘€๐‘๐‘Ÿ = 3.0. The second set carries less

load and contains less reinforcement: ๐‘€๐‘š/๐‘€๐‘๐‘Ÿ = 1.6.

The third and fourth sets of examples are GFRP reinforced members. The third set has

๐‘€๐‘š/๐‘€๐‘๐‘Ÿ = 2.5 and the fourth set has ๐‘€๐‘š/๐‘€๐‘๐‘Ÿ = 1.6. There is an increase in

deflection because of the reduced ๐ผ๐‘๐‘Ÿ. For end-moments with ๐‘€๐ฟ/๐‘€๐‘š > 0.4, short-term

deflection of these members is generally less than ๐ฟ/ฮ” = 560.

Page 159: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

144

Table M-1 - Data for CPL, ML=MR, Ig/Icr=2.3 โ€“ Example 3.4.2a โ€“ Page 1

Example 3.4.2a, pg 1 of 2 ฮฆc = 0.65

Midspan Point Load P0 = 77850 N fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 10000 mm Ec = 27000 MPa Mcr= 0.05 * N mm

Let ML=MR b = 0.5 * h mm ฮฑ1 = 0.796

d = 0.9 * h mm ฮฒ1 = 0.880

M0,0 = P0 L/4 = 1.95E+8 N mm ฮฆb = 0.85

End Moment Ms/Mr = 0.635 fy = 400 MPa

+ve Moment Ms/Mr = 0.635 Eb = 200000 MPa n=Eb/Ec= 7.40741

Member Properties Determined from Provided Info (Primairly Servicability) Units

P1PL = 228971 210405 194625 173000 155700 129750 111214 97312.5 77850 N

M0 = 5.72E+8 5.26E+8 4.87E+8 4.33E+8 3.89E+8 3.24E+8 2.78E+8 2.43E+8 1.95E+8 N mm

ฮฑL = ML/M0 = -0.66 -0.63 -0.6 -0.55 -0.5 -0.4 -0.3 -0.2 0

ฮฑR = MR/M0 = -0.66 -0.63 -0.6 -0.55 -0.5 -0.4 -0.3 -0.2 0

ML = -3.78E+8 -3.31E+8 -2.92E+8 -2.38E+8 -1.95E+8 -1.30E+8 -8.34E+7 -4.87E+7 0.00E+0 N mm

MR = -3.78E+8 -3.31E+8 -2.92E+8 -2.38E+8 -1.95E+8 -1.30E+8 -8.34E+7 -4.87E+7 0.00E+0 N mm

Mm = Mmax = 1.95E+8 1.95E+8 1.95E+8 1.95E+8 1.95E+8 1.95E+8 1.95E+8 1.95E+8 1.95E+8 N mm

ฮฑcr = Mcr/Mmax= 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333

Mcr = 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

ฮฑL/max=ML/Mmax= -1.94 -1.70 -1.50 -1.22 -1.00 -0.67 -0.43 -0.25 0.00

Member Properties Determined with Factored Loads

Left End Kr L = 6.80 5.96 5.25 4.28 3.50 2.34 2 0 0 MPa

ฯ L = 0.0263 0.0219 0.0186 0.0145 0.0115 0.0074 0.0046 0 0

AL=ฯ Lbd= 4265 3554 3017 2352 1865 1193 747 0 0 mm2

Icr L = 4.22E+9 3.75E+9 3.35E+9 2.81E+9 2.37E+9 1.68E+9 1.15E+9 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.219 0.306 0.379 0.479 0.560 0.689 0.787 0 0

ML/Mcr = -5.83 -5.11 -4.50 -3.67 -3.00 -2.00 -1.29 -0.75 0.00

Ig/Icr L = 1.28 1.44 1.61 1.92 2.28 3.21 4.70 1.00 1.00

Midspan Kr m = 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 MPa

ฯ m = 0.0115 0.0115 0.0115 0.0115 0.0115 0.0115 0.01151 0.0115 0.0115

Am=ฯ mbd= 1865 1865 1865 1865 1865 1865 1865 1865 1865 mm2

Icr m = 2.37E+9 2.37E+9 2.37E+9 2.37E+9 2.37E+9 2.37E+9 2.37E+9 2.37E+9 2.37E+9 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560

Mmax/Mcr = 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Ig/Icr m = 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28

Right End Kr R = 6.80 5.96 5.25 4.28 3.50 2.34 2 0 0 MPa

ฯ R = 0.0263 0.0219 0.0186 0.0145 0.0115 0.0074 0.0046 0 0

AR=ฯ Rbd= 4265 3554 3017 2352 1865 1193 747 0 0 mm2

Icr R = 4.22E+9 3.75E+9 3.35E+9 2.81E+9 2.37E+9 1.68E+9 1.15E+9 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.219 0.306 0.379 0.479 0.560 0.689 1 0 0

MR/Mcr = -5.83 -5.11 -4.50 -3.67 -3.00 -2.00 -1.29 -0.75 0.00

Ig/Icr R = 1.28 1.44 1.61 1.92 2.28 3.21 4.70 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 160: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

145

Table M-2 - Data for CPL, ML=MR, Ig/Icr=2.3 โ€“ Example 3.4.2a โ€“ Page 2

Ex. 3.4.2a, pg 2 of 2 P0 = 77850 N fc' = 36 MPa b = 0.5 * h

L = 10000 mm fy = 400 MPa d = 0.9 * h

+ve Moment Ms/Mr = 0.635 ฯ m = 0.0115 fr = 0.6 *Mmax/Mcr = 3.00 Ig/Icr m = 2.28 Eb = 200000 MPa

ฮฑL/max=ML/Mmax = -1.94 -1.70 -1.50 -1.22 -1.00 -0.67 -0.43 -0.25 0.00

ML = -3.78E+8 -3.31E+8 -2.92E+8 -2.38E+8 -1.95E+8 -1.30E+8 -8.34E+7 -4.87E+7 0.00E+0 N mm

MR = -3.78E+8 -3.31E+8 -2.92E+8 -2.38E+8 -1.95E+8 -1.30E+8 -8.34E+7 -4.87E+7 0.00E+0 N mm

Mm = Mmax = 1.95E+8 1.95E+8 1.95E+8 1.95E+8 1.95E+8 1.95E+8 1.95E+8 1.95E+8 1.95E+8 N mm

K=1.5โ€“.5(M0/Mm)= 0.029 0.149 0.250 0.389 0.500 0.667 0.786 0.875 1.000

Constant Stiffness Results Using Constant Stiffness Equations

ฮ”g(Gross) 0.33 1.65 2.78 4.33 5.56 7.41 8.74 9.73 11.12 mm

ฮ”cr(Cracked) 0.74 3.76 6.33 9.84 12.65 16.87 19.88 22.14 25.30 mm

Max Uncrack โˆ†uncr = 0.11 0.55 0.93 1.44 1.85 2.47 2.91 3.24 3.70 mm

Deflection using the S806 Integration Method with Numerical Integration

โˆ†ฮฒ=0(S806) 4.92 6.43 7.89 10.26 12.40 16.23 19.29 21.51 24.77 mm

Exact Integration โˆ†Ie(x)

Analytical ฮ”1= -2.67 -2.28 -1.92 -1.37 -0.92 -0.29 -0.02 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.05 0.06 0.07 0.08 0.10 0.15 0.20 0.25 0.21 mm

Analytical ฮ”3= 4.43 4.78 5.12 5.68 6.22 7.25 8.20 9.08 10.61 mm

Analytical ฮ”4= 4.43 4.78 5.12 5.68 6.22 7.25 8.20 9.08 10.61 mm

Analytical ฮ”5 or ฮ”5+6= 0.05 0.06 0.07 0.08 0.10 0.15 0.20 0.25 0.21 mm

Analytical ฮ”6= -2.67 -2.28 -1.92 -1.37 -0.92 -0.29 -0.02 0.00 0.00 mm

ฮ”Ie(x)(Exact) 3.63 5.11 6.55 8.79 10.82 14.22 16.75 18.65 21.63 mm

numerical ฮ”max = 3.63 5.12 6.55 8.79 10.82 14.22 16.76 18.66 21.63 mm

numerical ฮ”mid = 3.63 5.12 6.55 8.79 10.82 14.22 16.76 18.66 21.63 mm

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm (Mcr/Mmax)2] ฮ”mid=K(MmL2)/(12EcI'e)

Ie Bischoff (ฮณ=1) = 2.53E+9 2.53E+9 2.53E+9 2.53E+9 2.53E+9 2.53E+9 2.53E+9 2.53E+9 2.53E+9 mm4

ฮ”ฮณ=1(Approx) 0.70 3.53 5.93 9.23 11.87 15.82 18.65 20.76 23.73 mm

ฮณ=3-2(Mcr/Mmax)= 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33

Bischoff's I'e = 2.78E+9 2.78E+9 2.78E+9 2.78E+9 2.78E+9 2.78E+9 2.78E+9 2.78E+9 2.78E+9 mm4

ฮ”I'e(Proposed) 0.64 3.22 5.41 8.41 10.82 14.42 17.00 18.93 21.63 mm

% error, proposed 82.45 37.10 17.40 4.26 0.00 1.45 1.45 1.47 0.00

Length:Defl, L/ฮ” 2758 1956 1527 1138 925 703 597 536 462

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 2.49E+9 2.49E+9 2.49E+9 2.49E+9 2.49E+9 2.49E+9 2.49E+9 2.49E+9 2.49E+9 mm4

ฮ”Ie(Branson) 0.71 3.59 6.04 9.40 12.08 16.11 18.99 21.14 24.17 mm

% error, Branson 80.40 29.74 7.73 6.95 11.71 13.32 13.32 13.35 11.71

CSA A23.3 Clause 9.8.2.4 Ie avg=.7Ie max+.15(IeL+IeR) or Ie =0.85Ie max + 0.15 IeL

Ie L (Bransons)= 4.23E+9 3.76E+9 3.38E+9 2.87E+9 2.49E+9 2.15E+9 3.14E+9 2.49E+9 2.49E+9 mm4

Ie R (Bransons)= 4.23E+9 3.76E+9 3.38E+9 2.87E+9 2.49E+9 2.15E+9 3.14E+9 2.49E+9 2.49E+9 mm4

Ie 9.8.2 (Bransons)= 3.01E+9 2.87E+9 2.75E+9 2.60E+9 2.49E+9 2.38E+9 2.68E+9 2.49E+9 2.49E+9 mm4

ฮ”Ie,avg(A23.3) 0.587 3.114 5.455 8.985 12.08 16.801 17.591 21.145 24.17 mm

๐‘“๐‘โ€ฒ

Page 161: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

146

Figure M-1 - Copy of Figure 3-1 โ€“ Midspan Point Load, Ig/Icr=2.3 and Mm/Mcr=3.0

The lines plotted in Figure M-1 use data in bold from Example 3.4.2a as found in Table

M-1 and Table M-2.

Page 162: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

147

Table M-3 - Data for CPL, ML=MR, Ig/Icr=3.9 โ€“ Example 3.4.2b โ€“ Page 1

Example 3.4.2b, pg 1 of 2 ฮฆc = 0.65

Midspan Point Load P0 = 41480 N fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 10000 mm Ec = 27000 MPa Mcr= 0.05 * N mm

Let ML=MR b = 0.5 * h mm ฮฑ1 = 0.796

d = 0.9 * h mm ฮฒ1 = 0.880

M0,0 = P0 L/4 = 1.04E+8 N mm ฮฆb = 0.85

End Moment Ms/Mr = 0.635 fy = 400 MPa

+ve Moment Ms/Mr = 0.635 Eb = 200000 MPa n=Eb/Ec= 7.40741

Member Properties Determined from Provided Info (Primairly Servicability) Units

P1PL = 122000 112108 98761.9 88255.3 79769.2 71517.2 63815.4 55306.7 41480 N

M0 = 3.05E+8 2.80E+8 2.47E+8 2.21E+8 1.99E+8 1.79E+8 1.60E+8 1.38E+8 1.04E+8 N mm

ฮฑL = ML/M0 = -0.66 -0.63 -0.58 -0.53 -0.48 -0.42 -0.35 -0.25 0

ฮฑR = MR/M0 = -0.66 -0.63 -0.58 -0.53 -0.48 -0.42 -0.35 -0.25 0

ML = -2.01E+8 -1.77E+8 -1.43E+8 -1.17E+8 -9.57E+7 -7.51E+7 -5.58E+7 -3.46E+7 0.00E+0 N mm

MR = -2.01E+8 -1.77E+8 -1.43E+8 -1.17E+8 -9.57E+7 -7.51E+7 -5.58E+7 -3.46E+7 0.00E+0 N mm

Mm = Mmax = 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 N mm

ฮฑcr = Mcr/Mmax= 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625

Mcr = 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

ฮฑL/max=ML/Mmax= -1.94 -1.70 -1.38 -1.13 -0.92 -0.72 -0.54 -0.33 0.00

Member Properties Determined with Factored Loads

Left End Kr L = 3.62 3.18 2.58 2.10 1.72 1.35 0 0 0 MPa

ฯ L = 0.0120 0.0103 0.0082 0.0066 0.0053 0.0041 0 0 0

AL=ฯ Lbd= 1938 1672 1328 1067 863 669 0 0 0 mm2

Icr L = 2.44E+9 2.19E+9 1.83E+9 1.54E+9 1.29E+9 1.05E+9 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.548 0.595 0.661 0.715 0.760 0.806 0 0 0

ML/Mcr = -3.11 -2.72 -2.21 -1.80 -1.48 -1.16 -0.86 -0.53 0.00

Ig/Icr L = 2.21 2.47 2.95 3.51 4.17 5.16 1.00 1.00 1.00

Midspan Kr m = 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 MPa

ฯ m = 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058

Am=ฯ mbd= 939 939 939 939 939 939 939 939 939 mm2

Icr m = 1.39E+9 1.39E+9 1.39E+9 1.39E+9 1.39E+9 1.39E+9 1.39E+9 1.39E+9 1.39E+9 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.743 0.743 0.743 0.743 0.743 0.743 0.743 0.743 0.743

Mmax/Mcr = 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60

Ig/Icr m = 3.89 3.89 3.89 3.89 3.89 3.89 3.89 3.89 3.89

Right End Kr R = 3.62 3.18 2.58 2.10 1.72 1.35 0 0 0 MPa

ฯ R = 0.0120 0.0103 0.0082 0.0066 0.0053 0.0041 0 0 0

AR=ฯ Rbd= 1938 1672 1328 1067 863 669 0 0 0 mm2

Icr R = 2.44E+9 2.19E+9 1.83E+9 1.54E+9 1.29E+9 1.05E+9 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.548 0.595 0.661 0.715 0.760 0.806 0 0 0

MR/Mcr = -3.11 -2.72 -2.21 -1.80 -1.48 -1.16 -0.86 -0.53 0.00

Ig/Icr R = 2.21 2.47 2.95 3.51 4.17 5.16 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 163: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

148

Table M-4 - Data for CPL, ML=MR, Ig/Icr=3.9 โ€“ Example 3.4.2b โ€“ Page 2

Ex. 3.4.2b, pg 2 of 2 P0 = 41480 N fc' = 36 MPa b = 0.5 * h

L = 10000 mm fy = 400 MPa d = 0.9 * h

+ve Moment Ms/Mr = 0.635 ฯ m = 0.0058 fr = 0.6 *Mmax/Mcr = 1.60 Ig/Icr m = 3.89 Eb = 200000 MPa

ฮฑL/max=ML/Mmax = -1.94 -1.70 -1.38 -1.13 -0.92 -0.72 -0.54 -0.33 0.00

ML = -2.01E+8 -1.77E+8 -1.43E+8 -1.17E+8 -9.57E+7 -7.51E+7 -5.58E+7 -3.46E+7 0.00E+0 N mm

MR = -2.01E+8 -1.77E+8 -1.43E+8 -1.17E+8 -9.57E+7 -7.51E+7 -5.58E+7 -3.46E+7 0.00E+0 N mm

Mm = Mmax = 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 N mm

K=1.5โ€“.5(M0/Mm)= 0.029 0.149 0.310 0.436 0.538 0.638 0.731 0.833 1.000

Constant Stiffness Results Using Constant Stiffness Equations

ฮ”g(Gross) 0.17 0.88 1.83 2.58 3.19 3.78 4.33 4.94 5.93 mm

ฮ”cr(Cracked) 0.68 3.43 7.14 10.06 12.42 14.72 16.86 19.23 23.07 mm

Max Uncrack โˆ†uncr = 0.11 0.55 1.15 1.62 1.99 2.36 2.71 3.09 3.70 mm

Deflection using the S806 Integration Method with Numerical Integration

โˆ†ฮฒ=0(S806) 2.84 4.19 6.36 8.34 10.12 11.82 13.40 15.26 18.89 mm

Exact Integration โˆ†Ie(x)

Analytical ฮ”1= -1.66 -1.28 -0.75 -0.38 -0.14 -0.01 0.00 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.17 0.20 0.26 0.32 0.39 0.49 0.60 0.70 0.72 mm

Analytical ฮ”3= 1.88 2.04 2.29 2.54 2.79 3.08 3.42 3.88 4.95 mm

Analytical ฮ”4= 1.88 2.04 2.29 2.54 2.79 3.08 3.42 3.88 4.95 mm

Analytical ฮ”5 or ฮ”5+6= 0.17 0.20 0.26 0.32 0.39 0.49 0.60 0.70 0.72 mm

Analytical ฮ”6= -1.66 -1.28 -0.75 -0.38 -0.14 -0.01 0.00 0.00 0.00 mm

ฮ”Ie(x)(Exact) 0.77 1.91 3.59 4.97 6.09 7.12 8.04 9.16 11.35 mm

numerical ฮ”max = 0.77 1.91 3.59 4.98 6.09 7.12 8.04 9.16 11.35 mm

numerical ฮ”mid = 0.77 1.91 3.59 4.98 6.09 7.12 8.04 9.16 11.35 mm

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm (Mcr/Mmax)2] ฮ”mid=K(MmL2)/(12EcI'e)

Ie Bischoff (ฮณ=1) = 1.95E+9 1.95E+9 1.95E+9 1.95E+9 1.95E+9 1.95E+9 1.95E+9 1.95E+9 1.95E+9 mm4

ฮ”ฮณ=1(Approx) 0.48 2.43 5.07 7.14 8.82 10.45 11.97 13.65 16.38 mm

ฮณ=3-2(Mcr/Mmax)= 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75

Bischoff's I'e = 2.82E+9 2.82E+9 2.82E+9 2.82E+9 2.82E+9 2.82E+9 2.82E+9 2.82E+9 2.82E+9 mm4

ฮ”I'e(Proposed) 0.33 1.69 3.51 4.95 6.11 7.24 8.30 9.46 11.35 mm

% error, proposed 56.39 11.61 1.99 0.48 0.36 1.78 3.18 3.29 0.00

Length:Defl, L/ฮ” 13063 5238 2789 2010 1642 1405 1244 1092 881

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 2.37E+9 2.37E+9 2.37E+9 2.37E+9 2.37E+9 2.37E+9 2.37E+9 2.37E+9 2.37E+9 mm4

ฮ”Ie(Branson) 0.40 2.01 4.19 5.90 7.28 8.63 9.88 11.27 13.52 mm

% error, Branson 48.05 5.28 16.74 18.55 19.54 21.23 22.90 23.03 19.11

CSA A23.3 Clause 9.8.2.4 Ie avg=.7Ie max+.15(IeL+IeR) or Ie =0.85Ie max + 0.15 IeL

Ie L (Bransons)= 2.54E+9 2.35E+9 2.16E+9 2.20E+9 2.57E+9 3.85E+9 2.37E+9 2.37E+9 2.37E+9 mm4

Ie R (Bransons)= 2.54E+9 2.35E+9 2.16E+9 2.20E+9 2.57E+9 3.85E+9 2.37E+9 2.37E+9 2.37E+9 mm4

Ie 9.8.2 (Bransons)= 2.42E+9 2.36E+9 2.31E+9 2.32E+9 2.43E+9 2.81E+9 2.37E+9 2.37E+9 2.37E+9 mm4

ฮ”Ie,avg(A23.3) 0.389 2.016 4.297 6.028 7.10 7.263 9.881 11.267 13.52 mm

๐‘“๐‘โ€ฒ

Page 164: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

149

Figure M-2 - Copy of Figure 3-2 โ€“ Midspan Point Load, Ig/Icr=3.9 and Mm/Mcr=1.6

The lines plotted in Figure M-2 use data in bold from Example 3.4.2b as found in Table

M-3 and Table M-4.

Page 165: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

150

Table M-5 - Data for CPL, ML=MR, Ig/Icr=3.8 โ€“ Example 3.4.2c โ€“ Page 1

Example 3.4.2c, pg 1 of 2 ฮฆc = 0.65 ฮตcu = 0.0035 mm/mm

Midspan Point Load P0 = 64800 N fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 10000 mm Ec = 27000 MPa Mcr= 0.05 * N mm

Let ML=MR b = 0.5 * h mm ฮฑ1 = 0.796

d = 0.9 * h mm ฮฒ1 = 0.880 ฯ b = 0.00578

M0,0 = P0 L/4 = 1.62E+8 N mm ฮฆb = 0.75 ฯ b=ฮฑ1ฮฒ1ฯ†cf'cฮตcu/(ฯ†bffu(ฮตcu+ffu/Ef))

End Moment Ms/Mr = 0.635 ffu = 690 MPa

+ve Moment Ms/Mr = 0.38 Eb = 44000 MPa n=Eb/Ec= 1.62963

Member Properties Determined from Provided Info (Primairly Servicability) Units

P1PL = 190588 175135 162000 147273 129600 117818 98181.8 81000 64800 N

M0 = 4.76E+8 4.38E+8 4.05E+8 3.68E+8 3.24E+8 2.95E+8 2.45E+8 2.03E+8 1.62E+8 N mm

ฮฑL = ML/M0 = -0.66 -0.63 -0.6 -0.56 -0.5 -0.45 -0.34 -0.2 0

ฮฑR = MR/M0 = -0.66 -0.63 -0.6 -0.56 -0.5 -0.45 -0.34 -0.2 0

ML = -3.14E+8 -2.76E+8 -2.43E+8 -2.06E+8 -1.62E+8 -1.33E+8 -8.35E+7 -4.05E+7 0.00E+0 N mm

MR = -3.14E+8 -2.76E+8 -2.43E+8 -2.06E+8 -1.62E+8 -1.33E+8 -8.35E+7 -4.05E+7 0.00E+0 N mm

Mm = Mmax = 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 N mm

ฮฑcr = Mcr/Mmax= 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Mcr = 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

ฮฑL/max=ML/Mmax= -1.94 -1.70 -1.50 -1.27 -1.00 -0.82 -0.52 -0.25 0.00

Member Properties Determined with Factored Loads

Left End c L = 229.37 194.37 166.78 137.74 105.07 84.41 52 0 0 mm

AL= 7211 4654 3173 2008 1081 666 233 0 0 mm2

ฯ L =AL/bd= 0.0445 0.0287 0.0196 0.0124 0.0067 0.0041 0 0 0

Icr L = 2.10E+9 1.49E+9 1.08E+9 7.33E+8 4.23E+8 2.72E+8 1.01E+8 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.611 0.725 0.799 0.864 0.922 0.950 1 0 0

ML/Mcr = -4.85 -4.26 -3.75 -3.18 -2.50 -2.05 -1.29 -0.63 0.00

Ig/Icr L = 2.57 3.63 4.98 7.36 12.77 19.88 53.46 1.00 1.00

Midspan c m = 189.95 189.95 189.95 189.95 189.95 189.95 189.95 189.95 189.95 mm

Am= 4388 4388 4388 4388 4388 4388 4388 4388 4388 mm2

ฯ m =Am/bd= 0.0271 0.0271 0.0271 0.0271 0.0271 0.0271 0.0271 0.0271 0.0271

Icr m = 1.42E+9 1.42E+9 1.42E+9 1.42E+9 1.42E+9 1.42E+9 1.42E+9 1.42E+9 1.42E+9 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737

Mmax/Mcr = 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50

Ig/Icr m = 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81

Right End cR = 229.37 194.37 166.78 137.74 105.07 84.41 51.67 0 0 mm

AR= 7211 4654 3173 2008 1081 666 233 0 0 mm2

ฯ R =AR/bd= 0.0445 0.0287 0.0196 0.0124 0.0067 0.0041 0.0014 0.0000 0.0000

Icr R = 2.10E+9 1.49E+9 1.08E+9 7.33E+8 4.23E+8 2.72E+8 1.01E+8 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.611 0.725 0.799 0.864 0.922 0.950 1 0 0

MR/Mcr = -4.85 -4.26 -3.75 -3.18 -2.50 -2.05 -1.29 -0.63 0.00

Ig/Icr R = 2.57 3.63 4.98 7.36 12.77 19.88 53.46 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 166: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

151

Table M-6 - Data for CPL, ML=MR, Ig/Icr=3.8 โ€“ Example 3.4.2c โ€“ Page 2

Ex. 3.4.2c, pg 2 of 2 P0 = 64800 N fc' = 36 MPa ฯ b = 0.00578

L = 10000 mm ffu = 690 MPa ฯ m = 0.0271

+ve Moment Ms/Mr = 0.380 fr = 0.6 *Mmax/Mcr = 2.50 Ig/Icr m = 3.81 Eb = 44000 MPa

ฮฑL/max=ML/Mmax = -1.94 -1.70 -1.50 -1.27 -1.00 -0.82 -0.52 -0.25 0.00

ML = -3.14E+8 -2.76E+8 -2.43E+8 -2.06E+8 -1.62E+8 -1.33E+8 -8.35E+7 -4.05E+7 0.00E+0 N mm

MR = -3.14E+8 -2.76E+8 -2.43E+8 -2.06E+8 -1.62E+8 -1.33E+8 -8.35E+7 -4.05E+7 0.00E+0 N mm

Mm = Mmax = 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 N mm

K=1.5โ€“.5(M0/Mm)= 0.029 0.149 0.250 0.364 0.500 0.591 0.742 0.875 1.000

Constant Stiffness Results Using Constant Stiffness Equations

ฮ”g(Gross) 0.27 1.38 2.31 3.37 4.63 5.47 6.87 8.10 9.26 mm

ฮ”cr(Cracked) 1.04 5.24 8.81 12.82 17.63 20.83 26.17 30.84 35.25 mm

Max Uncrack โˆ†uncr = 0.11 0.55 0.93 1.35 1.85 2.19 2.75 3.24 3.70 mm

Deflection using the S806 Integration Method with Numerical Integration

โˆ†ฮฒ=0(S806) 4.98 5.30 6.09 7.14 10.38 13.80 23.01 28.99 33.65 mm

Exact Integration โˆ†Ie(x)

Analytical ฮ”1= -3.86 -3.95 -3.88 -3.57 -2.72 -1.82 -0.17 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.07 0.08 0.09 0.11 0.15 0.18 0.26 0.34 0.30 mm

Analytical ฮ”3= 5.18 5.59 6.00 6.53 7.31 7.94 9.26 10.80 12.75 mm

Analytical ฮ”4= 5.18 5.59 6.00 6.53 7.31 7.94 9.26 10.80 12.75 mm

Analytical ฮ”5 or ฮ”5+6= 0.07 0.08 0.09 0.11 0.15 0.18 0.26 0.34 0.30 mm

Analytical ฮ”6= -3.86 -3.95 -3.88 -3.57 -2.72 -1.82 -0.17 0.00 0.00 mm

ฮ”Ie(x)(Exact) 2.76 3.43 4.42 6.16 9.48 12.61 18.69 22.29 26.10 mm

numerical ฮ”max = 2.76 3.44 4.43 6.17 9.49 12.61 18.70 22.29 26.10 mm

numerical ฮ”mid = 2.76 3.44 4.43 6.17 9.49 12.61 18.70 22.29 26.10 mm

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm (Mcr/Mmax)2] ฮ”mid=K(MmL2)/(12EcI'e)

Ie Bischoff (ฮณ=1) = 1.61E+9 1.61E+9 1.61E+9 1.61E+9 1.61E+9 1.61E+9 1.61E+9 1.61E+9 1.61E+9 mm4

ฮ”ฮณ=1(Approx) 0.91 4.62 7.77 11.31 15.55 18.37 23.08 27.21 31.09 mm

ฮณ=3-2(Mcr/Mmax)= 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20

Bischoff's I'e = 1.92E+9 1.92E+9 1.92E+9 1.92E+9 1.92E+9 1.92E+9 1.92E+9 1.92E+9 1.92E+9 mm4

ฮ”I'e(Proposed) 0.77 3.88 6.53 9.49 13.05 15.42 19.38 22.84 26.10 mm

% error, proposed 72.17 12.98 47.54 53.99 37.67 22.34 3.68 2.45 0.00

Length:Defl, L/ฮ” 3625 2912 2261 1622 1055 793 535 449 383

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 1.67E+9 1.67E+9 1.67E+9 1.67E+9 1.67E+9 1.67E+9 1.67E+9 1.67E+9 1.67E+9 mm4

ฮ”Ie(Branson) 0.88 4.44 7.47 10.87 14.94 17.66 22.19 26.15 29.88 mm

ACI 440.1R clause 8.3.2.2 Ie=Icr+(ฮฒdIg-Icr)(Mcr/Mmax)3 ฮฒd=0.2(ฯm/ฯ b)<1 ฯ b=.85ฮฒ1(f'c/ffu)Efฮตcu/(Efฮตcu+ffu)

Ie m (ACI440.1R) = 1.65E+9 1.65E+9 1.65E+9 1.65E+9 1.65E+9 1.65E+9 1.65E+9 1.65E+9 1.65E+9 mm4

ฮ”Ie,ฮฒd(ACI440) 0.890 4.500 7.568 11.009 15.14 17.889 22.476 26.489 30.27 mm

Ie L (ACI440.1R) = 2.13E+9 1.53E+9 1.16E+9 8.68E+8 7.20E+8 8.31E+8 2.42E+9 1.65E+9 1.65E+9 mm4

Ie R (ACI440.1R) = 2.13E+9 1.53E+9 1.16E+9 8.68E+8 7.20E+8 8.31E+8 2.42E+9 1.65E+9 1.65E+9 mm5

Ie 9.8.2 (& ACI440.1R)= 1.79E+9 1.62E+9 1.50E+9 1.42E+9 1.37E+9 1.41E+9 1.88E+9 1.65E+9 1.65E+9 mm4

ฮ”Ie,avg(A23.3) 0.820 4.598 8.310 12.836 18.22 21.021 19.713 26.489 30.27 mm

๐‘“๐‘โ€ฒ

Page 167: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

152

Figure M-3 - Copy of Figure 3-3 โ€“ Midspan Point Load, Ig/Icr=3.3 and Mm/Mcr=2.5

The lines plotted in Figure M-3 use data in bold from Example 3.4.2c as found in Table

M-5 and Table M-6.

Page 168: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

153

Table M-7 - Data for CPL, ML=MR, Ig/Icr=12 โ€“ Example 3.4.2d โ€“ Page 1

Example 3.4.2d, pg 1 of 2 ฮฆc = 0.65 ฮตcu = 0.0035 mm/mm

Midspan Point Load P0 = 41480 N fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 10000 mm Ec = 27000 MPa Mcr= 0.05 * N mm

Let ML=MR b = 0.5 * h mm ฮฑ1 = 0.796

d = 0.9 * h mm ฮฒ1 = 0.880 ฯ b = 0.00578

M0,0 = P0 L/4 = 1.04E+8 N mm ฮฆb = 0.75 ฯ b=ฮฑ1ฮฒ1ฯ†cf'cฮตcu/(ฯ†bffu(ฮตcu+ffu/Ef))

End Moment Ms/Mr = 0.635 ffu = 690 MPa

+ve Moment Ms/Mr = 0.4 Eb = 44000 MPa n=Eb/Ec= 1.62963

Member Properties Determined from Provided Info (Primairly Servicability) Units

P1PL = 122000 112108 103700 94272.7 82960 75418.2 62848.5 51850 41480 N

M0 = 3.05E+8 2.80E+8 2.59E+8 2.36E+8 2.07E+8 1.89E+8 1.57E+8 1.30E+8 1.04E+8 N mm

ฮฑL = ML/M0 = -0.66 -0.63 -0.6 -0.56 -0.5 -0.45 -0.34 -0.2 0

ฮฑR = MR/M0 = -0.66 -0.63 -0.6 -0.56 -0.5 -0.45 -0.34 -0.2 0

ML = -2.01E+8 -1.77E+8 -1.56E+8 -1.32E+8 -1.04E+8 -8.48E+7 -5.34E+7 -2.59E+7 0.00E+0 N mm

MR = -2.01E+8 -1.77E+8 -1.56E+8 -1.32E+8 -1.04E+8 -8.48E+7 -5.34E+7 -2.59E+7 0.00E+0 N mm

Mm = Mmax = 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 N mm

ฮฑcr = Mcr/Mmax= 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625

Mcr = 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

ฮฑL/max=ML/Mmax= -1.94 -1.70 -1.50 -1.27 -1.00 -0.82 -0.52 -0.25 0.00

Member Properties Determined with Factored Loads

Left End c L = 134.00 115.59 100.46 84.01 64.93 52.56 0 0 0 mm

AL= 1883 1340 978 659 378 241 0 0 0 mm2

ฯ L =AL/bd= 0.0116 0.0083 0.0060 0.0041 0.0023 0.0015 0 0 0

Icr L = 6.93E+8 5.13E+8 3.86E+8 2.69E+8 1.60E+8 1.05E+8 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.872 0.905 0.928 0.950 0.970 0.981 0 0 0

ML/Mcr = -3.11 -2.72 -2.40 -2.04 -1.60 -1.31 -0.82 -0.40 0.00

Ig/Icr L = 7.79 10.52 13.98 20.08 33.76 51.65 1.00 1.00 1.00

Midspan c m = 106.94 106.94 106.94 106.94 106.94 106.94 106.94 106.94 106.94 mm

Am= 1124 1124 1124 1124 1124 1124 1124 1124 1124 mm2

ฯ m =Am/bd= 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069

Icr m = 4.38E+8 4.38E+8 4.38E+8 4.38E+8 4.38E+8 4.38E+8 4.38E+8 4.38E+8 4.38E+8 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.919 0.919 0.919 0.919 0.919 0.919 0.919 0.919 0.919

Mmax/Mcr = 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60

Ig/Icr m = 12.32 12.32 12.32 12.32 12.32 12.32 12.32 12.32 12.32

Right End cR = 134.00 115.59 100.46 84.01 64.93 52.56 0.00 0 0 mm

AR= 1883 1340 978 659 378 241 0 0 0 mm2

ฯ R =AR/bd= 0.0116 0.0083 0.0060 0.0041 0.0023 0.0015 0.0000 0.0000 0.0000

Icr R = 6.93E+8 5.13E+8 3.86E+8 2.69E+8 1.60E+8 1.05E+8 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.872 0.905 0.928 0.950 0.970 0.981 0 0 0

MR/Mcr = -3.11 -2.72 -2.40 -2.04 -1.60 -1.31 -0.82 -0.40 0.00

Ig/Icr R = 7.79 10.52 13.98 20.08 33.76 51.65 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 169: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

154

Table M-8 - Data for CPL, ML=MR, Ig/Icr=12 โ€“ Example 3.4.2d โ€“ Page 2

Ex. 3.4.2d, pg 2 of 2 P0 = 41480 N fc' = 36 MPa ฯ b = 0.00578

L = 10000 mm ffu = 690 MPa ฯ m = 0.0069

+ve Moment Ms/Mr = 0.400 fr = 0.6 *Mmax/Mcr = 1.60 Ig/Icr m = 12.32 Eb = 44000 MPa

ฮฑL/max=ML/Mmax = -1.94 -1.70 -1.50 -1.27 -1.00 -0.82 -0.52 -0.25 0.00

ML = -2.01E+8 -1.77E+8 -1.56E+8 -1.32E+8 -1.04E+8 -8.48E+7 -5.34E+7 -2.59E+7 0.00E+0 N mm

MR = -2.01E+8 -1.77E+8 -1.56E+8 -1.32E+8 -1.04E+8 -8.48E+7 -5.34E+7 -2.59E+7 0.00E+0 N mm

Mm = Mmax = 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 1.04E+8 N mm

K=1.5โ€“.5(M0/Mm)= 0.029 0.149 0.250 0.364 0.500 0.591 0.742 0.875 1.000

Constant Stiffness Results Using Constant Stiffness Equations

ฮ”g(Gross) 0.17 0.88 1.48 2.15 2.96 3.50 4.40 5.18 5.93 mm

ฮ”cr(Cracked) 2.15 10.85 18.25 26.55 36.51 43.14 54.20 63.88 73.01 mm

Max Uncrack โˆ†uncr = 0.11 0.55 0.93 1.35 1.85 2.19 2.75 3.24 3.70 mm

Deflection using the S806 Integration Method with Numerical Integration

โˆ†ฮฒ=0(S806) 6.76 8.63 12.14 15.51 23.22 30.48 40.02 47.89 56.64 mm

Exact Integration โˆ†Ie(x)

Analytical ฮ”1= -4.97 -4.47 -3.82 -2.79 -1.25 -0.34 0.00 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.17 0.20 0.23 0.28 0.36 0.44 0.62 0.73 0.72 mm

Analytical ฮ”3= 4.83 5.23 5.63 6.16 6.94 7.57 8.94 10.61 12.85 mm

Analytical ฮ”4= 4.83 5.23 5.63 6.16 6.94 7.57 8.94 10.61 12.85 mm

Analytical ฮ”5 or ฮ”5+6= 0.17 0.20 0.23 0.28 0.36 0.44 0.62 0.73 0.72 mm

Analytical ฮ”6= -4.97 -4.47 -3.82 -2.79 -1.25 -0.34 0.00 0.00 0.00 mm

ฮ”Ie(x)(Exact) 0.06 1.91 4.09 7.29 12.09 15.34 19.11 22.67 27.15 mm

numerical ฮ”max = 0.07 1.92 4.10 7.30 12.10 15.35 19.12 22.67 27.16 mm

numerical ฮ”mid = 0.07 1.92 4.10 7.30 12.10 15.35 19.12 22.67 27.16 mm

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm (Mcr/Mmax)2] ฮ”mid=K(MmL2)/(12EcI'e)

Ie Bischoff (ฮณ=1) = 6.84E+8 6.84E+8 6.84E+8 6.84E+8 6.84E+8 6.84E+8 6.84E+8 6.84E+8 6.84E+8 mm4

ฮ”ฮณ=1(Approx) 1.38 6.96 11.70 17.02 23.40 27.66 34.75 40.95 46.81 mm

ฮณ=3-2(Mcr/Mmax)= 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75

Proposed I'e = 1.18E+9 1.18E+9 1.18E+9 1.18E+9 1.18E+9 1.18E+9 1.18E+9 1.18E+9 1.18E+9 mm4

ฮ”I'e(Proposed) 0.80 4.04 6.79 9.87 13.58 16.04 20.16 23.76 27.15 mm

% error, proposed 1268.65 110.81 66.01 35.46 12.32 4.57 5.46 4.80 0.00

Length:Defl, L/ฮ” 171386 5223 2446 1372 827 652 523 441 368

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 1.65E+9 1.65E+9 1.65E+9 1.65E+9 1.65E+9 1.65E+9 1.65E+9 1.65E+9 1.65E+9 mm4

ฮ”Ie(Branson) 0.57 2.88 4.85 7.05 9.70 11.46 14.40 16.97 19.40 mm

ACI 440.1R clause 8.3.2.2 Ie=Icr+(ฮฒdIg-Icr)(Mcr/Mmax)3 ฮฒd=0.2(ฯm/ฯ b)<1 ฯ b=.85ฮฒ1(f'c/ffu)Efฮตcu/(Efฮตcu+ffu)

Ie m (ACI440.1R) = 6.48E+8 6.48E+8 6.48E+8 6.48E+8 6.48E+8 6.48E+8 6.48E+8 6.48E+8 6.48E+8 mm4

ฮ”Ie,ฮฒd(ACI440) 1.453 7.342 12.348 17.961 24.70 29.187 36.670 43.218 49.39 mm

Ie L (ACI440.1R) = 7.14E+8 5.52E+8 4.52E+8 3.91E+8 4.38E+8 6.36E+8 6.48E+8 6.48E+8 6.48E+8 mm4

Ie R (ACI440.1R) = 7.14E+8 5.52E+8 4.52E+8 3.91E+8 4.38E+8 6.36E+8 6.48E+8 6.48E+8 6.48E+8 mm5

Ie 9.8.2 (& ACI440.1R)= 6.68E+8 6.19E+8 5.89E+8 5.71E+8 5.85E+8 6.44E+8 6.48E+8 6.48E+8 6.48E+8 mm4

ฮ”Ie,avg(A23.3) 1.410 7.683 13.579 20.389 27.36 29.348 36.670 43.218 49.39 mm

๐‘“๐‘โ€ฒ

Page 170: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

155

Figure M-4 - Copy of Figure 3-4 โ€“ Midspan Point Load, Ig/Icr=12 and Mm/Mcr=1.6

The lines plotted in Figure M-4 use data in bold from Example 3.4.2d as found in Table

M-7 and Table M-8.

Page 171: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

156

Third-Point Loaded Examples โ€“ Data for Section 3.5 Appendix N

This appendix provides the data and graphs for the example prismatic concrete members

with equal point loads at third points from Section 3.5 of this report. The concrete

members provided are beams as they are more likely to incur third point loading. The

calculations in this appendix use the general methodology indicated in Appendix J.

All members shown in this appendix have the same concrete cross-section. The point

loads vary with the end-moments such that all members for one graph are generated

with equal maximum moment. The concrete cross-section used is 300 mm wide by 600

mm deep with tension reinforcing at a depth of 540 mm and compression reinforcing

neglected. The end-moments are equal (๐‘€๐ฟ = ๐‘€๐‘…) for the first and third sets of

examples and the right end-moment is set equal to zero for two other sets. The end-

moments range provided is 3 < โˆ’๐‘€๐ฟ ๐‘€๐‘šโ„ โ‰ค 0; this exceeds the proposed valid range.

The first two examples are selected as steel reinforced members to demonstrate typical

steel reinforced members with two ends continuous and with one end continuous.

These members reach the cracking moment at ๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ = 2.2. The other two

examples are similar to the first two example, but are designed using GFRP and

๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ = 1.4. In order for these members to meet deflection requirements, the

bottom GFRP bars are increase to ๐‘€๐‘Ÿ = 2.44๐‘€๐‘ .

Results using the for simply supported members are shown separately from results

using the proposed equation, โˆ— = โˆ’ 0.1(๐‘€๐ฟ โˆ’ 1.5๐‘€๐‘…)/๐‘€๐‘๐‘Ÿ, for equal third-point

loading of continuous members.

Page 172: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

157

Table N-1 - Data for 2PL, ML=MR, Ig/Icr=3.0 โ€“ Example 3.5.2a โ€“ Page 1

Example 3.5.2a, pg 1 of 2 ฮฆc = 0.65

โ…“L & โ…”L Point Loads P0/2 = 42720 N fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 10000 mm Ec = 27000 MPa Mcr= 0.05 * N mm

Let ML=MR b = 0.5* h mm ฮฑ1 = 0.796

d = 0.9 * h mm ฮฒ1 = 0.880

M0,0 = P0 L/6 = 1.42E+8 N mm ฮฆb = 0.85

End Moment Ms/Mr = 0.635 fy = 400 MPa ฮฑ R = 1 *ฮฑ L

+ve Moment Ms/Mr = 0.635 Eb = 200000 MPa n=Eb/Ec= 7.40741

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -3.00 -2.50 -2.00 -1.50 -1.00 -0.80 -0.60 -0.30 0

ฮฑR/max=MR/Mmax= -3.00 -2.50 -2.00 -1.50 -1.00 -0.80 -0.60 -0.30 0

P2PL/2 = 170880 149520 128160 106800 85440 76896 68352 55536 42720 N

M0 = 5.70E+8 4.98E+8 4.27E+8 3.56E+8 2.85E+8 2.56E+8 2.28E+8 1.85E+8 1.42E+8 N mm

ฮฑL = ML/M0 = -0.75 -0.71 -0.67 -0.60 -0.50 -0.44 -0.38 -0.23 0

ฮฑR = MR/M0 = -0.75 -0.71 -0.67 -0.60 -0.50 -0.44 -0.38 -0.23 0

ML = -4.27E+8 -3.56E+8 -2.85E+8 -2.14E+8 -1.42E+8 -1.14E+8 -8.54E+7 -4.27E+7 0.00E+0 N mm

MR = -4.27E+8 -3.56E+8 -2.85E+8 -2.14E+8 -1.42E+8 -1.14E+8 -8.54E+7 -4.27E+7 0.00E+0 N mm

Mm = 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 N mm

Mmax = 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 N mm

ฮฑcr = Mcr/Mmax= 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455

Mcr = 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

Member Properties Determined with Factored Loads

Left End Kr L = 7.69 6.41 5.13 3.85 2.56 2.05 1.54 0 0 MPa

ฯ L = 0.0319 0.0242 0.0181 0.0128 0.0081 0.0064 0.0047 0 0

AL=ฯLbd= 5171 3919 2925 2075 1320 1038 766 0 0 mm2

Icr L = 4.76E+9 3.99E+9 3.28E+9 2.57E+9 1.82E+9 1.50E+9 1.17E+9 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.119 0.260 0.392 0.524 0.663 0.721 0.783 0 0

ML/Mcr = -6.59 -5.49 -4.40 -3.30 -2.20 -1.76 -1.32 -0.66 0.00

Ig/Icr L = 1.13 1.35 1.65 2.10 2.97 3.59 4.61 1.00 1.00

Midspan Kr m = 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56 MPa

ฯ m = 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081

Am=ฯmbd= 1320 1320 1320 1320 1320 1320 1320 1320 1320 mm2

Icr m = 1.82E+9 1.82E+9 1.82E+9 1.82E+9 1.82E+9 1.82E+9 1.82E+9 1.82E+9 1.82E+9 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.663 0.663 0.663 0.663 0.663 0.663 0.663 0.663 0.663

Mmax/Mcr = 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20

Ig/Icr m = 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97

Right End Kr R = 7.69 6.41 5.13 3.85 2.56 2.05 1.54 0 0 MPa

ฯ R = 0.0319 0.0242 0.0181 0.0128 0.0081 0.0064 0.0047 0 0

AR=ฯRbd= 5171 3919 2925 2075 1320 1038 766 0 0 mm2

Icr R = 4.76E+9 3.99E+9 3.28E+9 2.57E+9 1.82E+9 1.50E+9 1.17E+9 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.119 0.260 0.392 0.524 0.663 0.721 0.783 0 0

MR/Mcr = -6.59 -5.49 -4.40 -3.30 -2.20 -1.76 -1.32 -0.66 0.00

Ig/Icr R = 1.13 1.35 1.65 2.10 2.97 3.59 4.61 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 173: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

158

Table N-2 - Data for 2PL, ML=MR, Ig/Icr=3.0 โ€“ Example 3.5.2a โ€“ Page 2

Ex. 3.5.2a, pg 2 of 2 P0 = 42720 N fc' = 36 MPa b = 0.5 * h

L = 10000 mm fy = 400 MPa d = 0.9 * h

+ve Moment Ms/Mr = 0.635 ฯ m = 0.0081 fr = 0.6 *

Mmax/Mcr = 2.20 Ig/Icr m = 2.97 Eb = 200000 MPa

ฮฑL/max=ML/Mmax = -3.00 -2.50 -2.00 -1.50 -1.00 -0.80 -0.60 -0.30 0.00

ML = -4.27E+8 -3.56E+8 -2.85E+8 -2.14E+8 -1.42E+8 -1.14E+8 -8.54E+7 -4.27E+7 0.00E+0 N mm

M(โ…“L) = 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8

Mm = 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 N mm

M(โ…”L) = 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8

MR = -4.27E+8 -3.56E+8 -2.85E+8 -2.14E+8 -1.42E+8 -1.14E+8 -8.54E+7 -4.27E+7 0.00E+0 N mm

K=27/23-4M0/23Mm= 0.478 0.565 0.652 0.739 0.826 0.861 0.896 0.948 1.000

Constant Stiffness Results Using Constant Stiffness Equations

ฮ”g(Gross) 4.97 5.88 6.78 7.69 8.59 8.95 9.32 9.86 10.40 mm

ฮ”cr(Cracked) 14.75 17.43 20.12 22.80 25.48 26.55 27.63 29.24 30.85 mm

Max Uncrack โˆ†uncr = 2.26 2.68 3.09 3.50 3.91 4.07 4.24 4.49 4.73 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) 19.85 20.76 21.77 23.26 25.12 26.03 27.08 28.49 30.15 mm

Exact Integration Ie(x) (uses numerical integration; analytical integration not performed)

ฮ”max,Ie(x)(Exact) 16.41 17.20 18.24 19.56 21.18 21.90 22.62 23.71 25.01 mm

Length:Defl, L/ฮ”max= 609 581 548 511 472 457 442 422 400

ฮ”Ie(x)(Exact) 16.41 17.20 18.24 19.56 21.18 21.90 22.62 23.71 25.01 mm

ฮ”max,I'e(Bischoff) 11.96 14.13 16.31 18.48 20.65 21.52 22.39 23.70 25.00 mm

Proposed Method I'e=Icr/[1-ฮณฮทm (Mcr/Mmax)2] ฮ”mid=K(23MmL2)/(216EcI'e)

Ie Bischoff (ฮณ=1) = 2.11E+9 2.11E+9 2.11E+9 2.11E+9 2.11E+9 2.11E+9 2.11E+9 2.11E+9 2.11E+9 mm4

ฮ”ฮณ=1(Approx) 12.73 15.04 17.36 19.67 21.99 22.91 23.84 25.23 26.61 mm

ฮณ=1.7-.7(Mcr/Mmax)= 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38

Bischoff's I'e = 2.25E+9 2.25E+9 2.25E+9 2.25E+9 2.25E+9 2.25E+9 2.25E+9 2.25E+9 2.25E+9 mm4

ฮ”I'e(Bischoff) 11.96 14.13 16.30 18.48 20.65 21.52 22.39 23.69 25.00 mm

% error, Bischoff's 27.13 17.87 10.62 5.54 2.52 1.73 1.02 0.04 0.04

ฮณ*=ฮณ-.1(ML-1.5MR)/Mcr 1.05 1.11 1.16 1.22 1.27 1.29 1.32 1.35 1.38

I'e* (using ฮณ* )= 2.13E+9 2.15E+9 2.17E+9 2.19E+9 2.21E+9 2.21E+9 2.22E+9 2.23E+9 2.25E+9 mm4

ฮ”I'e*(Proposed) 12.62 14.79 16.91 18.99 21.04 21.84 22.64 23.83 25.00 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 mm4

ฮ”Ie(Branson) 12.45 14.71 16.97 19.24 21.50 22.41 23.31 24.67 26.03 mm

% error, Branson 24.13 14.49 6.94 1.65 1.49 2.31 3.05 4.07 4.07

CSA A23.3 Clause 9.8.2.4 Ie avg=.7Ie max+.15(IeL+IeR) or Ie =0.85Ie max + 0.15 IeL

Ie L (Bransons)= 4.76E+9 4.00E+9 3.31E+9 2.65E+9 2.16E+9 2.22E+9 3.02E+9 2.16E+9 2.16E+9 mm4

Ie R (Bransons)= 4.76E+9 4.00E+9 3.31E+9 2.65E+9 2.16E+9 2.22E+9 3.02E+9 2.16E+9 2.16E+9 mm4

Ie 9.8.2 (Bransons)= 2.94E+9 2.71E+9 2.50E+9 2.30E+9 2.16E+9 2.18E+9 2.42E+9 2.16E+9 2.16E+9 mm4

ฮ”Ie,avg(A23.3) 9.14 11.71 14.64 18.01 21.50 22.21 20.83 24.67 26.03 mm

๐‘“๐‘โ€ฒ

Page 174: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

159

Figure N-1 - Copy of Figure 3-5 โ€“ Third-Point Loaded, Ig/Icr=3 and Mm/Mcr=2.2

The lines plotted in Figure N-1 use data in bold from Example 3.5.2a as found in Table

N-1 and Table N-2.

Page 175: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

160

Table N-3 - Data for 2PL, MR=0, Ig/Icr=3.0 โ€“ Example 3.5.2b โ€“ Page 1

Example 3.5.2b, pg 1 of 2 ฮฆc = 0.65

โ…“L & โ…”L Point Loads P0/2 = 42720 N fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 10000 mm Ec = 27000 MPa Mcr= 0.05 * N mm

Let MR=0 b = 0.5* h mm ฮฑ1 = 0.796

d = 0.9 * h mm ฮฒ1 = 0.880

M0,0 = P0 L/6 = 1.42E+8 N mm ฮฆb = 0.85

End Moment Ms/Mr = 0.635 fy = 400 MPa ฮฑ R = 0 *ฮฑ L

+ve Moment Ms/Mr = 0.635 Eb = 200000 MPa n=Eb/Ec= 7.40741

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -3.00 -2.50 -2.00 -1.50 -1.00 -0.80 -0.60 -0.30 0

ฮฑR/max=MR/Mmax= 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

P2PL/2 = 85440 78320 71200 64080 56960 54112 51264 46992 42720 N

M0 = 2.85E+8 2.61E+8 2.37E+8 2.14E+8 1.90E+8 1.80E+8 1.71E+8 1.57E+8 1.42E+8 N mm

ฮฑL = ML/M0 = -1.50 -1.36 -1.20 -1.00 -0.75 -0.63 -0.50 -0.27 0

ฮฑR = MR/M0 = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

ML = -4.27E+8 -3.56E+8 -2.85E+8 -2.14E+8 -1.42E+8 -1.14E+8 -8.54E+7 -4.27E+7 0.00E+0 N mm

MR = 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 N mm

Mm = 7.12E+7 8.31E+7 9.49E+7 1.07E+8 1.19E+8 1.23E+8 1.28E+8 1.35E+8 1.42E+8 N mm

Mmax = 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 N mm

ฮฑcr = Mcr/Mmax= 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455

Mcr = 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

Member Properties Determined with Factored Loads

Left End Kr L = 7.69 6.41 5.13 3.85 2.56 2.05 1.54 0 0 MPa

ฯ L = 0.0319 0.0242 0.0181 0.0128 0.0081 0.0064 0.0047 0 0

AL=ฯLbd= 5171 3919 2925 2075 1320 1038 766 0 0 mm2

Icr L = 4.76E+9 3.99E+9 3.28E+9 2.57E+9 1.82E+9 1.50E+9 1.17E+9 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.119 0.260 0.392 0.524 0.663 0.721 0.783 0 0

ML/Mcr = -6.59 -5.49 -4.40 -3.30 -2.20 -1.76 -1.32 -0.66 0.00

Ig/Icr L = 1.13 1.35 1.65 2.10 2.97 3.59 4.61 1.00 1.00

Midspan Kr m = 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56 MPa

ฯ m = 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081

Am=ฯmbd= 1320 1320 1320 1320 1320 1320 1320 1320 1320 mm2

Icr m = 1.82E+9 1.82E+9 1.82E+9 1.82E+9 1.82E+9 1.82E+9 1.82E+9 1.82E+9 1.82E+9 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.663 0.663 0.663 0.663 0.663 0.663 0.663 0.663 0.663

Mmax/Mcr = 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20

Ig/Icr m = 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97

Right End Kr R = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 MPa

ฯ R = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0

AR=ฯRbd= 0 0 0 0 0 0 0 0 0 mm2

Icr R = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0

MR/Mcr = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ig/Icr R = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 176: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

161

Table N-4 - Data for 2PL, MR=0, Ig/Icr=3.0 โ€“ Example 3.5.2b โ€“ Page 2

Ex. 3.5.2b, pg 2 of 2 P0 = 42720 N fc' = 36 MPa b = 0.5 * h

L = 10000 mm fy = 400 MPa d = 0.9 * h

+ve Moment Ms/Mr = 0.635 ฯ m = 0.0081 fr = 0.6 *

Mmax/Mcr = 2.20 Ig/Icr m = 2.97 Eb = 200000 MPa

ฮฑL/max=ML/Mmax = -3.00 -2.50 -2.00 -1.50 -1.00 -0.80 -0.60 -0.30 0.00

ML = -4.27E+8 -3.56E+8 -2.85E+8 -2.14E+8 -1.42E+8 -1.14E+8 -8.54E+7 -4.27E+7 0.00E+0 N mm

M(โ…“L) = 0.00E+0 2.37E+7 4.75E+7 7.12E+7 9.49E+7 1.04E+8 1.14E+8 1.28E+8 1.42E+8

Mm = 7.12E+7 8.31E+7 9.49E+7 1.07E+8 1.19E+8 1.23E+8 1.28E+8 1.35E+8 1.42E+8 N mm

M(โ…”L) = 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8 1.42E+8

MR = 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 N mm

K=27/23-4M0/23Mm= 0.478 0.627 0.739 0.826 0.896 0.920 0.942 0.973 1.000

Constant Stiffness Results Using Constant Stiffness Equations

ฮ”g(Gross) 2.49 3.81 5.13 6.44 7.76 8.29 8.82 9.61 10.40 mm

ฮ”cr(Cracked) 7.38 11.29 15.20 19.11 23.02 24.59 26.15 28.50 30.85 mm

Max Uncrack โˆ†uncr = 2.26 2.97 3.50 3.91 4.24 4.35 4.46 4.60 4.73 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) 10.53 12.81 15.60 19.11 22.44 23.88 25.46 27.72 30.15 mm

Exact Integration Ie(x) (uses numerical integration; analytical integration not performed)

ฮ”max,Ie(x)(Exact) 9.16 10.50 12.37 14.86 17.90 19.19 20.50 22.63 25.01 mm

Length:Defl, L/ฮ”max= 1092 952 809 673 559 521 488 442 400

ฮ”Ie(x)(Exact) 7.18 8.96 11.25 14.24 17.61 19.02 20.44 22.63 25.01 mm

numerical ฮ”I'e = 5.98 9.15 12.32 15.49 18.66 19.93 21.20 23.10 25.00 mm

ฮ”max,I'e(Bischoff) 8.66 10.95 13.42 16.02 18.90 20.06 21.22 23.10 25.00 mm

Proposed Method I'e=Icr/[1-ฮณฮทm (Mcr/Mmax)2] ฮ”mid=K(23MmL2)/(216EcI'e)

Ie Bischoff (ฮณ=1) = 2.11E+9 2.11E+9 2.11E+9 2.11E+9 2.11E+9 2.11E+9 2.11E+9 2.11E+9 2.11E+9 mm4

ฮ”ฮณ=1(Approx) 6.36 9.74 13.11 16.49 19.86 21.21 22.56 24.59 26.61 mm

ฮณ=1.7-.7(Mcr/Mmax)= 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38

Bischoff's I'e = 2.25E+9 2.25E+9 2.25E+9 2.25E+9 2.25E+9 2.25E+9 2.25E+9 2.25E+9 2.25E+9 mm4

ฮ”I'e(Bischoff) 5.98 9.15 12.32 15.49 18.66 19.93 21.19 23.10 25.00 mm

% error, Bischoff's 16.71 2.11 9.50 8.79 5.94 4.77 3.67 2.07 0.04

ฮณ*=ฮณ-.1(ML-1.5MR)/Mcr 2.04 1.93 1.82 1.71 1.60 1.56 1.51 1.45 1.38

I'e* (using ฮณ* )= 2.53E+9 2.48E+9 2.43E+9 2.38E+9 2.33E+9 2.32E+9 2.30E+9 2.27E+9 2.25E+9 mm4

ฮ”I'e*(Proposed) 5.31 8.30 11.40 14.62 17.96 19.33 20.72 22.84 25.00 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 mm4

ฮ”Ie(Branson) 6.22 9.52 12.83 16.13 19.43 20.75 22.07 24.05 26.03 mm

% error, Branson 13.28 6.31 14.00 13.27 10.30 9.08 7.94 6.27 4.07

CSA A23.3 Clause 9.8.2.4 Ie avg=.7Ie max+.15(IeL+IeR) or Ie =0.85Ie max + 0.15 IeL

Ie L (Bransons)= 4.76E+9 4.00E+9 3.31E+9 2.65E+9 2.16E+9 2.22E+9 3.02E+9 2.16E+9 2.16E+9 mm4

Ie R (Bransons)= 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 2.16E+9 mm4

Ie 9.8.2 (Bransons)= 2.55E+9 2.43E+9 2.33E+9 2.23E+9 2.16E+9 2.17E+9 2.29E+9 2.16E+9 2.16E+9 mm4

ฮ”Ie,avg(A23.3) 5.27 8.44 11.88 15.59 19.43 20.66 20.82 24.05 26.03 mm

๐‘“๐‘โ€ฒ

Page 177: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

162

Figure N-2 - Copy of Figure 3-6 โ€“ Third-Point Loaded, Ig/Icr=3, Mmax/Mcr=2.2, MR=0

The lines plotted in Figure N-2 use data in bold from Example 3.5.2b as found in Table

N-3 and Table N-4.

Page 178: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

163

Table N-5 - Data for 2PL, ML=MR, Ig/Icr=12 โ€“ Example 3.5.2c โ€“ Page 1

Example 3.5.2c, pg 1 of 2 ฮฆc = 0.65 ฮตcu = 0.0035 mm/mm

โ…“L & โ…”L Point Loads P0/2 = 27300 N fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 10000 mm Ec = 27000 MPa Mcr= 0.05 * N mm

Let ML=MR b = 0.5* h mm ฮฑ1 = 0.796

d = 0.9 * h mm ฮฒ1 = 0.880 ฯ b=ฮฑ1ฮฒ1ฯ†cf'cฮตcu/(ฯ†bffu(ฮตcu+ffu/Ef))

M0,0 = P0 L/6 = 9.10E+7 N mm ฮฆb = 0.75 ฯ b = 0.00578

End Moment Ms/Mr = 0.635 ffu = 690 MPa ฮฑ R = 1 *ฮฑ L

+ve Moment Ms/Mr = 0.35 Eb = 44000 MPa n=Eb/Ec= 1.62963

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -3.00 -2.50 -2.00 -1.50 -1.00 -0.80 -0.60 -0.30 0

ฮฑR/max=MR/Mmax= -3.00 -2.50 -2.00 -1.50 -1.00 -0.80 -0.60 -0.30 0

P2PL/2 = 109200 95550 81900 68250 54600 49140 43680 35490 27300 N

M0 = 3.64E+8 3.19E+8 2.73E+8 2.28E+8 1.82E+8 1.64E+8 1.46E+8 1.18E+8 9.10E+7 N mm

ฮฑL = ML/M0 = -0.75 -0.71 -0.67 -0.60 -0.50 -0.44 -0.38 -0.23 0

ฮฑR = MR/M0 = -0.75 -0.71 -0.67 -0.60 -0.50 -0.44 -0.38 -0.23 0

ML = -2.73E+8 -2.28E+8 -1.82E+8 -1.37E+8 -9.10E+7 -7.28E+7 -5.46E+7 -2.73E+7 0.00E+0 N mm

MR = -2.73E+8 -2.28E+8 -1.82E+8 -1.37E+8 -9.10E+7 -7.28E+7 -5.46E+7 -2.73E+7 0.00E+0 N mm

Mm = 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 N mm

Mmax = 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 N mm

ฮฑcr = Mcr/Mmax= 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712

Mcr = 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

Member Properties Determined with Factored Loads

Left End c L = 191.94 154.34 119.60 87.15 56.58 44.81 0 0 0 mm

AL= 4506 2630 1449 714 282 173 0 0 0 mm2

ฯ L =AL/bd= 0.0278 0.0162 0.0089 0.0044 0.0017 0.0011 0 0 0

Icr L = 1.45E+9 9.25E+8 5.50E+8 2.90E+8 1.21E+8 7.59E+7 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.732 0.829 0.898 0.946 0.978 0.986 0 0 0

ML/Mcr = -4.21 -3.51 -2.81 -2.11 -1.40 -1.12 -0.84 -0.42 0.00

Ig/Icr L = 3.73 5.83 9.81 18.64 44.53 71.16 1.00 1.00 1.00

Midspan c m = 107.30 107.30 107.30 107.30 107.30 107.30 107.30 107.30 107.30 mm

Am= 1133 1133 1133 1133 1133 1133 1133 1133 1133 mm2

ฯ m =Am/bd= 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070

Icr m = 4.41E+8 4.41E+8 4.41E+8 4.41E+8 4.41E+8 4.41E+8 4.41E+8 4.41E+8 4.41E+8 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.918 0.918 0.918 0.918 0.918 0.918 0.918 0.918 0.918

Mmax/Mcr = 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40

Ig/Icr m = 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23

Right End cR = 191.94 154.34 119.60 87.15 56.58 44.81 0.00 0 0 mm

AR= 4506 2630 1449 714 282 173 0 0 0 mm2

ฯ R =AR/bd= 0.0278 0.0162 0.0089 0.0044 0.0017 0.0011 0.0000 0.0000 0.0000

Icr R = 1.45E+9 9.25E+8 5.50E+8 2.90E+8 1.21E+8 7.59E+7 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.732 0.829 0.898 0.946 0.978 0.986 0 0 0

MR/Mcr = -4.21 -3.51 -2.81 -2.11 -1.40 -1.12 -0.84 -0.42 0.00

Ig/Icr R = 3.73 5.83 9.81 18.64 44.53 71.16 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 179: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

164

Table N-6 - Data for 2PL, ML=MR, Ig/Icr=12 โ€“ Example 3.5.2c โ€“ Page 2

Ex. 3.5.2c, pg 2 of 2 P0 = 27300 N fc' = 36 MPa ฯ b = 0.00578

L = 10000 mm ffu = 690 MPa ฯ m = 0.0070

+ve Moment Ms/Mr = 0.350 fr = 0.6

Mmax/Mcr = 1.40 Ig/Icr m = 12.23 Eb = 44000 *

ฮฑL/max=ML/Mmax = -3.00 -2.50 -2.00 -1.50 -1.00 -0.80 -0.60 -0.30 0.00

ML = -2.73E+8 -2.28E+8 -1.82E+8 -1.37E+8 -9.10E+7 -7.28E+7 -5.46E+7 -2.73E+7 0.00E+0 N mm

M(โ…“L) = 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7

Mm = 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 N mm

M(โ…”L) = 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7

MR = -2.73E+8 -2.28E+8 -1.82E+8 -1.37E+8 -9.10E+7 -7.28E+7 -5.46E+7 -2.73E+7 0.00E+0 N mm

K=27/23-4M0/23Mm= 0.478 0.565 0.652 0.739 0.826 0.861 0.896 0.948 1.000

Constant Stiffness Results Using Constant Stiffness Equations

ฮ”g(Gross) 3.18 3.76 4.34 4.91 5.49 5.72 5.95 6.30 6.65 mm

ฮ”cr(Cracked) 38.89 45.96 53.03 60.10 67.17 70.00 72.83 77.07 81.31 mm

Max Uncrack โˆ†uncr = 2.26 2.68 3.09 3.50 3.91 4.07 4.24 4.49 4.73 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) 51.80 52.11 52.80 55.01 60.62 63.75 65.38 68.15 72.24 mm

Exact Integration Ie(x) (uses numerical integration; analytical integration not performed)

ฮ”max,Ie(x)(Exact) 25.27 25.54 26.47 28.51 31.71 32.75 33.36 34.43 35.88 mm

Length:Defl, L/ฮ”max= 396 391 378 351 315 305 300 290 279

ฮ”Ie(x)(Exact) 25.27 25.54 26.47 28.51 31.71 32.75 33.36 34.43 35.88 mm

ฮ”max,I'e(Bischoff) 17.14 20.26 23.37 26.49 29.60 30.85 32.09 33.96 35.83 mm

Proposed Method I'e=Icr/[1-ฮณฮทm (Mcr/Mmax)2] ฮ”mid=K(23MmL2)/(216EcI'e)

Ie Bischoff (ฮณ=1) = 8.26E+8 8.26E+8 8.26E+8 8.26E+8 8.26E+8 8.26E+8 8.26E+8 8.26E+8 8.26E+8 mm4

ฮ”ฮณ=1(Approx) 20.79 24.57 28.34 32.12 35.90 37.42 38.93 41.19 43.46 mm

ฮณ=1.7-.7(Mcr/Mmax)= 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20

Bischoff's I'e = 1.00E+9 1.00E+9 1.00E+9 1.00E+9 1.00E+9 1.00E+9 1.00E+9 1.00E+9 1.00E+9 mm4

ฮ”I'e(Bischoff) 17.14 20.25 23.37 26.48 29.60 30.85 32.09 33.96 35.83 mm

% error, Bischoff's 32.18 20.71 11.72 7.10 6.66 5.81 3.81 1.37 0.14

ฮณ*=ฮณ-.1(ML-1.5MR)/Mcr 0.99 1.03 1.06 1.10 1.13 1.15 1.16 1.18 1.20

I'e* (using ฮณ* )= 8.19E+8 8.45E+8 8.72E+8 9.01E+8 9.32E+8 9.45E+8 9.59E+8 9.80E+8 1.00E+9 mm4

ฮ”I'e*(Proposed) 20.95 24.01 26.84 29.43 31.80 32.68 33.52 34.72 35.83 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 2.23E+9 2.23E+9 2.23E+9 2.23E+9 2.23E+9 2.23E+9 2.23E+9 2.23E+9 2.23E+9 mm4

ฮ”Ie(Branson) 7.69 9.09 10.49 11.89 13.29 13.85 14.41 15.25 16.09 mm

ACI 440.1R clause 8.3.2.2 Ie=Icr+(ฮฒdIg-Icr)(Mcr/Mmax)3 ฮฒd=0.2(ฯm/ฯ b)<1 ฮฒd= 0.242

Ie m (ACI440.1R) = 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 mm4

ฮ”Ie,ฮฒd(ACI440) 22.77 26.91 31.05 35.19 39.33 40.99 42.65 45.13 47.61 mm

Ie L (ACI440.1R) = 1.45E+9 9.34E+8 5.84E+8 3.98E+8 5.49E+8 9.44E+8 7.54E+8 7.54E+8 7.54E+8 mm4

Ie R (ACI440.1R) = 1.45E+9 9.34E+8 5.84E+8 3.98E+8 5.49E+8 9.44E+8 7.54E+8 7.54E+8 7.54E+8 mm5

Ie 9.8.2 (& ACI440.1R)= 9.62E+8 8.08E+8 7.03E+8 6.47E+8 6.92E+8 8.11E+8 7.54E+8 7.54E+8 7.54E+8 mm4

ฮ”Ie,avg(A23.3) 17.85 25.11 33.30 40.99 42.82 38.11 42.65 45.13 47.61 mm

๐‘“๐‘โ€ฒ

Page 180: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

165

Figure N-3 - Copy of Figure 3-7 โ€“ Third-Point Loaded, Ig/Icr=12 and Mm/Mcr=1.4

The lines plotted in Figure N-3 use data in bold from Example 3.5.2c as found in Table

N-5 and Table N-6.

Page 181: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

166

Table N-7 - Data for 2PL, MR=0, Ig/Icr=12 โ€“ Example 3.5.2d โ€“ Page 1

Example 3.5.2d, pg 1 of 2 ฮฆc = 0.65 ฮตcu = 0.0035 mm/mm

โ…“L & โ…”L Point Loads P0/2 = 27300 N fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 10000 mm Ec = 27000 MPa Mcr= 0.05 * N mm

Let MR=0 b = 0.5* h mm ฮฑ1 = 0.796

d = 0.9 * h mm ฮฒ1 = 0.880 ฯ b=ฮฑ1ฮฒ1ฯ†cf'cฮตcu/(ฯ†bffu(ฮตcu+ffu/Ef))

M0,0 = P0 L/6 = 9.10E+7 N mm ฮฆb = 0.75 ฯ b = 0.00578

End Moment Ms/Mr = 0.635 ffu = 690 MPa ฮฑ R = 0 *ฮฑ L

+ve Moment Ms/Mr = 0.35 Eb = 44000 MPa n=Eb/Ec= 1.62963

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -3.00 -2.50 -2.00 -1.50 -1.00 -0.80 -0.60 -0.30 0

ฮฑR/max=MR/Mmax= 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

P2PL/2 = 54600 50050 45500 40950 36400 34580 32760 30030 27300 N

M0 = 1.82E+8 1.67E+8 1.52E+8 1.37E+8 1.21E+8 1.15E+8 1.09E+8 1.00E+8 9.10E+7 N mm

ฮฑL = ML/M0 = -1.50 -1.36 -1.20 -1.00 -0.75 -0.63 -0.50 -0.27 0

ฮฑR = MR/M0 = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

ML = -2.73E+8 -2.28E+8 -1.82E+8 -1.37E+8 -9.10E+7 -7.28E+7 -5.46E+7 -2.73E+7 0.00E+0 N mm

MR = 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 N mm

Mm = 4.55E+7 5.31E+7 6.07E+7 6.83E+7 7.58E+7 7.89E+7 8.19E+7 8.65E+7 9.10E+7 N mm

Mmax = 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 N mm

ฮฑcr = Mcr/Mmax= 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712

Mcr = 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

Member Properties Determined with Factored Loads

Left End c L = 191.94 154.34 119.60 87.15 56.58 44.81 0 0 0 mm

AL= 4506 2630 1449 714 282 173 0 0 0 mm2

ฯ L =AL/bd= 0.0278 0.0162 0.0089 0.0044 0.0017 0.0011 0 0 0

Icr L = 1.45E+9 9.25E+8 5.50E+8 2.90E+8 1.21E+8 7.59E+7 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.732 0.829 0.898 0.946 0.978 0.986 0 0 0

ML/Mcr = -4.21 -3.51 -2.81 -2.11 -1.40 -1.12 -0.84 -0.42 0.00

Ig/Icr L = 3.73 5.83 9.81 18.64 44.53 71.16 1.00 1.00 1.00

Midspan c m = 107.30 107.30 107.30 107.30 107.30 107.30 107.30 107.30 107.30 mm

Am= 1133 1133 1133 1133 1133 1133 1133 1133 1133 mm2

ฯ m =Am/bd= 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070

Icr m = 4.41E+8 4.41E+8 4.41E+8 4.41E+8 4.41E+8 4.41E+8 4.41E+8 4.41E+8 4.41E+8 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.918 0.918 0.918 0.918 0.918 0.918 0.918 0.918 0.918

Mmax/Mcr = 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40

Ig/Icr m = 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23

Right End cR = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 mm

AR= 0 0 0 0 0 0 0 0 0 mm2

ฯ R =AR/bd= 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Icr R = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0

MR/Mcr = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ig/Icr R = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 182: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

167

Table N-8 - Data for 2PL, MR=0, Ig/Icr=12 โ€“ Example 3.5.2d โ€“ Page 2

Ex. 3.5.2d, pg 2 of 2 P0 = 27300 N fc' = 36 MPa ฯ b = 0.00578

L = 10000 mm ffu = 690 MPa ฯ m = 0.0070

+ve Moment Ms/Mr = 0.350 fr = 0.6 *

Mmax/Mcr = 1.40 Ig/Icr m = 12.23 Eb = 44000 MPa

ฮฑL/max=ML/Mmax = -3.00 -2.50 -2.00 -1.50 -1.00 -0.80 -0.60 -0.30 0.00

ML = -2.73E+8 -2.28E+8 -1.82E+8 -1.37E+8 -9.10E+7 -7.28E+7 -5.46E+7 -2.73E+7 0.00E+0 N mm

M(โ…“L) = 0.00E+0 1.52E+7 3.03E+7 4.55E+7 6.07E+7 6.67E+7 7.28E+7 8.19E+7 9.10E+7

Mm = 4.55E+7 5.31E+7 6.07E+7 6.83E+7 7.58E+7 7.89E+7 8.19E+7 8.65E+7 9.10E+7 N mm

M(โ…”L) = 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7 9.10E+7

MR = 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 N mm

K=27/23-4M0/23Mm= 0.478 0.627 0.739 0.826 0.896 0.920 0.942 0.973 1.000

Constant Stiffness Results Using Constant Stiffness Equations

ฮ”g(Gross) 1.59 2.43 3.28 4.12 4.96 5.30 5.64 6.14 6.65 mm

ฮ”cr(Cracked) 19.44 29.76 40.07 50.38 60.69 64.82 68.94 75.13 81.31 mm

Max Uncrack โˆ†uncr = 2.26 2.97 3.50 3.91 4.24 4.35 4.46 4.60 4.73 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) 17.15 19.15 23.73 32.37 48.47 55.91 59.84 65.46 72.24 mm

Exact Integration Ie(x) (uses numerical integration; analytical integration not performed)

ฮ”max,Ie(x)(Exact) 7.42 8.52 10.33 13.40 18.90 21.96 25.05 30.02 35.88 mm

Length:Defl, L/ฮ”max= 1347 1174 968 746 529 455 399 333 279

ฮ”Ie(x)(Exact) 4.41 5.62 7.77 11.59 18.03 21.41 24.75 30.02 35.88 mm

numerical ฮ”I'e = 8.57 13.11 17.66 22.20 26.75 28.56 30.38 33.11 35.83 mm

ฮ”max,I'e(Bischoff) 12.42 15.69 19.23 22.96 27.09 28.75 30.42 33.11 35.83 mm

Proposed Method I'e=Icr/[1-ฮณฮทm (Mcr/Mmax)2] ฮ”mid=K(23MmL2)/(216EcI'e)

Ie Bischoff (ฮณ=1) = 8.26E+8 8.26E+8 8.26E+8 8.26E+8 8.26E+8 8.26E+8 8.26E+8 8.26E+8 8.26E+8 mm4

ฮ”ฮณ=1(Approx) 10.39 15.90 21.42 26.93 32.44 34.64 36.85 40.16 43.46 mm

ฮณ=1.7-.7(Mcr/Mmax)= 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20

Bischoff's I'e = 1.00E+9 1.00E+9 1.00E+9 1.00E+9 1.00E+9 1.00E+9 1.00E+9 1.00E+9 1.00E+9 mm4

ฮ”I'e(Bischoff) 8.57 13.11 17.66 22.20 26.74 28.56 30.38 33.10 35.83 mm

% error, Bischoff's 94.45 133.45 127.21 91.61 48.37 33.37 22.76 10.29 0.14

ฮณ*=ฮณ-.1(ML-1.5MR)/Mcr 1.62 1.55 1.48 1.41 1.34 1.31 1.29 1.24 1.20

I'e* (using ฮณ* )= 1.81E+9 1.59E+9 1.42E+9 1.29E+9 1.18E+9 1.14E+9 1.10E+9 1.05E+9 1.00E+9 mm4

ฮ”I'e*(Proposed) 4.75 8.25 12.42 17.26 22.78 25.17 27.67 31.63 35.83 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 2.23E+9 2.23E+9 2.23E+9 2.23E+9 2.23E+9 2.23E+9 2.23E+9 2.23E+9 2.23E+9 mm4

ฮ”Ie(Branson) 3.85 5.89 7.93 9.97 12.01 12.82 13.64 14.86 16.09 mm

ACI 440.1R clause 8.3.2.2 Ie=Icr+(ฮฒdIg-Icr)(Mcr/Mmax)3 ฮฒd=0.2(ฯm/ฯ b)<1 ฮฒd= 0.242

Ie m (ACI440.1R) = 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 mm4

ฮ”Ie,ฮฒd(ACI440) 11.39 17.42 23.46 29.50 35.54 37.95 40.37 43.99 47.61 mm

Ie L (ACI440.1R) = 1.45E+9 9.34E+8 5.84E+8 3.98E+8 5.49E+8 9.44E+8 7.54E+8 7.54E+8 7.54E+8 mm4

Ie R (ACI440.1R) = 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 7.54E+8 mm5

Ie 9.8.2 (& ACI440.1R)= 8.58E+8 7.81E+8 7.28E+8 7.00E+8 7.23E+8 7.82E+8 7.54E+8 7.54E+8 7.54E+8 mm4

ฮ”Ie,avg(A23.3) 10.00 16.82 24.28 31.74 37.05 36.57 40.37 43.99 47.61 mm

๐‘“๐‘โ€ฒ

Page 183: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

168

Figure N-4 - Copy of Figure 3-8 โ€“ Third-Point Loaded, Ig/Icr=12, Mmax/Mcr=1.4, MR=0

The lines plotted in Figure N-4 use data in bold from Example 3.5.2d as found in Table

N-7 and Table N-8.

Page 184: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

169

Uniformly Distributed Load Examples โ€“ Data for Appendix O

Section 3.6

The calculations in this appendix provide diverse sets of example continuous prismatic

members undergoing a uniformly distributed load. These examples are produced using

the methodology from Appendix I. In each set of examples, the uniform load varies

with the end-moments such that all members for one graph are generated with equal

maximum positive bending moments and reinforcing. These examples use a cracking

moment of ๐‘€๐‘๐‘Ÿ = 0.6โˆš๐‘“๐‘โ€ฒ(๐ผ๐‘”/๐‘ฆ๐‘ก); the use of ๐‘€๐‘๐‘Ÿ = 0.3โˆš๐‘“๐‘โ€ฒ(๐ผ๐‘”/๐‘ฆ๐‘ก), per the R2010

version of A23.3 (CSA 2004), is discussed and compared in Appendix P.

The first five examples demonstrate results for steel reinforced members. Examples

3.6.2a and 3.6.2b are similar steel reinforced beams that demonstrate typical steel

members with two end-moments and one end-moment, respectively. These two

examples, where ๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ = 2.17 and ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ = 3, show that the provided methods

which account for tension stiffening work well if 2๐‘€๐‘š๐‘Ž๐‘ฅ < โˆ’๐‘€๐ฟ. Examples 3.6.2c and

3.6.2d are a beam and a slab which demonstrate that, if ratios such as ๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ and

๐ผ๐‘”/๐ผ๐‘๐‘Ÿ are held constant, then span, width, height, and load are inputs that donโ€™t affect

the essential results because they can be changed without affecting the normalized

moment-deflection graphs. Examples 3.6.2c and 3.6.2d have equal end-moments with

both ends continuous while Example 3.6.2e demonstrates a slab comparable to Example

3.6.2d but with one end continuous. For Examples 3.6.2c, 3.6.2d, and 3.6.2e,

๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ = 1.333 and ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ = 4.9, therefore Bransonโ€™s (1965) method underpredicts

deflection by more than 10%, as expected.

Page 185: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

170

Examples 3.6.2f, 3.6.2g, and 3.6.2h are designed with GFRP reinforcing. In order to

limit deflection, these GFRP examples required ๐‘€๐‘š๐‘Ž๐‘ฅ ๐‘€๐‘๐‘Ÿโ„ > 0.5 and bottom bars

exceeding those required for ๐‘€๐‘Ÿ = ๐‘€๐‘“. Example 3.6.2f demonstrates a slab with a

single layer of reinforcing, ๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ = 1.22, and ๐‘€๐‘Ÿ/๐‘€๐‘“ = 1.15; portions of the

results, where the required negative moment capacity cannot be achieved, were omitted.

Example 3.6.2f also shows the futility of the ๐›ฝ๐‘‘ factor from ACI 440.1R (ACI

Committee 440 2006) when reinforcing ratios are more than three times the balanced

reinforcing ratio. Example 3.6.2g is a beam with one end continuous, ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ = 6,

๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ = 2.0, and ๐‘€๐‘Ÿ/๐‘€๐‘  = 1.6; this contrasts with the beam in Example 3.6.2h

which has two ends continuous, ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ = 14, ๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ = 1.25, and ๐‘€๐‘Ÿ/๐‘€๐‘  = 1.29.

The second and third GFRP examples show that the ๐›ฝ๐‘‘ factor often yields reasonable

results. As expected, the GFRP results show Bransonโ€™s (1965) method underpredicts

deflection and show that the S806 (CSA 2012) method is overly conservative when

tension stiffening is significant.

For the example graphs, the end-moments range provided is 3 < โˆ’๐‘€๐ฟ ๐‘€๐‘šโ„ โ‰ค 0. For

results with ๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ โ‰ˆ 1.25, 2.5๐‘€๐‘š > โˆ’๐‘€๐ฟ โ‰ฅ 0 is the proposed valid range. For

๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ โ‰ˆ 2.0, the proposed valid range is reduced to 2.0๐‘€๐‘š > โˆ’๐‘€๐ฟ โ‰ฅ 0.

After determining the midspan deflection using proposed equations, the equation for the

approximate maximum deflection is โˆ†๐‘š๐‘Ž๐‘ฅโ‰ˆ โˆ†๐‘š๐‘–๐‘‘โˆš๐‘€๐‘š๐‘Ž๐‘ฅ โ„ ๐‘€๐‘š . This equation is only

intended to account for the difference between the midspan and maximum deflection, so

it only gives an accurate maximum deflection result when the input midspan deflection

is accurate. Examples 3.6.2b, 3.6.2e, and 3.6.2g demonstrate use of this equation.

Page 186: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

171

Table O-1 - Data for UDL Beam, ML=MR, Ig/Icr=3.0 โ€“ Example 3.6.2a โ€“ Page 1

Example 3.6.2a, pg 1 of 2 ฮฆc = 0.65

UDL Continuous w0 = 11.27 N/mm fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 10000 mm Ec = 27000 MPa Mcr= 0.05 * N mm

Let ML=MR b = 0.5* h mm ฮฑ1 = 0.796

d = 0.9 * h mm ฮฒ1 = 0.880

M0,0 = w0 L2/8 = 1.41E+8 N mm ฮฆb = 0.85

End Moment Ms/Mr = 0.635 fy = 400 MPa ฮฑ R = 1 *ฮฑ L

+ve Moment Ms/Mr = 0.635 Eb = 200000 MPa n=Eb/Ec= 7.40741

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -3.00 -2.33 -1.78 -1.70 -1.00 -0.67 -0.43 -0.25 0

wUDL = 45.08 37.57 31.31 30.46 22.54 18.78 16.10 14.09 11.27 N/mm

M0 = 5.64E+8 4.70E+8 3.91E+8 3.81E+8 2.82E+8 2.35E+8 2.01E+8 1.76E+8 1.41E+8 N mm

ฮฑL = ML/M0 = -0.75 -0.70 -0.64 -0.63 -0.50 -0.40 -0.30 -0.20 0

ฮฑR = MR/M0 = -0.75 -0.70 -0.64 -0.63 -0.50 -0.40 -0.30 -0.20 0

ML = -4.23E+8 -3.29E+8 -2.50E+8 -2.40E+8 -1.41E+8 -9.39E+7 -6.04E+7 -3.52E+7 0.00E+0 N mm

MR = -4.23E+8 -3.29E+8 -2.50E+8 -2.40E+8 -1.41E+8 -9.39E+7 -6.04E+7 -3.52E+7 0.00E+0 N mm

Mm = 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 N mm

Mmax = 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 N mm

ฮฑcr = Mcr/Mmax= 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46

Mcr = 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

L1 = 1979 1691 1375 1325 728 320 -55 -404 -1042 mm

L2 = 3163 2988 2795 2765 2402 2154 1926 1714 1326 mm

LR4 = 3163 2988 2795 2765 2402 2154 1926 1714 1326 mm

LR5 = 1979 1691 1375 1325 728 320 -55 -404 -1042 mm

Member Properties Determined with Factored Loads

Left End Kr L = 7.61 5.92 4.51 4.32 2.54 1.69 0.00 0 0 MPa

ฯ L = 0.0313 0.0217 0.0154 0.0147 0.0081 0.0052 0.0000 0 0

AL=ฯLbd= 5077 3516 2500 2375 1304 846 0 0 0 mm2

Icr L = 4.71E+9 3.72E+9 2.94E+9 2.83E+9 1.80E+9 1.27E+9 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.129 0.311 0.456 0.475 0.666 0.764 0.000 0 0

ML/Mcr = -6.52 -5.07 -3.86 -3.70 -2.17 -1.45 -0.93 -0.54 0.00

Ig/Icr L = 1.15 1.45 1.84 1.91 2.99 4.24 1.00 1.00 1.00

Midspan Kr m = 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 MPa

ฯ m = 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081

Icr m = 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.666 Mmax/Mcr = 2.17 Ig/Icr m = 2.99 Am=ฯmbd= 1304 mm2

Right End Kr R = 7.61 5.92 4.51 4.32 2.54 1.69 0.00 0 0 MPa

ฯ R = 0.0313 0.0217 0.0154 0.0147 0.0081 0.0052 0.0000 0 0

AR=ฯRbd= 5077 3516 2500 2375 1304 846 0 0 0 mm2

Icr R = 4.71E+9 3.72E+9 2.94E+9 2.83E+9 1.80E+9 1.27E+9 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.129 0.311 0.456 0.475 0.666 0.764 0.000 0 0

MR/Mcr = -6.52 -5.07 -3.86 -3.70 -2.17 -1.45 -0.93 -0.54 0.00

Ig/Icr R = 1.15 1.45 1.84 1.91 2.99 4.24 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 187: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

172

Table O-2 - Data for UDL Beam, ML=MR, Ig/Icr=3.0 โ€“ Example 3.6.2a โ€“ Page 2

Ex. 3.6.2a, pg 2 of 2 w0 = 11.27 N/mm fc' = 36 MPa b = 0.5* h mm

L = 10000 mm fy = 400 MPa d = 0.9 * h mm

+ve Moment Ms/Mr = 0.635 ฯ m = 0.0081 fr = 0.6 *

Mmax/Mcr = 2.17 Ig/Icr m = 2.99 Eb = 200000 MPa

ฮฑL/max=ML/Mmax = -3.00 -2.33 -1.78 -1.70 -1.00 -0.67 -0.43 -0.25 0.00

ML = -4.23E+8 -3.29E+8 -2.50E+8 -2.40E+8 -1.41E+8 -9.39E+7 -6.04E+7 -3.52E+7 0.00E+0 N mm

Mm = 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 N mm

Mmax = 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8

MR = -4.23E+8 -3.29E+8 -2.50E+8 -2.40E+8 -1.41E+8 -9.39E+7 -6.04E+7 -3.52E+7 0.00E+0 N mm

K=1.2-0.2M0/Mm= 0.400 0.533 0.644 0.659 0.800 0.867 0.914 0.950 1.000

Constant Stiffness Results Using Constant Stiffness Equations ฮ”mid=K(5MmL2)/(48EcI)

ฮ”g(Gross) 4.03 5.37 6.49 6.64 8.05 8.72 9.20 9.56 10.06 mm

ฮ”cr(Cracked) 12.05 16.07 19.41 19.87 24.10 26.11 27.54 28.62 30.13 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 mm4

ฮ”Ie(Branson) 10.09 13.46 16.26 16.64 20.18 21.87 23.07 23.97 25.23 mm

% error, Branson 16.52 3.00 3.50 4.09 6.87 6.96 6.82 6.41 5.24

CSA A23.3 Clause 9.8.2.4 Ie avg=.7Ie max+.15(IeL+IeR) or Ie =0.85Ie max + 0.15 IeL

Ie L (Bransons)= 4.71E+9 3.73E+9 2.98E+9 2.88E+9 2.15E+9 2.63E+9 2.15E+9 2.15E+9 2.15E+9 mm4

Ie R (Bransons)= 4.71E+9 3.73E+9 2.98E+9 2.88E+9 2.15E+9 2.63E+9 2.15E+9 2.15E+9 2.15E+9 mm4

Ie 9.8.2 (Bransons)= 2.92E+9 2.63E+9 2.40E+9 2.37E+9 2.15E+9 2.30E+9 2.15E+9 2.15E+9 2.15E+9 mm4

ฮ”Ie,avg(A23.3) 7.44 11.03 14.58 15.10 20.18 20.51 23.07 23.97 25.23 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) 15.79 17.81 19.87 20.10 23.45 25.38 26.83 27.90 29.59 mm

Exact Integration Ie(x)Analytical ฮ”1= -1.27 -0.95 -0.62 -0.57 -0.15 -0.02 0.00 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.11 0.12 0.13 0.13 0.15 0.17 0.18 0.18 0.14 mm

Analytical ฮ”3= 7.21 7.77 8.35 8.44 9.45 10.08 10.62 11.09 11.85 mm

Analytical ฮ”4= 7.21 7.77 8.35 8.44 9.45 10.08 10.62 11.09 11.85 mm

Analytical ฮ”5 or ฮ”5+6= 0.11 0.12 0.13 0.13 0.15 0.17 0.18 0.18 0.14 mm

Analytical ฮ”6= -1.27 -0.95 -0.62 -0.57 -0.15 -0.02 0.00 0.00 0.00 mm

ฮ”Ie(x)(Exact) 12.09 13.87 15.71 15.98 18.89 20.44 21.60 22.52 23.97 mm

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm(Mcr/Mmax)2] ฮณ=(1.6ฮพ 3-0.6ฮพ 4)/(Mcr/Mmax)

2+2.4ln(2-ฮพ )

I'e (ฮณ=1) (M(x)=Mmax) = 2.10E+9 2.10E+9 2.10E+9 2.10E+9 2.10E+9 2.10E+9 2.10E+9 2.10E+9 2.10E+9 mm4

ฮ”ฮณ=1(Approx) 10.35 13.80 16.68 17.07 20.70 22.43 23.66 24.59 25.88 mm

ฮพ =1-โˆš(1-Mcr/Mmax)= 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265

ฮณ= 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45

Bischoff's I'e = 2.27E+9 2.27E+9 2.27E+9 2.27E+9 2.27E+9 2.27E+9 2.27E+9 2.27E+9 2.27E+9 mm4

ฮ”I'e(Proposed) 9.59 12.79 15.45 15.81 19.18 20.78 21.92 22.78 23.97 mm

% error, proposed 20.68 7.83 1.65 1.09 1.55 1.64 1.50 1.11 0.00

Maximum Deflection Results using numerical and approximation methods ฮ”max โ‰ˆ ฮ”I'e โˆš(Mmax/Mm)

ฮ”max,Ie(x)(Exact) 12.09 13.87 15.71 15.99 18.89 20.44 21.60 22.53 23.97 mm

Length:Defl, L/ฮ”max= 827 721 637 626 529 489 463 444 417

ฮ”max,I'e(Proposed) 9.59 12.79 15.45 15.81 19.18 20.78 21.92 22.78 23.97 mm

๐‘“๐‘โ€ฒ

Page 188: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

173

Figure O-1 - Copy of Figure 3-9 โ€“ UDL on Beam, Ig/Icr=3, Mm /Mcr=2.2, ML=MR

The lines plotted in Figure O-1 use data in bold from Example 3.6.2a as found in Table

O-1 and Table O-2.

Page 189: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

174

Table O-3 - Data for UDL Beam, MR=0, Ig/Icr=3.0 โ€“ Example 3.6.2b โ€“ Page 1

Example 3.6.2b, pg 1 of 2 ฮฆc = 0.65

UDL Continuous w0 = 11.27 N/mm fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 10000 mm Ec = 27000 MPa Mcr= 0.05 * N mm

Let MR=0 b = 0.5* h mm ฮฑ1 = 0.796

d = 0.9 * h mm ฮฒ1 = 0.880

M0,0 = w0 L2/8 = 1.41E+8 N mm ฮฆb = 0.85

End Moment Ms/Mr = 0.635 fy = 400 MPa ฮฑ R = 0 *ฮฑ L

+ve Moment Ms/Mr = 0.635 Eb = 200000 MPa n=Eb/Ec= 7.40741

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -2.99 -2.09 -1.50 -1.03 -0.65 -0.49 -0.35 -0.22 0

wUDL = 25.29 21.44 18.76 16.56 14.72 13.91 13.17 12.49 11.27 N/mm

M0 = 3.16E+8 2.68E+8 2.35E+8 2.07E+8 1.84E+8 1.74E+8 1.65E+8 1.56E+8 1.41E+8 N mm

ฮฑL = ML/M0 = -1.33 -1.10 -0.9 -0.7 -0.50 -0.40 -0.30 -0.20 0

ฮฑR = MR/M0 = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

ML = -4.21E+8 -2.95E+8 -2.11E+8 -1.45E+8 -9.20E+7 -6.96E+7 -4.94E+7 -3.12E+7 0.00E+0 N mm

MR = 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 N mm

Mm = 1.06E+8 1.21E+8 1.29E+8 1.35E+8 1.38E+8 1.39E+8 1.40E+8 1.40E+8 1.41E+8 N mm

Mmax = 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 N mm

ฮฑcr = Mcr/Mmax= 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46

Mcr = 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

L1 = 2630 1995 1443 891 339 63 -213 -489 -1042 mm

L2 = 4210 3711 3277 2844 2410 2193 1976 1759 1326 mm

LR4 = 885 961 1027 1094 1160 1193 1226 1259 1326 mm

LR5 = -695 -755 -807 -859 -911 -937 -963 -989 -1042 mm

Member Properties Determined with Factored Loads

Left End Kr L = 7.57 5.31 3.80 2.61 1.66 1.25 0.00 0 0 MPa

ฯ L = 0.0311 0.0189 0.0126 0.0083 0.0051 0.0038 0.0000 0 0

AL=ฯLbd= 5035 3054 2047 1345 828 618 0 0 0 mm2

Icr L = 4.68E+9 3.38E+9 2.54E+9 1.85E+9 1.25E+9 9.79E+8 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.133 0.374 0.529 0.658 0.768 0.819 0.000 0 0

ML/Mcr = -6.49 -4.55 -3.26 -2.24 -1.42 -1.07 -0.76 -0.48 0.00

Ig/Icr L = 1.15 1.60 2.12 2.92 4.32 5.51 1.00 1.00 1.00

Midspan Kr m = 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 MPa

ฯ m = 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081

Icr m = 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.666 Mmax/Mcr = 2.17 Ig/Icr m = 2.99 Am=ฯmbd= 1304 mm2

Right End Kr R = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 MPa

ฯ R = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0

AR=ฯRbd= 0 0 0 0 0 0 0 0 0 mm2

Icr R = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0

MR/Mcr = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ig/Icr R = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 190: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

175

Table O-4 - Data for UDL Beam, MR=0, Ig/Icr=3.0 โ€“ Example 3.6.2b โ€“ Page 2

Ex. 3.6.2b, pg 2 of 2 w0 = 11.27 N/mm fc' = 36 MPa b = 0.5* h mm

L = 10000 mm fy = 400 MPa d = 0.9 * h mm

+ve Moment Ms/Mr = 0.635 ฯ m = 0.0081 fr = 0.6 *

Mmax/Mcr = 2.17 Ig/Icr m = 2.99 Eb = 200000 MPa

ฮฑL/max=ML/Mmax = -2.99 -2.09 -1.50 -1.03 -0.65 -0.49 -0.35 -0.22 0.00

ML = -4.21E+8 -2.95E+8 -2.11E+8 -1.45E+8 -9.20E+7 -6.96E+7 -4.94E+7 -3.12E+7 0.00E+0 N mm

Mm = 1.06E+8 1.21E+8 1.29E+8 1.35E+8 1.38E+8 1.39E+8 1.40E+8 1.40E+8 1.41E+8 N mm

Mmax = 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8

MR = 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 N mm

K=1.2-0.2M0/Mm= 0.603 0.756 0.836 0.892 0.933 0.950 0.965 0.978 1.000

Constant Stiffness Results Using Constant Stiffness Equations ฮ”mid=K(5MmL2)/(48EcI)

ฮ”g(Gross) 4.56 6.51 7.71 8.58 9.20 9.44 9.65 9.81 10.06 mm

ฮ”cr(Cracked) 13.66 19.49 23.07 25.67 27.54 28.27 28.87 29.37 30.13 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 mm4

ฮ”Ie(Branson) 11.44 16.32 19.32 21.50 23.07 23.67 24.18 24.60 25.23 mm

% error, Branson 11.07 2.54 5.95 6.61 6.44 6.30 6.10 5.84 5.24

CSA A23.3 Clause 9.8.2.4 Ie avg=.7Ie max+.15(IeL+IeR) or Ie =0.85Ie max + 0.15 IeL

Ie L (Bransons)= 4.68E+9 3.40E+9 2.63E+9 2.17E+9 2.70E+9 4.55E+9 2.15E+9 2.15E+9 2.15E+9 mm4

Ie R (Bransons)= 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 2.15E+9 mm4

Ie 9.8.2 (Bransons)= 2.53E+9 2.34E+9 2.22E+9 2.16E+9 2.24E+9 2.51E+9 2.15E+9 2.15E+9 2.15E+9 mm4

ฮ”Ie,avg(A23.3) 9.73 15.01 18.71 21.48 22.22 20.29 24.18 24.60 25.23 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) 16.82 20.21 22.86 25.12 26.88 27.65 28.23 28.73 29.59 mm

Exact Integration Ie(x)Analytical ฮ”1= -2.25 -1.32 -0.67 -0.23 -0.03 0.00 0.00 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.19 0.20 0.20 0.21 0.21 0.21 0.21 0.19 0.14 mm

Analytical ฮ”3= 2.04 3.88 5.55 7.18 8.70 9.42 10.09 10.72 11.85 mm

Analytical ฮ”4= 12.83 13.08 13.07 12.92 12.68 12.53 12.38 12.21 11.85 mm

Analytical ฮ”5 or ฮ”5+6= 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.12 0.14 mm

Analytical ฮ”6= 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 mm

ฮ”Ie(x)(Exact) 12.86 15.92 18.24 20.17 21.67 22.27 22.79 23.24 23.97 mm

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm(Mcr/Mmax)2] ฮณ=(1.6ฮพ 3-0.6ฮพ 4)/(Mcr/Mmax)

2+2.4ln(2-ฮพ )

I'e (ฮณ=1) (M(x)=Mmax) = 2.10E+9 2.10E+9 2.10E+9 2.10E+9 2.10E+9 2.10E+9 2.10E+9 2.10E+9 2.10E+9 mm4

ฮ”ฮณ=1(Approx) 11.73 16.74 19.82 22.05 23.66 24.28 24.80 25.24 25.88 mm

ฮพ =1-โˆš(1-Mcr/Mmax)= 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265

ฮณ= 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45

Bischoff's I'e = 2.27E+9 2.27E+9 2.27E+9 2.27E+9 2.27E+9 2.27E+9 2.27E+9 2.27E+9 2.27E+9 mm4

ฮ”I'e(Proposed) 10.87 15.51 18.36 20.43 21.92 22.49 22.98 23.38 23.97 mm

% error, proposed 15.50 2.57 0.68 1.31 1.14 1.00 0.82 0.57 0.00

Maximum Deflection Results using numerical and approximation methods ฮ”max โ‰ˆ ฮ”I'e โˆš(Mmax/Mm)

ฮ”max,Ie(x)(Exact) 14.48 16.90 18.76 20.46 21.76 22.27 22.79 23.24 23.97 mm

Length:Defl, L/ฮ”max= 691 592 533 489 460 449 439 430 417

ฮ”max,I'e(Proposed) 12.53 16.76 19.19 20.91 22.15 22.63 23.05 23.41 23.97 mm

๐‘“๐‘โ€ฒ

Page 191: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

176

Figure O-2 - Copy of Figure 3-10 โ€“ UDL on Beam, Ig/Icr=3, Mmax/Mcr=2.2, MR=0

The lines plotted in Figure O-2 use data in bold from Example 3.6.2b as found in Table

O-3 and Table O-4.

Page 192: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

177

Table O-5 - Data for UDL Beam, ML=MR, Ig/Icr=4.9 โ€“ Example 3.6.2c โ€“ Page 1

Example 3.6.2c, pg 1 of 2 ฮฆc = 0.65

UDL Continuous w0 = 12.285 N/mm fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 7500 mm Ec = 27000 MPa Mcr= 0.05 * N mm

Let ML=MR b = 0.5* h mm ฮฑ1 = 0.796

d = 0.85 * h mm ฮฒ1 = 0.880

M0,0 = w0 L2/8 = 8.64E+7 N mm ฮฆb = 0.85

End Moment Ms/Mr = 0.635 fy = 400 MPa ฮฑ R = 1 *ฮฑ L

+ve Moment Ms/Mr = 0.635 Eb = 200000 MPa n=Eb/Ec= 7.40741

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -3.00 -2.33 -1.86 -1.22 -1.00 -0.82 -0.61 -0.25 0

wUDL = 49.14 40.95 35.10 27.30 24.57 22.34 19.81 15.36 12.29 N/mm

M0 = 3.46E+8 2.88E+8 2.47E+8 1.92E+8 1.73E+8 1.57E+8 1.39E+8 1.08E+8 8.64E+7 N mm

ฮฑL = ML/M0 = -0.75 -0.70 -0.65 -0.55 -0.50 -0.45 -0.38 -0.20 0

ฮฑR = MR/M0 = -0.75 -0.70 -0.65 -0.55 -0.50 -0.45 -0.38 -0.20 0

ML = -2.59E+8 -2.02E+8 -1.60E+8 -1.06E+8 -8.64E+7 -7.07E+7 -5.29E+7 -2.16E+7 0.00E+0 N mm

MR = -2.59E+8 -2.02E+8 -1.60E+8 -1.06E+8 -8.64E+7 -7.07E+7 -5.29E+7 -2.16E+7 0.00E+0 N mm

Mm = 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 N mm

Mmax = 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 N mm

ฮฑcr = Mcr/Mmax= 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

Mcr = 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 510.0 510.0 510.0 510.0 510.0 510.0 510.0 510.0 510.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

L1 = 1270 1033 815 422 242 71 -156 -687 -1211 mm

L2 = 2813 2723 2641 2492 2424 2359 2274 2073 1875 mm

LR4 = 2813 2723 2641 2492 2424 2359 2274 2073 1875 mm

LR5 = 1270 1033 815 422 242 71 -156 -687 -1211 mm

Member Properties Determined with Factored Loads

Left End Kr L = 5.23 4.07 3.24 2.13 1.74 1.43 0.00 0 0 MPa

ฯ L = 0.0185 0.0137 0.0105 0.0067 0.0054 0.0044 0.0000 0 0

AL=ฯLbd= 2832 2092 1612 1021 825 669 0 0 0 mm2

Icr L = 2.81E+9 2.27E+9 1.87E+9 1.31E+9 1.10E+9 9.25E+8 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.479 0.580 0.654 0.757 0.796 0.829 0.000 0 0

ML/Mcr = -4.00 -3.11 -2.48 -1.63 -1.33 -1.09 -0.82 -0.33 0.00

Ig/Icr L = 1.92 2.38 2.89 4.12 4.90 5.84 1.00 1.00 1.00

Midspan Kr m = 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 MPa

ฯ m = 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054

Icr m = 1.10E+9 1.10E+9 1.10E+9 1.10E+9 1.10E+9 1.10E+9 1.10E+9 1.10E+9 1.10E+9 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.796 Mmax/Mcr = 1.33 Ig/Icr m = 4.90 Am=ฯmbd= 825 mm2

Right End Kr R = 5.23 4.07 3.24 2.13 1.74 1.43 0.00 0 0 MPa

ฯ R = 0.0185 0.0137 0.0105 0.0067 0.0054 0.0044 0.0000 0 0

AR=ฯRbd= 2832 2092 1612 1021 825 669 0 0 0 mm2

Icr R = 2.81E+9 2.27E+9 1.87E+9 1.31E+9 1.10E+9 9.25E+8 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.479 0.580 0.654 0.757 0.796 0.829 0.000 0 0

MR/Mcr = -4.00 -3.11 -2.48 -1.63 -1.33 -1.09 -0.82 -0.33 0.00

Ig/Icr R = 1.92 2.38 2.89 4.12 4.90 5.84 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 193: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

178

Table O-6 - Data for UDL Beam, ML=MR, Ig/Icr=4.9 โ€“ Example 3.6.2c โ€“ Page 2

Ex. 3.6.2c, pg 2 of 2 w0 = 12.29 N/mm fc' = 36 MPa b = 0.5* h mm

L = 7500 mm fy = 400 MPa d = 0.85 * h mm

+ve Moment Ms/Mr = 0.635 ฯ m = 0.0054 fr = 0.6 *

Mmax/Mcr = 1.33 Ig/Icr m = 4.90 Eb = 200000 MPa

ฮฑL/max=ML/Mmax = -3.00 -2.33 -1.86 -1.22 -1.00 -0.82 -0.61 -0.25 0.00

ML = -2.59E+8 -2.02E+8 -1.60E+8 -1.06E+8 -8.64E+7 -7.07E+7 -5.29E+7 -2.16E+7 0.00E+0 N mm

Mm = 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 N mm

Mmax = 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7 8.64E+7

MR = -2.59E+8 -2.02E+8 -1.60E+8 -1.06E+8 -8.64E+7 -7.07E+7 -5.29E+7 -2.16E+7 0.00E+0 N mm

K=1.2-0.2M0/Mm= 0.400 0.533 0.629 0.756 0.800 0.836 0.877 0.950 1.000

Constant Stiffness Results Using Constant Stiffness Equations ฮ”mid=K(5MmL2)/(48EcI)

ฮ”g(Gross) 1.39 1.85 2.18 2.62 2.78 2.90 3.05 3.30 3.47 mm

ฮ”cr(Cracked) 6.81 9.08 10.70 12.86 13.62 14.24 14.94 16.17 17.02 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 2.91E+9 2.91E+9 2.91E+9 2.91E+9 2.91E+9 2.91E+9 2.91E+9 2.91E+9 2.91E+9 mm4

ฮ”Ie(Branson) 2.57 3.43 4.04 4.86 5.15 5.38 5.64 6.11 6.43 mm

% error, Branson 18.48 12.28 10.65 10.34 10.33 10.29 10.37 11.47 13.12

CSA A23.3 Clause 9.8.2.4 Ie avg=.7Ie max+.15(IeL+IeR) or Ie =0.85Ie max + 0.15 IeL

Ie L (Bransons)= 2.85E+9 2.37E+9 2.10E+9 2.25E+9 2.91E+9 4.37E+9 2.91E+9 2.91E+9 2.91E+9 mm4

Ie R (Bransons)= 2.85E+9 2.37E+9 2.10E+9 2.25E+9 2.91E+9 4.37E+9 2.91E+9 2.91E+9 2.91E+9 mm4

Ie 9.8.2 (Bransons)= 2.90E+9 2.75E+9 2.67E+9 2.72E+9 2.91E+9 3.35E+9 2.91E+9 2.91E+9 2.91E+9 mm4

ฮ”Ie,avg(A23.3) 2.59 3.63 4.41 5.21 5.15 4.68 5.64 6.11 6.43 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) 7.43 8.43 9.34 10.86 11.51 12.06 12.60 13.76 14.88 mm

Exact Integration Ie(x)Analytical ฮ”1= -0.55 -0.36 -0.21 -0.05 -0.01 0.00 0.00 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.19 0.21 0.23 0.26 0.27 0.29 0.30 0.31 0.28 mm

Analytical ฮ”3= 1.94 2.10 2.25 2.50 2.61 2.71 2.85 3.15 3.42 mm

Analytical ฮ”4= 1.94 2.10 2.25 2.50 2.61 2.71 2.85 3.15 3.42 mm

Analytical ฮ”5 or ฮ”5+6= 0.19 0.21 0.23 0.26 0.27 0.29 0.30 0.31 0.28 mm

Analytical ฮ”6= -0.55 -0.36 -0.21 -0.05 -0.01 0.00 0.00 0.00 0.00 mm

ฮ”Ie(x)(Exact) 3.16 3.91 4.53 5.42 5.74 6.00 6.30 6.90 7.40 mm

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm(Mcr/Mmax)2] ฮณ=(1.6ฮพ 3-0.6ฮพ 4)/(Mcr/Mmax)

2+2.4ln(2-ฮพ )

I'e (ฮณ=1) (M(x)=Mmax) = 1.99E+9 1.99E+9 1.99E+9 1.99E+9 1.99E+9 1.99E+9 1.99E+9 1.99E+9 1.99E+9 mm4

ฮ”ฮณ=1(Approx) 3.76 5.01 5.91 7.10 7.52 7.86 8.25 8.93 9.40 mm

ฮพ =1-โˆš(1-Mcr/Mmax)= 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

ฮณ= 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26

Bischoff's I'e = 2.53E+9 2.53E+9 2.53E+9 2.53E+9 2.53E+9 2.53E+9 2.53E+9 2.53E+9 2.53E+9 mm4

ฮ”I'e(Proposed) 2.96 3.95 4.65 5.59 5.92 6.19 6.50 7.03 7.40 mm

% error, proposed 6.18 0.97 2.84 3.20 3.20 3.26 3.16 1.90 0.00

Maximum Deflection Results using numerical and approximation methods ฮ”max โ‰ˆ ฮ”I'e โˆš(Mmax/Mm)

ฮ”max,Ie(x)(Exact) 3.16 3.91 4.53 5.42 5.74 6.00 6.30 6.90 7.40 mm

Length:Defl, L/ฮ”max= 2376 1917 1657 1383 1307 1251 1191 1086 1013

ฮ”max,I'e(Proposed) 2.96 3.95 4.65 5.59 5.92 6.19 6.50 7.03 7.40 mm

๐‘“๐‘โ€ฒ

Page 194: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

179

Figure O-3 - Midspan Deflection of Steel Reinforced Beams under Uniformly

Distributed Load with Ig/Icr=5, Mm /Mcr=1.3, and ML=MR

The lines plotted in Figure O-3 use data in bold from Example 3.6.2c as found in Table

O-5 and Table O-6.

Page 195: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

180

Table O-7 - Data for UDL Slab, ML=MR, Ig/Icr=4.9 โ€“ Example 3.6.2d โ€“ Page 1

Example 3.6.2d, pg 1 of 2 ฮฆc = 0.65

UDL Continuous w0 = 8.605 N/mm fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 7500 mm Ec = 27000 MPa Mcr= 0.3636 * N mm

Let ML=MR b = 3.636* h mm ฮฑ1 = 0.796

d = 0.85 * h mm ฮฒ1 = 0.880

M0,0 = w0 L2/8 = 6.05E+7 N mm ฮฆb = 0.85

End Moment Ms/Mr = 0.635 fy = 400 MPa ฮฑ R = 1 *ฮฑ L

+ve Moment Ms/Mr = 0.635 Eb = 200000 MPa n=Eb/Ec= 7.40741

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -3.00 -2.33 -1.86 -1.22 -1.00 -0.82 -0.61 -0.25 0

wUDL = 34.42 28.68 24.59 19.12 17.21 15.65 13.88 10.76 8.61 N/mm

M0 = 2.42E+8 2.02E+8 1.73E+8 1.34E+8 1.21E+8 1.10E+8 9.76E+7 7.56E+7 6.05E+7 N mm

ฮฑL = ML/M0 = -0.75 -0.70 -0.65 -0.55 -0.50 -0.45 -0.38 -0.20 0

ฮฑR = MR/M0 = -0.75 -0.70 -0.65 -0.55 -0.50 -0.45 -0.38 -0.20 0

ML = -1.82E+8 -1.41E+8 -1.12E+8 -7.39E+7 -6.05E+7 -4.95E+7 -3.71E+7 -1.51E+7 0.00E+0 N mm

MR = -1.82E+8 -1.41E+8 -1.12E+8 -7.39E+7 -6.05E+7 -4.95E+7 -3.71E+7 -1.51E+7 0.00E+0 N mm

Mm = 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 N mm

Mmax = 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 N mm

ฮฑcr = Mcr/Mmax= 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

Mcr = 4.54E+7 4.54E+7 4.54E+7 4.54E+7 4.54E+7 4.54E+7 4.54E+7 4.54E+7 4.54E+7 N mm

h = 275.0 275.0 275.0 275.0 275.0 275.0 275.0 275.0 275.0 mm

d = 233.8 233.8 233.8 233.8 233.8 233.8 233.8 233.8 233.8 mm

b = 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 mm

Ig = 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 mm4

L1 = 1270 1033 815 422 242 71 -156 -687 -1211 mm

L2 = 2813 2723 2641 2492 2424 2359 2274 2073 1875 mm

LR4 = 2813 2723 2641 2492 2424 2359 2274 2073 1875 mm

LR5 = 1270 1033 815 422 242 71 -156 -687 -1211 mm

Member Properties Determined with Factored Loads

Left End Kr L = 5.23 4.07 3.24 2.13 1.74 1.43 0.00 0 0 MPa

ฯ L = 0.0185 0.0137 0.0105 0.0067 0.0054 0.0044 0.0000 0 0

AL=ฯLbd= 4328 3196 2463 1560 1261 1022 0 0 0 mm2

Icr L = 9.03E+8 7.29E+8 6.00E+8 4.20E+8 3.54E+8 2.97E+8 1.73E+9 1.73E+9 1.73E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.479 0.580 0.654 0.757 0.796 0.829 0.000 0 0

ML/Mcr = -4.00 -3.11 -2.48 -1.63 -1.33 -1.09 -0.82 -0.33 0.00

Ig/Icr L = 1.92 2.38 2.89 4.12 4.90 5.84 1.00 1.00 1.00

Midspan Kr m = 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 MPa

ฯ m = 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054

Icr m = 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.796 Mmax/Mcr = 1.33 Ig/Icr m = 4.90 Am=ฯmbd= 1261 mm2

Right End Kr R = 5.23 4.07 3.24 2.13 1.74 1.43 0.00 0 0 MPa

ฯ R = 0.0185 0.0137 0.0105 0.0067 0.0054 0.0044 0.0000 0 0

AR=ฯRbd= 4328 3196 2463 1560 1261 1022 0 0 0 mm2

Icr R = 9.03E+8 7.29E+8 6.00E+8 4.20E+8 3.54E+8 2.97E+8 1.73E+9 1.73E+9 1.73E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.479 0.580 0.654 0.757 0.796 0.829 0.000 0 0

MR/Mcr = -4.00 -3.11 -2.48 -1.63 -1.33 -1.09 -0.82 -0.33 0.00

Ig/Icr R = 1.92 2.38 2.89 4.12 4.90 5.84 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 196: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

181

Table O-8 - Data for UDL Slab, ML=MR, Ig/Icr=4.9 โ€“ Example 3.6.2d โ€“ Page 2

Ex. 3.6.2d, pg 2 of 2 w0 = 8.61 N/mm fc' = 36 MPa b = 3.636* h mm

L = 7500 mm fy = 400 MPa d = 0.85 * h mm

+ve Moment Ms/Mr = 0.635 ฯ m = 0.0054 fr = 0.6 *

Mmax/Mcr = 1.33 Ig/Icr m = 4.90 Eb = 200000 MPa

ฮฑL/max=ML/Mmax = -3.00 -2.33 -1.86 -1.22 -1.00 -0.82 -0.61 -0.25 0.00

ML = -1.82E+8 -1.41E+8 -1.12E+8 -7.39E+7 -6.05E+7 -4.95E+7 -3.71E+7 -1.51E+7 0.00E+0 N mm

Mm = 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 N mm

Mmax = 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7

MR = -1.82E+8 -1.41E+8 -1.12E+8 -7.39E+7 -6.05E+7 -4.95E+7 -3.71E+7 -1.51E+7 0.00E+0 N mm

K=1.2-0.2M0/Mm= 0.400 0.533 0.629 0.756 0.800 0.836 0.877 0.950 1.000

Constant Stiffness Results Using Constant Stiffness Equations ฮ”mid=K(5MmL2)/(48EcI)

ฮ”g(Gross) 3.03 4.04 4.76 5.72 6.06 6.34 6.65 7.20 7.58 mm

ฮ”cr(Cracked) 14.86 19.81 23.34 28.06 29.71 31.06 32.59 35.28 37.14 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 mm4

ฮ”Ie(Branson) 5.61 7.48 8.82 10.60 11.23 11.74 12.31 13.33 14.03 mm

% error, Branson 18.48 12.28 10.65 10.34 10.33 10.29 10.37 11.47 13.12

CSA A23.3 Clause 9.8.2.4 Ie avg=.7Ie max+.15(IeL+IeR) or Ie =0.85Ie max + 0.15 IeL

Ie L (Bransons)= 9.16E+8 7.62E+8 6.75E+8 7.24E+8 9.36E+8 1.40E+9 9.36E+8 9.36E+8 9.36E+8 mm4

Ie R (Bransons)= 9.16E+8 7.62E+8 6.75E+8 7.24E+8 9.36E+8 1.40E+9 9.36E+8 9.36E+8 9.36E+8 mm4

Ie 9.8.2 (Bransons)= 9.30E+8 8.84E+8 8.57E+8 8.72E+8 9.36E+8 1.08E+9 9.36E+8 9.36E+8 9.36E+8 mm4

ฮ”Ie,avg(A23.3) 5.65 7.93 9.63 11.38 11.23 10.21 12.31 13.33 14.03 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) 16.20 18.40 20.38 23.70 25.10 26.32 27.48 30.01 32.47 mm

Exact Integration Ie(x)Analytical ฮ”1= -1.21 -0.78 -0.46 -0.10 -0.03 0.00 0.00 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.42 0.46 0.50 0.57 0.60 0.63 0.66 0.67 0.62 mm

Analytical ฮ”3= 4.23 4.58 4.90 5.45 5.69 5.92 6.21 6.86 7.46 mm

Analytical ฮ”4= 4.23 4.58 4.90 5.45 5.69 5.92 6.21 6.86 7.46 mm

Analytical ฮ”5 or ฮ”5+6= 0.42 0.46 0.50 0.57 0.60 0.63 0.66 0.67 0.62 mm

Analytical ฮ”6= -1.21 -0.78 -0.46 -0.10 -0.03 0.00 0.00 0.00 0.00 mm

ฮ”Ie(x)(Exact) 6.89 8.53 9.87 11.83 12.52 13.08 13.74 15.06 16.15 mm

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm(Mcr/Mmax)2] ฮณ=(1.6ฮพ 3-0.6ฮพ 4)/(Mcr/Mmax)

2+2.4ln(2-ฮพ )

I'e (ฮณ=1) (M(x)=Mmax) = 6.40E+8 6.40E+8 6.40E+8 6.40E+8 6.40E+8 6.40E+8 6.40E+8 6.40E+8 6.40E+8 mm4

ฮ”ฮณ=1(Approx) 8.20 10.94 12.89 15.50 16.41 17.15 18.00 19.48 20.51 mm

ฮพ =1-โˆš(1-Mcr/Mmax)= 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

ฮณ= 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26

Bischoff's I'e = 8.13E+8 8.13E+8 8.13E+8 8.13E+8 8.13E+8 8.13E+8 8.13E+8 8.13E+8 8.13E+8 mm4

ฮ”I'e(Proposed) 6.46 8.61 10.15 12.20 12.92 13.51 14.17 15.34 16.15 mm

% error, proposed 6.18 0.97 2.84 3.20 3.20 3.26 3.16 1.90 0.00

Maximum Deflection Results using numerical and approximation methods ฮ”max โ‰ˆ ฮ”I'e โˆš(Mmax/Mm)

ฮ”max,Ie(x)(Exact) 6.89 8.53 9.87 11.83 12.52 13.08 13.74 15.06 16.15 mm

Length:Defl, L/ฮ”max= 1089 879 760 634 599 573 546 498 464

ฮ”max,I'e(Proposed) 6.46 8.61 10.15 12.20 12.92 13.51 14.17 15.34 16.15 mm

๐‘“๐‘โ€ฒ

Page 197: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

182

Figure O-4 - Copy of Figure 3-11 โ€“ UDL on Slab, Ig/Icr=5, Mm /Mcr=1.3, ML=MR

The lines plotted in Figure O-4 use data in bold from Example 3.6.2d as found in Table

O-7 and Table O-8.

Page 198: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

183

Table O-9 - Data for UDL Slab, MR=0, Ig/Icr=4.9 โ€“ Example 3.6.2e โ€“ Page 1

Example 3.6.2e, pg 1 of 2 ฮฆc = 0.65

UDL Continuous w0 = 8.605 N/mm fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 7500 mm Ec = 27000 MPa Mcr= 0.3636 * N mm

Let MR=0 b = 3.636* h mm ฮฑ1 = 0.796

d = 0.85 * h mm ฮฒ1 = 0.880

M0,0 = w0 L2/8 = 6.05E+7 N mm ฮฆb = 0.85

End Moment Ms/Mr = 0.635 fy = 400 MPa ฮฑ R = 0 *ฮฑ L

+ve Moment Ms/Mr = 0.635 Eb = 200000 MPa n=Eb/Ec= 7.40741

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -2.99 -2.09 -1.78 -1.37 -1.01 -0.74 -0.49 -0.22 0

wUDL = 19.31 16.37 15.30 13.88 12.57 11.57 10.62 9.53 8.61 N/mm

M0 = 1.36E+8 1.15E+8 1.08E+8 9.76E+7 8.84E+7 8.13E+7 7.47E+7 6.70E+7 6.05E+7 N mm

ฮฑL = ML/M0 = -1.33 -1.10 -1 -0.85 -0.69 -0.55 -0.40 -0.20 0

ฮฑR = MR/M0 = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

ML = -1.81E+8 -1.27E+8 -1.08E+8 -8.29E+7 -6.10E+7 -4.47E+7 -2.99E+7 -1.34E+7 0.00E+0 N mm

MR = 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 N mm

Mm = 4.55E+7 5.18E+7 5.38E+7 5.61E+7 5.79E+7 5.90E+7 5.98E+7 6.03E+7 6.05E+7 N mm

Mmax = 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 N mm

ฮฑcr = Mcr/Mmax= 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

Mcr = 4.54E+7 4.54E+7 4.54E+7 4.54E+7 4.54E+7 4.54E+7 4.54E+7 4.54E+7 4.54E+7 N mm

h = 275.0 275.0 275.0 275.0 275.0 275.0 275.0 275.0 275.0 mm

d = 233.8 233.8 233.8 233.8 233.8 233.8 233.8 233.8 233.8 mm

b = 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 mm

Ig = 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 mm4

L1 = 1686 1185 967 640 292 -13 -340 -775 -1211 mm

L2 = 3745 3422 3281 3070 2845 2648 2438 2156 1875 mm

LR4 = 1252 1359 1406 1477 1552 1617 1688 1781 1875 mm

LR5 = -808 -878 -908 -953 -1002 -1044 -1090 -1150 -1211 mm

Member Properties Determined with Factored Loads

Left End Kr L = 5.21 3.65 3.10 2.39 1.76 0.00 0.00 0 0 MPa

ฯ L = 0.0184 0.0121 0.0100 0.0075 0.0054 0.0000 0.0000 0 0

AL=ฯLbd= 4301 2819 2346 1765 1271 0 0 0 0 mm2

Icr L = 8.99E+8 6.64E+8 5.79E+8 4.64E+8 3.56E+8 1.73E+9 1.73E+9 1.73E+9 1.73E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.481 0.617 0.666 0.732 0.795 0.000 0.000 0 0

ML/Mcr = -3.98 -2.79 -2.37 -1.83 -1.34 -0.99 -0.66 -0.30 0.00

Ig/Icr L = 1.93 2.61 3.00 3.74 4.87 1.00 1.00 1.00 1.00

Midspan Kr m = 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 MPa

ฯ m = 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054

Icr m = 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.796 Mmax/Mcr = 1.33 Ig/Icr m = 4.90 Am=ฯmbd= 1261 mm2

Right End Kr R = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 MPa

ฯ R = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0

AR=ฯRbd= 0 0 0 0 0 0 0 0 0 mm2

Icr R = 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0

MR/Mcr = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ig/Icr R = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 199: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

184

Table O-10 - Data for UDL Slab, MR=0, Ig/Icr=4.9 โ€“ Example 3.6.2e โ€“ Page 2

Ex. 3.6.2e, pg 2 of 2 w0 = 8.61 N/mm fc' = 36 MPa b = 3.636* h mm

L = 7500 mm fy = 400 MPa d = 0.85 * h mm

+ve Moment Ms/Mr = 0.635 ฯ m = 0.0054 fr = 0.6 *

Mmax/Mcr = 1.33 Ig/Icr m = 4.90 Eb = 200000 MPa

ฮฑL/max=ML/Mmax = -2.99 -2.09 -1.78 -1.37 -1.01 -0.74 -0.49 -0.22 0.00

ML = -1.81E+8 -1.27E+8 -1.08E+8 -8.29E+7 -6.10E+7 -4.47E+7 -2.99E+7 -1.34E+7 0.00E+0 N mm

Mm = 4.55E+7 5.18E+7 5.38E+7 5.61E+7 5.79E+7 5.90E+7 5.98E+7 6.03E+7 6.05E+7 N mm

Mmax = 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7

MR = 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 N mm

K=1.2-0.2M0/Mm= 0.603 0.756 0.800 0.852 0.895 0.924 0.950 0.978 1.000

Constant Stiffness Results Using Constant Stiffness Equations ฮ”mid=K(5MmL2)/(48EcI)

ฮ”g(Gross) 3.43 4.90 5.39 5.99 6.48 6.82 7.11 7.39 7.58 mm

ฮ”cr(Cracked) 16.84 24.02 26.41 29.34 31.78 33.45 34.85 36.21 37.14 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 mm4

ฮ”Ie(Branson) 6.36 9.08 9.98 11.09 12.01 12.64 13.17 13.68 14.03 mm

% error, Branson 13.16 8.99 9.09 9.73 10.39 10.81 11.36 12.24 13.12

CSA A23.3 Clause 9.8.2.4 Ie avg=.7Ie max+.15(IeL+IeR) or Ie =0.85Ie max + 0.15 IeL

Ie L (Bransons)= 9.12E+8 7.14E+8 6.65E+8 6.72E+8 9.24E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 mm4

Ie R (Bransons)= 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 mm4

Ie 9.8.2 (Bransons)= 9.32E+8 9.02E+8 8.95E+8 8.96E+8 9.34E+8 9.36E+8 9.36E+8 9.36E+8 9.36E+8 mm4

ฮ”Ie,avg(A23.3) 6.39 9.41 10.43 11.58 12.03 12.64 13.17 13.68 14.03 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) 16.82 20.85 22.60 24.91 27.01 28.41 29.88 31.19 32.47 mm

Exact Integration Ie(x)Analytical ฮ”1= -2.13 -1.00 -0.64 -0.25 -0.04 0.00 0.00 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.75 0.78 0.79 0.81 0.82 0.83 0.81 0.73 0.62 mm

Analytical ฮ”3= 0.01 0.93 1.47 2.36 3.37 4.26 5.19 6.37 7.46 mm

Analytical ฮ”4= 8.43 8.94 9.01 8.98 8.83 8.63 8.36 7.93 7.46 mm

Analytical ฮ”5 or ฮ”5+6= 0.27 0.32 0.35 0.38 0.42 0.46 0.50 0.56 0.62 mm

Analytical ฮ”6= 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 mm

ฮ”Ie(x)(Exact) 7.33 9.97 10.98 12.28 13.40 14.17 14.85 15.59 16.15 mm

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm(Mcr/Mmax)2] ฮณ=(1.6ฮพ 3-0.6ฮพ 4)/(Mcr/Mmax)

2+2.4ln(2-ฮพ )

I'e (ฮณ=1) (M(x)=Mmax) = 6.40E+8 6.40E+8 6.40E+8 6.40E+8 6.40E+8 6.40E+8 6.40E+8 6.40E+8 6.40E+8 mm4

ฮ”ฮณ=1(Approx) 9.30 13.27 14.58 16.20 17.55 18.47 19.24 20.00 20.51 mm

ฮพ =1-โˆš(1-Mcr/Mmax)= 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

ฮณ= 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26

Bischoff's I'e = 8.13E+8 8.13E+8 8.13E+8 8.13E+8 8.13E+8 8.13E+8 8.13E+8 8.13E+8 8.13E+8 mm4

ฮ”I'e(Proposed) 7.32 10.45 11.49 12.76 13.82 14.55 15.16 15.75 16.15 mm

% error, proposed 0.05 4.74 4.63 3.90 3.14 2.66 2.02 1.01 0.00

Maximum Deflection Results using numerical and approximation methods ฮ”max โ‰ˆ ฮ”I'e โˆš(Mmax/Mm)

ฮ”max,Ie(x)(Exact) 8.95 10.93 11.71 12.72 13.69 14.34 14.90 15.59 16.15 mm

Length:Defl, L/ฮ”max= 838 686 641 590 548 523 503 481 464

ฮ”max,I'e(Proposed) 8.45 11.29 12.18 13.25 14.13 14.74 15.25 15.77 16.15 mm

๐‘“๐‘โ€ฒ

Page 200: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

185

Figure O-5 - Copy of Figure 3-12 โ€“ UDL on Slab, Ig/Icr=5, Mmax /Mcr=1.3, MR=0

The lines plotted in Figure O-5 use data in bold from Example 3.6.2e as found in Table

O-9 and Table O-10.

Page 201: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

186

Table O-11 - Data for UDL Slab, ML=MR, Ig/Icr=18 โ€“ Example 3.6.2f โ€“ Page 1

Example 3.6.2f, pg 1 of 2 ฮฆc = 0.65 ฮตcu = 0.0035 mm/mm

UDL Continuous w0 = 5.268 N/mm fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 5000 mm Ec = 27000 MPa Mcr= 0.6667 * N mm

Let ML=MR b = 6.667* h mm ฮฑ1 = 0.796

d = 0.5 * h mm ฮฒ1 = 0.880 ฯ b=ฮฑ1ฮฒ1ฯ†cf'cฮตcu/(ฯ†bffu(ฮตcu+ffu/Ef))

M0,0 = w0 L2/8 = 1.65E+7 N mm ฯ†b = 0.75 ฯ b = 0.00578

End Moment Ms/Mr = 0.635 ffu = 690 MPa ฮฑ R = 1 *ฮฑ L

+ve Moment Ms/Mr = 0.552 Eb = 44000 MPa n=Eb/Ec= 1.63

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -3.00 -1.94 -1.56 -1.22 -1.00 -0.85 -0.43 -0.25 0

wUDL = 21.07 15.49 13.51 11.71 10.54 9.76 7.53 6.59 5.27 N/mm

M0 = 6.59E+7 4.84E+7 4.22E+7 3.66E+7 3.29E+7 3.05E+7 2.35E+7 2.06E+7 1.65E+7 N mm

ฮฑL = ML/M0 = -0.75 -0.66 -0.61 -0.55 -0.50 -0.46 -0.30 -0.20 0

ฮฑR = MR/M0 = -0.75 -0.66 -0.61 -0.55 -0.50 -0.46 -0.30 -0.20 0

ML = -4.94E+7 -3.20E+7 -2.57E+7 -2.01E+7 -1.65E+7 -1.40E+7 -7.06E+6 -4.12E+6 0.00E+0 N mm

MR = -4.94E+7 -3.20E+7 -2.57E+7 -2.01E+7 -1.65E+7 -1.40E+7 -7.06E+6 -4.12E+6 0.00E+0 N mm

Mm = 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 N mm

Mmax = 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 N mm

ฮฑcr = Mcr/Mmax= 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82

Mcr = 1.35E+7 1.35E+7 1.35E+7 1.35E+7 1.35E+7 1.35E+7 1.35E+7 1.35E+7 1.35E+7 N mm

h = 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 mm

d = 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 mm

b = 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 mm

Ig = 2.81E+8 2.81E+8 2.81E+8 2.81E+8 2.81E+8 2.81E+8 2.81E+8 2.81E+8 2.81E+8 mm4

L1 = 814 533 394 238 115 22 -322 -517 -873 mm

L2 = 1970 1882 1838 1788 1750 1721 1613 1551 1439 mm

LR4 = 1970 1882 1838 1788 1750 1721 1613 1551 1439 mm

LR5 = 814 533 394 238 115 22 -322 -517 -873 mm

Member Properties Determined with Factored Loads

Left End c L = #NUM! 68.33 44.72 31.65 24.66 20.41 0 0 0 mm

AL= #NUM! 99384 9372 3281 1714 1083 0 0 0 mm2

ฯ L =As/bd= #NUM! 1.3251 0.1250 0.0437 0.0228 0.0144 0 0 0

Icr L = #NUM! 1.07E+8 3.87E+7 1.85E+7 1.10E+7 7.47E+6 2.81E+8 2.81E+8 2.81E+8 mm4

ฮทL=1 โ€“ Icr L/Ig = #NUM! 0.621 0.862 0.934 0.961 0.973 0.000 0 0

ML/Mcr = -3.66 -2.37 -1.91 -1.49 -1.22 -1.04 -0.52 -0.30 0.00

Ig/Icr L = #NUM! 2.64 7.26 15.20 25.53 37.63 1.00 1.00 1.00

Midspan c m = 29.30 29.30 29.30 29.30 29.30 29.30 29.30 29.30 29.30 mm

ฯ m =Am/bd= 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355

Icr m = 1.57E+7 1.57E+7 1.57E+7 1.57E+7 1.57E+7 1.57E+7 1.57E+7 1.57E+7 1.57E+7 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.944 Mmax/Mcr = 1.22 Ig/Icr m = 17.86 Am=ฯmbd= 2665 mm2

Right End cR = #NUM! 68.33 44.72 31.65 24.66 20.41 0.00 0 0 mm

AR= #NUM! 99384 9372 3281 1714 1083 0 0 0 mm2

ฯ R =AR/bd= #NUM! 1.3251 0.1250 0.0437 0.0228 0.0144 0.0000 0.0000 0.0000

Icr R = #NUM! 1.07E+8 3.87E+7 1.85E+7 1.10E+7 7.47E+6 2.81E+8 2.81E+8 2.81E+8 mm4

ฮทR=1 โ€“ Icr R/Ig = #NUM! 0.621 0.862 0.934 0.961 0.973 0.000 0 0

MR/Mcr = -3.66 -2.37 -1.91 -1.49 -1.22 -1.04 -0.52 -0.30 0.00

Ig/Icr R = #NUM! 2.64 7.26 15.20 25.53 37.63 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 202: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

187

Table O-12 - Data for UDL Slab, ML=MR, Ig/Icr=18 โ€“ Example 3.6.2f โ€“ Page 2

Ex. 3.6.2f, pg 2 of 2 w0 = 5.27 N/mm fc' = 36 MPa ฯ b = 0.00578

L = 5000 mm ffu = 690 MPa ฯ m = 0.0355

Ms /Mr (+ve) = 1.150 Mmax/Mcr = 1.22 Ig/Icr m = 17.86 Eb = 44000 MPa

ฮฑL/max=ML/Mmax = -3.00 -1.94 -1.56 -1.22 -1.00 -0.85 -0.43 -0.25 0.00

ML = -4.94E+7 -3.20E+7 -2.57E+7 -2.01E+7 -1.65E+7 -1.40E+7 -7.06E+6 -4.12E+6 0.00E+0 N mm

Mm = 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 N mm

Mmax = 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7 1.65E+7

MR = -4.94E+7 -3.20E+7 -2.57E+7 -2.01E+7 -1.65E+7 -1.40E+7 -7.06E+6 -4.12E+6 0.00E+0 N mm

K=1.2-0.2M0/Mm= 0.400 0.612 0.687 0.756 0.800 0.830 0.914 0.950 1.000

Constant Stiffness Results Using Constant Stiffness Equations ฮ”mid=K(5MmL2)/(48EcI)

ฮ”g(Gross) 2.26 3.45 3.88 4.27 4.52 4.68 5.16 5.36 5.65 mm

ฮ”cr(Cracked) 40.35 61.71 69.31 76.21 80.69 83.68 92.22 95.82 100.87 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 mm4

ฮ”Ie(Branson) 3.92 5.99 6.73 7.40 7.84 8.13 8.95 9.30 9.79 mm

% error, Branson #NUM! 58.82 56.74 56.35 56.42 56.42 56.87 57.44 58.72

ACI 440.1R clause 8.3.2.2 Ie=Icr+(ฮฒdIg-Icr)(Mcr/Mmax)3 ฮฒd= 1.000 ฮฒd=0.2(ฯm/ฯ b)<1 Ie R = Ie L

Ie m (ACI440.1R) = 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 1.62E+8 mm4

ฮ”Ie,ฮฒd(ACI440) 3.92 5.99 6.73 7.40 7.84 8.13 8.95 9.30 9.79 mm

Ie L (ACI440.1R) = #NUM! 1.20E+8 7.37E+7 9.78E+7 1.29E+8 1.29E+8 1.62E+8 1.62E+8 1.62E+8 mm4

Ie 9.8.2 (& ACI440.1R)= #NUM! 1.49E+8 1.36E+8 1.43E+8 1.52E+8 1.52E+8 1.62E+8 1.62E+8 1.62E+8 mm4

ฮ”Ie,avg(A23.3) #NUM! 6.50 8.05 8.40 8.35 8.65 8.95 9.30 9.79 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) #NUM! 49.30 52.42 56.21 59.97 61.97 68.32 71.39 78.15 mm

Exact Integration Ie(x)Analytical ฮ”1= #NUM! -0.32 -0.30 -0.13 -0.03 0.00 0.00 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.45 0.52 0.56 0.60 0.63 0.66 0.71 0.71 0.68 mm

Analytical ฮ”3= 6.17 7.08 7.52 8.01 8.38 8.67 9.67 10.22 11.19 mm

Analytical ฮ”4= 6.17 7.08 7.52 8.01 8.38 8.67 9.67 10.22 11.19 mm

Analytical ฮ”5 or ฮ”5+6= 0.45 0.52 0.56 0.60 0.63 0.66 0.71 0.71 0.68 mm

Analytical ฮ”6= #NUM! -0.32 -0.30 -0.13 -0.03 0.00 0.00 0.00 0.00 mm

ฮ”Ie(x)(Exact) #NUM! 14.55 15.56 16.95 17.98 18.64 20.76 21.86 23.72 mm

Length:Defl, L/ฮ”mid= #NUM! 344 321 295 278 268 241 229 211

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm(Mcr/Mmax)2] ฮณ=(1.6ฮพ

3-0.6ฮพ

4)/(Mcr/Mmax)

2+2.4ln(2-ฮพ )

I'e (ฮณ=1) (M(x)=Mmax) = 4.31E+7 4.31E+7 4.31E+7 4.31E+7 4.31E+7 4.31E+7 4.31E+7 4.31E+7 4.31E+7 mm4

ฮ”ฮณ=1(Approx) 14.74 22.54 25.32 27.83 29.47 30.56 33.68 35.00 36.84 mm

ฮพ =1-โˆš(1-Mcr/Mmax)= 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576

ฮณ= 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20

Bischoff's I'e = 6.69E+7 6.69E+7 6.69E+7 6.69E+7 6.69E+7 6.69E+7 6.69E+7 6.69E+7 6.69E+7 mm4

ฮ”I'e(Proposed) 9.49 14.51 16.30 17.93 18.98 19.68 21.69 22.54 23.72 mm

% error, proposed #NUM! 0.25 4.80 5.73 5.57 5.57 4.48 3.10 0.00

L/ฮ” exact #NUM! 343.62 321.40 294.92 278.10 268.17 240.82 228.71 210.75

Maximum Deflection Results using numerical and approximation methods ฮ”max โ‰ˆ ฮ”I'e โˆš(Mmax/Mm)

ฮ”max,Ie(x)(Exact) #NUM! 14.55 15.56 16.96 17.98 18.65 20.76 21.86 23.73 mm

ฮ”max,I'e(Proposed) 9.49 14.51 16.30 17.93 18.98 19.68 21.69 22.54 23.72 mm

Page 203: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

188

Figure O-6 - Midspan Deflection of FRP Reinforced Slabs under Uniformly Distributed

Load with Ig/Icr=18, Mm/Mcr=1.2, ML=MR

The lines plotted in Figure O-6 use data in bold from Example 3.6.2f as found in Table

O-11 and Table O-12.

Page 204: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

189

Table O-13 - Data for UDL Slab, MR=0, Ig/Icr=6 โ€“ Example 3.6.2g โ€“ Page 1

Example 3.6.2g, pg 1 of 2 ฮฆc = 0.65 ฮตcu = 0.0035 mm/mm

UDL Continuous w0 = 10.370 N/mm fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 10000 mm Ec = 27000 MPa Mcr= 0.05 * N mm

Let MR=0 b = 0.5* h mm ฮฑ1 = 0.796

d = 0.9 * h mm ฮฒ1 = 0.880 ฯ b=ฮฑ1ฮฒ1ฯ†cf'cฮตcu/(ฯ†bffu(ฮตcu+ffu/Ef))

M0,0 = w0 L2/8 = 1.30E+8 N mm ฯ†b = 0.75 ฯ b = 0.00578

End Moment Ms/Mr = 0.635 ffu = 690 MPa ฮฑ R = 0 *ฮฑ L

+ve Moment Ms/Mr = 0.365 Eb = 44000 MPa n=Eb/Ec= 1.63

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -2.99 -2.09 -1.50 -1.25 -1.01 -0.65 -0.35 -0.22 0

wUDL = 23.27 19.73 17.27 16.20 15.14 13.54 12.12 11.49 10.37 N/mm

M0 = 2.91E+8 2.47E+8 2.16E+8 2.03E+8 1.89E+8 1.69E+8 1.51E+8 1.44E+8 1.30E+8 N mm

ฮฑL = ML/M0 = -1.33 -1.10 -0.9 -0.8 -0.69 -0.50 -0.30 -0.20 0

ฮฑR = MR/M0 = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

ML = -3.87E+8 -2.71E+8 -1.94E+8 -1.62E+8 -1.31E+8 -8.47E+7 -4.54E+7 -2.87E+7 0.00E+0 N mm

MR = 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 N mm

Mm = 9.75E+7 1.11E+8 1.19E+8 1.22E+8 1.24E+8 1.27E+8 1.29E+8 1.29E+8 1.30E+8 N mm

Mmax = 1.30E+8 1.30E+8 1.30E+8 1.30E+8 1.30E+8 1.30E+8 1.30E+8 1.30E+8 1.30E+8 N mm

ฮฑcr = Mcr/Mmax= 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Mcr = 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

L1 = 2575 1935 1379 1101 795 267 -289 -568 -1124 mm

L2 = 4303 3812 3385 3172 2937 2531 2105 1891 1464 mm

LR4 = 978 1062 1135 1172 1212 1281 1355 1391 1464 mm

LR5 = -750 -815 -871 -899 -930 -983 -1039 -1068 -1124 mm

Member Properties Determined with Factored Loads

Left End c L = 305.48 190.40 128.67 105.08 83.08 52.44 0 0 0 mm

AL= 16939 4414 1714 1081 643 240 0 0 0 mm2

ฯ L =As/bd= 0.1045 0.0272 0.0106 0.0067 0.0040 0.0015 0 0 0

Icr L = 3.87E+9 1.43E+9 6.38E+8 4.23E+8 2.63E+8 1.04E+8 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.284 0.736 0.882 0.922 0.951 0.981 0.000 0 0

ML/Mcr = -5.97 -4.19 -3.00 -2.50 -2.02 -1.31 -0.70 -0.44 0.00

Ig/Icr L = 1.40 3.79 8.46 12.77 20.54 51.90 1.00 1.00 1.00

Midspan c m = 152.73 152.73 152.73 152.73 152.73 152.73 152.73 152.73 152.73 mm

ฯ m =Am/bd= 0.0158 0.0158 0.0158 0.0158 0.0158 0.0158 0.0158 0.0158 0.0158

Icr m = 9.06E+8 9.06E+8 9.06E+8 9.06E+8 9.06E+8 9.06E+8 9.06E+8 9.06E+8 9.06E+8 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.832 Mmax/Mcr = 2.00 Ig/Icr m = 5.96 Am=ฯmbd= 2564 mm2

Right End cR = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 mm

AR= 0 0 0 0 0 0 0 0 0 mm2

ฯ R =AR/bd= 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Icr R = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0

MR/Mcr = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ig/Icr R = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 205: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

190

Table O-14 - Data for UDL Slab, MR=0, Ig/Icr=6 โ€“ Example 3.6.2g โ€“ Page 2

Ex. 3.6.2g, pg 2 of 2 w0 = 10.37 N/mm fc' = 36 MPa ฯ b = 0.00578

L = 10000 mm ffu = 690 MPa ฯ m = 0.0158

Ms /Mr (+ve) = 1.740 Mmax/Mcr = 2.00 Ig/Icr m = 5.96 Eb = 44000 MPa

ฮฑL/max=ML/Mmax = -2.99 -2.09 -1.50 -1.25 -1.01 -0.65 -0.35 -0.22 0.00

ML = -3.87E+8 -2.71E+8 -1.94E+8 -1.62E+8 -1.31E+8 -8.47E+7 -4.54E+7 -2.87E+7 0.00E+0 N mm

Mm = 9.75E+7 1.11E+8 1.19E+8 1.22E+8 1.24E+8 1.27E+8 1.29E+8 1.29E+8 1.30E+8 N mm

Mmax = 1.30E+8 1.30E+8 1.30E+8 1.30E+8 1.30E+8 1.30E+8 1.30E+8 1.30E+8 1.30E+8

MR = 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 N mm

K=1.2-0.2M0/Mm= 0.603 0.756 0.836 0.867 0.895 0.933 0.965 0.978 1.000

Constant Stiffness Results Using Constant Stiffness Equations ฮ”mid=K(5MmL2)/(48EcI)

ฮ”g(Gross) 4.20 5.99 7.09 7.52 7.92 8.47 8.87 9.03 9.26 mm

ฮ”cr(Cracked) 25.03 35.71 42.28 44.85 47.24 50.47 52.90 53.83 55.20 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 1.47E+9 1.47E+9 1.47E+9 1.47E+9 1.47E+9 1.47E+9 1.47E+9 1.47E+9 1.47E+9 mm4

ฮ”Ie(Branson) 15.45 22.04 26.09 27.68 29.16 31.15 32.65 33.22 34.07 mm

% error, Branson 28.40 11.93 8.06 8.09 8.89 10.56 11.16 11.49 12.23

ACI 440.1R clause 8.3.2.2 Ie=Icr+(ฮฒdIg-Icr)(Mcr/Mmax)3 ฮฒd= 0.548 ฮฒd=0.2(ฯm/ฯ b)<1 Ie R = Ie L

Ie m (ACI440.1R) = 1.16E+9 1.16E+9 1.16E+9 1.16E+9 1.16E+9 1.16E+9 1.16E+9 1.16E+9 1.16E+9 mm4

ฮ”Ie,ฮฒd(ACI440) 19.50 27.83 32.95 34.95 36.82 39.33 41.23 41.95 43.02 mm

Ie L (ACI440.1R) = 3.87E+9 1.48E+9 7.03E+8 4.97E+8 3.49E+8 2.26E+8 1.16E+9 1.16E+9 1.16E+9 mm4

Ie 9.8.2 (& ACI440.1R)= 1.57E+9 1.21E+9 1.09E+9 1.06E+9 1.04E+9 1.02E+9 1.16E+9 1.16E+9 1.16E+9 mm4

ฮ”Ie,avg(A23.3) 14.45 26.74 35.02 38.24 41.13 44.74 41.23 41.95 43.02 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) 31.69 35.82 39.78 41.67 44.18 48.19 50.90 52.02 53.53 mm

Exact Integration Ie(x)Analytical ฮ”1= -2.38 -2.43 -1.86 -1.40 -0.85 -0.08 0.00 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.23 0.24 0.24 0.25 0.25 0.25 0.25 0.23 0.17 mm

Analytical ฮ”3= 2.62 5.57 8.34 9.73 11.23 13.72 16.13 17.24 19.24 mm

Analytical ฮ”4= 21.03 21.56 21.55 21.44 21.25 20.81 20.24 19.92 19.24 mm

Analytical ฮ”5 or ฮ”5+6= 0.07 0.09 0.10 0.11 0.11 0.13 0.14 0.15 0.17 mm

Analytical ฮ”6= 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 mm

ฮ”Ie(x)(Exact) 21.57 25.02 28.38 30.12 32.00 34.83 36.75 37.53 38.82 mm

Length:Defl, L/ฮ”mid= 464 400 352 332 312 287 272 266 258

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm(Mcr/Mmax)2] ฮณ=(1.6ฮพ 3-0.6ฮพ 4)/(Mcr/Mmax)

2+2.4ln(2-ฮพ )

I'e (ฮณ=1) (M(x)=Mmax) = 1.14E+9 1.14E+9 1.14E+9 1.14E+9 1.14E+9 1.14E+9 1.14E+9 1.14E+9 1.14E+9 mm4

ฮ”ฮณ=1(Approx) 19.82 28.28 33.48 35.52 37.41 39.97 41.90 42.63 43.72 mm

ฮพ =1-โˆš(1-Mcr/Mmax)= 0.293 0.293 0.293 0.293 0.293 0.293 0.293 0.293 0.293

ฮณ= 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43

Bischoff's I'e = 1.29E+9 1.29E+9 1.29E+9 1.29E+9 1.29E+9 1.29E+9 1.29E+9 1.29E+9 1.29E+9 mm4

ฮ”I'e(Proposed) 17.60 25.11 29.73 31.54 33.22 35.49 37.20 37.85 38.82 mm

% error, proposed 18.42 0.34 4.75 4.72 3.81 1.90 1.22 0.84 0.00

L/ฮ” exact 463.55 399.63 352.35 332.03 312.49 287.14 272.08 266.44 257.62

Maximum Deflection Results using numerical and approximation methods ฮ”max โ‰ˆ ฮ”I'e โˆš(Mmax/Mm)

ฮ”max,Ie(x)(Exact) 24.15 26.86 29.41 30.93 32.58 35.02 36.75 37.53 38.82 mm

ฮ”max,I'e(Proposed) 20.30 27.14 31.07 32.57 33.96 35.86 37.32 37.90 38.82 mm

Page 206: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

191

Figure O-7 - Midspan and Maximum Deflection of FRP Reinforced Slabs under

Uniformly Distributed Load with Ig/Icr=6, Mmax/Mcr=2, MR=0

The lines plotted in Figure O-7 use data in bold from Example 3.6.2g as found in Table

O-13 and Table O-14.

Page 207: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

192

Table O-15 - Data for UDL Beam, ML=MR, Ig/Icr=17 โ€“ Example 3.6.2h โ€“ Page 1

Example 3.6.2h, pg 1 of 2 ฮฆc = 0.65 ฮตcu = 0.0035 mm/mm

UDL Continuous w0 = 6.480 N/mm fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 10000 mm Ec = 27000 MPa Mcr= 0.05 * N mm

Let ML=MR b = 0.5* h mm ฮฑ1 = 0.796

d = 0.85 * h mm ฮฒ1 = 0.880 ฯ b=ฮฑ1ฮฒ1ฯ†cf'cฮตcu/(ฯ†bffu(ฮตcu+ffu/Ef))

M0,0 = w0 L2/8 = 8.10E+7 N mm ฯ†b = 0.75 ฯ b = 0.00578

End Moment Ms/Mr = 0.635 ffu = 690 MPa ฮฑ R = 1 *ฮฑ L

+ve Moment Ms/Mr = 0.374 Eb = 44000 MPa n=Eb/Ec= 1.63

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -3.00 -2.33 -1.56 -1.22 -1.00 -0.85 -0.43 -0.25 0

wUDL = 25.92 21.60 16.62 14.40 12.96 12.00 9.26 8.10 6.48 N/mm

M0 = 3.24E+8 2.70E+8 2.08E+8 1.80E+8 1.62E+8 1.50E+8 1.16E+8 1.01E+8 8.10E+7 N mm

ฮฑL = ML/M0 = -0.75 -0.70 -0.61 -0.55 -0.50 -0.46 -0.30 -0.20 0

ฮฑR = MR/M0 = -0.75 -0.70 -0.61 -0.55 -0.50 -0.46 -0.30 -0.20 0

ML = -2.43E+8 -1.89E+8 -1.27E+8 -9.90E+7 -8.10E+7 -6.90E+7 -3.47E+7 -2.03E+7 0.00E+0 N mm

MR = -2.43E+8 -1.89E+8 -1.27E+8 -9.90E+7 -8.10E+7 -6.90E+7 -3.47E+7 -2.03E+7 0.00E+0 N mm

Mm = 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 N mm

Mmax = 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 N mm

ฮฑcr = Mcr/Mmax= 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Mcr = 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 6.48E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 510.0 510.0 510.0 510.0 510.0 510.0 510.0 510.0 510.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

L1 = 1646 1326 811 500 257 70 -612 -1000 -1708 mm

L2 = 3882 3775 3604 3500 3419 3357 3129 3000 2764 mm

LR4 = 3882 3775 3604 3500 3419 3357 3129 3000 2764 mm

LR5 = 1646 1326 811 500 257 70 -612 -1000 -1708 mm

Member Properties Determined with Factored Loads

Left End c L = 180.79 134.23 85.93 65.92 53.32 45.08 0 0 0 mm

AL= 4227 2041 741 417 265 186 0 0 0 mm2

ฯ L =As/bd= 0.0276 0.0133 0.0048 0.0027 0.0017 0.0012 0 0 0

Icr L = 1.21E+9 6.59E+8 2.66E+8 1.56E+8 1.02E+8 7.26E+7 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.775 0.878 0.951 0.971 0.981 0.987 0.000 0 0

ML/Mcr = -3.75 -2.92 -1.96 -1.53 -1.25 -1.06 -0.54 -0.31 0.00

Ig/Icr L = 4.45 8.20 20.28 34.64 53.11 74.41 1.00 1.00 1.00

Midspan c m = 93.98 93.98 93.98 93.98 93.98 93.98 93.98 93.98 93.98 mm

ฯ m =Am/bd= 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059

Icr m = 3.19E+8 3.19E+8 3.19E+8 3.19E+8 3.19E+8 3.19E+8 3.19E+8 3.19E+8 3.19E+8 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.941 Mmax/Mcr = 1.25 Ig/Icr m = 16.92 Am=ฯmbd= 904 mm2

Right End cR = 180.79 134.23 85.93 65.92 53.32 45.08 0.00 0 0 mm

AR= 4227 2041 741 417 265 186 0 0 0 mm2

ฯ R =AR/bd= 0.0276 0.0133 0.0048 0.0027 0.0017 0.0012 0.0000 0.0000 0.0000

Icr R = 1.21E+9 6.59E+8 2.66E+8 1.56E+8 1.02E+8 7.26E+7 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.775 0.878 0.951 0.971 0.981 0.987 0.000 0 0

MR/Mcr = -3.75 -2.92 -1.96 -1.53 -1.25 -1.06 -0.54 -0.31 0.00

Ig/Icr R = 4.45 8.20 20.28 34.64 53.11 74.41 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 208: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

193

Table O-16 - Data for UDL Beam, ML=MR, Ig/Icr=17 โ€“ Example 3.6.2h โ€“ Page 2

Ex. 3.6.2h, pg 2 of 2 w0 = 6.48 N/mm fc' = 36 MPa ฯ b = 0.00578

L = 10000 mm ffu = 690 MPa ฯ m = 0.0059

Ms /Mr (+ve) = 1.698 Mmax/Mcr = 1.25 Ig/Icr m = 16.92 Eb = 44000 MPa

ฮฑL/max=ML/Mmax = -3.00 -2.33 -1.56 -1.22 -1.00 -0.85 -0.43 -0.25 0.00

ML = -2.43E+8 -1.89E+8 -1.27E+8 -9.90E+7 -8.10E+7 -6.90E+7 -3.47E+7 -2.03E+7 0.00E+0 N mm

Mm = 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 N mm

Mmax = 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7

MR = -2.43E+8 -1.89E+8 -1.27E+8 -9.90E+7 -8.10E+7 -6.90E+7 -3.47E+7 -2.03E+7 0.00E+0 N mm

K=1.2-0.2M0/Mm= 0.400 0.533 0.687 0.756 0.800 0.830 0.914 0.950 1.000

Constant Stiffness Results Using Constant Stiffness Equations ฮ”mid=K(5MmL2)/(48EcI)

ฮ”g(Gross) 2.31 3.09 3.98 4.37 4.63 4.80 5.29 5.50 5.79 mm

ฮ”cr(Cracked) 39.17 52.23 67.29 73.99 78.34 81.24 89.53 93.03 97.92 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3

Branson's Ie= 2.92E+9 2.92E+9 2.92E+9 2.92E+9 2.92E+9 2.92E+9 2.92E+9 2.92E+9 2.92E+9 mm4

ฮ”Ie(Branson) 4.28 5.71 7.35 8.08 8.56 8.88 9.78 10.17 10.70 mm

% error, Branson 60.60 54.47 54.13 55.52 56.25 56.40 56.82 57.38 58.64

ACI 440.1R clause 8.3.2.2 Ie=Icr+(ฮฒdIg-Icr)(Mcr/Mmax)3 ฮฒd= 0.204 ฮฒd=0.2(ฯm/ฯ b)<1 Ie R = Ie L

Ie m (ACI440.1R) = 7.21E+8 7.21E+8 7.21E+8 7.21E+8 7.21E+8 7.21E+8 7.21E+8 7.21E+8 7.21E+8 mm4

ฮ”Ie,ฮฒd(ACI440) 17.34 23.12 29.79 32.75 34.68 35.96 39.63 41.18 43.34 mm

Ie L (ACI440.1R) = 1.29E+9 7.47E+8 3.81E+8 2.94E+8 2.64E+8 2.58E+8 7.21E+8 7.21E+8 7.21E+8 mm4

Ie 9.8.2 (& ACI440.1R)= 8.92E+8 7.29E+8 6.19E+8 5.93E+8 5.84E+8 5.82E+8 7.21E+8 7.21E+8 7.21E+8 mm4

ฮ”Ie,avg(A23.3) 14.02 22.87 34.69 39.82 42.81 44.53 39.63 41.18 43.34 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) 39.95 43.22 49.54 55.95 58.87 61.37 68.68 72.66 77.97 mm

Exact Integration Ie(x)Analytical ฮ”1= -1.81 -1.60 -0.82 -0.32 -0.07 0.00 0.00 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.41 0.45 0.52 0.56 0.59 0.61 0.66 0.66 0.62 mm

Analytical ฮ”3= 6.83 7.41 8.32 8.85 9.26 9.57 10.67 11.27 12.32 mm

Analytical ฮ”4= 6.83 7.41 8.32 8.85 9.26 9.57 10.67 11.27 12.32 mm

Analytical ฮ”5 or ฮ”5+6= 0.41 0.45 0.52 0.56 0.59 0.61 0.66 0.66 0.62 mm

Analytical ฮ”6= -1.81 -1.60 -0.82 -0.32 -0.07 0.00 0.00 0.00 0.00 mm

ฮ”Ie(x)(Exact) 10.86 12.53 16.03 18.18 19.56 20.36 22.66 23.85 25.87 mm

Length:Defl, L/ฮ”mid= 921 798 624 550 511 491 441 419 387

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm(Mcr/Mmax)2] ฮณ=(1.6ฮพ 3-0.6ฮพ 4)/(Mcr/Mmax)

2+2.4ln(2-ฮพ )

I'e (ฮณ=1) (M(x)=Mmax) = 8.02E+8 8.02E+8 8.02E+8 8.02E+8 8.02E+8 8.02E+8 8.02E+8 8.02E+8 8.02E+8 mm4

ฮ”ฮณ=1(Approx) 15.58 20.78 26.77 29.43 31.17 32.32 35.62 37.01 38.96 mm

ฮพ =1-โˆš(1-Mcr/Mmax)= 0.553 0.553 0.553 0.553 0.553 0.553 0.553 0.553 0.553

ฮณ= 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22

Bischoff's I'e = 1.21E+9 1.21E+9 1.21E+9 1.21E+9 1.21E+9 1.21E+9 1.21E+9 1.21E+9 1.21E+9 mm4

ฮ”I'e(Proposed) 10.35 13.80 17.78 19.55 20.70 21.46 23.65 24.58 25.87 mm

% error, proposed 4.72 10.10 10.92 7.54 5.79 5.43 4.40 3.05 0.00

L/ฮ” exact 920.65 797.90 623.87 550.13 511.12 491.20 441.36 419.27 386.51

Maximum Deflection Results using numerical and approximation methods ฮ”max โ‰ˆ ฮ”I'e โˆš(Mmax/Mm)

ฮ”max,Ie(x)(Exact) 10.87 12.54 16.03 18.18 19.57 20.36 22.66 23.85 25.87 mm

ฮ”max,I'e(Proposed) 10.35 13.80 17.78 19.55 20.70 21.46 23.65 24.58 25.87 mm

Page 209: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

194

Figure O-8 - Copy of Figure 3-13 โ€“ UDL on Beam, Ig/Icr=17, Mm /Mcr=1.3, ML=MR

The lines plotted in Figure O-8 use data in bold from Example 3.6.2h as found in Table

O-15 and Table O-16.

Page 210: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

195

Results Using New Mcr per CSA A23.3-04 (R2010) Appendix P

The use of ๐‘€๐‘๐‘Ÿ = 0.5๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก, per Update no. 3 to A23.3 (CSA 2004) and the R2010

version of A23.3 (CSA 2004), has a significant effect on results for this report. This

change generally provides a reasonably accurate account for shrinkage restraint stresses

and construction pre-loading for Bransonโ€™s ๐ผ๐‘’ equation, as provided in CSA A23.3.

Alternatively, use of ๐‘€๐‘๐‘Ÿ = 0.67๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก provides an equivalent adjustment for ๐ผ๐‘’โ€ฒ or

๐ผ๐‘’(๐‘ฅ) as defined in this report (Scanlon and Bischoff 2008). Discussion and graphs

showing the effects on deflection for simply supported members are also provided by

Scanlon and Bischoff (2008). This discussion explains that rational and integration-

based solutions provide a simple and robust way to account for shrinkage restraint when

calculating deflection. Use of ๐ผ๐‘’(๐‘ฅ) with ๐‘€๐‘๐‘Ÿ = 0.67๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก should provide the most

accurate results for all simply supported and continuous concrete members.

For the examples provided in this appendix, three sets of members from Appendix O are

repeated but modified to account for shrinkage restraint. Each set maintains the same

member dimensions and positive moment reinforcing, with the same ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ ratio, but

the ๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ ratio increases with the reduced cracking moment.

The first example in this appendix, Example P1, is based on Example 3.6.2a from

Appendix O. The graph for Example 3.6.2a is also provided, with discussion, as Figure

3-9. For Example P1, deflection results increase with the ๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ increase and

results are conservative when using Bransonโ€™s ๐ผ๐‘’ with the 0.5 factor for ๐‘€๐‘๐‘Ÿ. Bransonโ€™s

๐ผ๐‘’ also produced conservative results for Example 3.6.2a.

Page 211: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

196

The second example in this appendix, Example P2, is based on Example 3.6.2e from

Appendix O. The graph for Example 3.6.2e is also provided, with discussion, Figure

3-12. For Example P2, deflection increase with the ๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ increase and results

using Bransonโ€™s ๐ผ๐‘’ with the 0.5 factor for ๐‘€๐‘๐‘Ÿ becomes conservative by about 15%

instead of being unconservative by about 15% for Example 3.6.2e.

The final example in this appendix, Example P3, is based on Example 3.6.2h from

Appendix O. The graph for Example 3.6.2h is also provided, with discussion, in Figure

3-13. For Example P3, deflection results increase with the ๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ increase and

results using Bransonโ€™s ๐ผ๐‘’ with the 0.5 factor for ๐‘€๐‘๐‘Ÿ remain unconservative, but

improve significantly, relative to Example 3.6.2h.

The main result of reducing the cracking moment, as prescribed for CSA A23.3, is that

the section-based, effective, and equivalent moments of inertia all shift towards the

value of the cracked moment of inertia. This shift causes all deflection results to

increase and become much closer to the fully cracked results; this can be seen by

comparing Figure P-1 to Figure P-2, Figure P-3 to Figure P-4, and Figure P-5 to Figure

P-6. These results show that if ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ < 12, then using Bransonโ€™s ๐ผ๐‘’ with the 0.5 factor

for ๐‘€๐‘๐‘Ÿ will result in higher deflection predictions than using ๐ผ๐‘’โ€ฒ or ๐ผ๐‘’(๐‘ฅ) with 0.67

factor for ๐‘€๐‘๐‘Ÿ. Results using Bransonโ€™s ๐ผ๐‘’ are unconservative when ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ > 12. In

spreadsheet testing that is not provided, the ๐ผ๐‘’ reduced for shrinkage restraint was found

to highly underestimate deflection when ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ is much larger than 12. In other omitted

spreadsheet testing, ๐ผ๐‘’ results sometimes highly overestimate deflection when shrinkage

restraint is included, ๐‘€๐‘š๐‘Ž๐‘ฅ/๐‘€๐‘๐‘Ÿ < 1.5, and ๐ผ๐‘”/๐ผ๐‘๐‘Ÿ < 10.

Page 212: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

197

Table P-1 - Data for UDL Beam, Ig/Icr=3.0, New A23.3 Mcr Example P1 โ€“ Page 1

Example P1 (Example 3.6.2a modified to New Mcr) ฮฆc = 0.65 pg 1/2

UDL Continuous w0 = 11.27 N/mm fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 10000 mm Ec = 27000 MPa use: Mcr = 0.67 frIg/yt

Let ML=MR b = 0.5* h mm ฮฑ1 = 0.796 Mcr= 0.0335 * N mm

d = 0.9 * h mm ฮฒ1 = 0.880

M0,0 = w0 L2/8 = 1.41E+8 N mm ฮฆb = 0.85

End Moment Ms/Mr = 0.635 fy = 400 MPa ฮฑ R = 1 *ฮฑ L

+ve Moment Ms/Mr = 0.635 Eb = 200000 MPa n=Eb/Ec= 7.40741

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -3.00 -2.33 -1.86 -1.22 -1.00 -0.67 -0.43 -0.25 0

wUDL = 45.08 37.57 32.20 25.04 22.54 18.78 16.10 14.09 11.27 N/mm

M0 = 5.64E+8 4.70E+8 4.03E+8 3.13E+8 2.82E+8 2.35E+8 2.01E+8 1.76E+8 1.41E+8 N mm

ฮฑL = ML/M0 = -0.75 -0.70 -0.65 -0.55 -0.50 -0.40 -0.30 -0.20 0

ฮฑR = MR/M0 = -0.75 -0.70 -0.65 -0.55 -0.50 -0.40 -0.30 -0.20 0

ML = -4.23E+8 -3.29E+8 -2.62E+8 -1.72E+8 -1.41E+8 -9.39E+7 -6.04E+7 -3.52E+7 0.00E+0 N mm

MR = -4.23E+8 -3.29E+8 -2.62E+8 -1.72E+8 -1.41E+8 -9.39E+7 -6.04E+7 -3.52E+7 0.00E+0 N mm

Mm = 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 N mm

Mmax = 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 N mm

ฮฑcr = Mcr/Mmax= 0.3082 0.3082 0.3082 0.3082 0.3082 0.3082 0.3082 0.3082 0.3082

Mcr = 4.34E+7 4.34E+7 4.34E+7 4.34E+7 4.34E+7 4.34E+7 4.34E+7 4.34E+7 4.34E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

L1 = 2141 1868 1617 1164 956 570 215 -115 -719 mm

L2 = 2921 2722 2540 2210 2059 1779 1521 1280 841 mm

LR4 = 2921 2722 2540 2210 2059 1779 1521 1280 841 mm

LR5 = 2141 1868 1617 1164 956 570 215 -115 -719 mm

Member Properties Determined with Factored Loads

Left End Kr L = 7.61 5.92 4.71 3.10 2.54 1.69 1.09 0 0 MPa

ฯ L = 0.0313 0.0217 0.0163 0.0100 0.0081 0.0052 0.0033 0 0

AL=ฯLbd= 5077 3516 2635 1626 1304 846 534 0 0 mm2

Icr L = 4.71E+9 3.72E+9 3.05E+9 2.14E+9 1.80E+9 1.27E+9 8.64E+8 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.129 0.311 0.435 0.604 0.666 0.764 0.840 0 0

ML/Mcr = -9.73 -7.57 -6.03 -3.97 -3.24 -2.16 -1.39 -0.81 0.00

Ig/Icr L = 1.15 1.45 1.77 2.52 2.99 4.24 6.25 1.00 1.00

Midspan Kr m = 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 MPa

ฯ m = 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081

Icr m = 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 1.80E+9 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.666 Mmax/Mcr = 3.24 Ig/Icr m = 2.99 Am=ฯmbd= 1304 mm2

Right End Kr R = 7.61 5.92 4.71 3.10 2.54 1.69 1.09 0 0 MPa

ฯ R = 0.0313 0.0217 0.0163 0.0100 0.0081 0.0052 0.0033 0 0

AR=ฯRbd= 5077 3516 2635 1626 1304 846 534 0 0 mm2

Icr R = 4.71E+9 3.72E+9 3.05E+9 2.14E+9 1.80E+9 1.27E+9 8.64E+8 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.129 0.311 0.435 0.604 0.666 0.764 0.840 0 0

MR/Mcr = -9.73 -7.57 -6.03 -3.97 -3.24 -2.16 -1.39 -0.81 0.00

Ig/Icr R = 1.15 1.45 1.77 2.52 2.99 4.24 6.25 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 213: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

198

Table P-2 - Data for UDL Beam, Ig/Icr=3.0, New A23.3 Mcr Example P1 โ€“ Page 2

New Mcr Example P1 w0 = 11.27 N/mm fc' = 36 MPa b = 0.5* h mm pg 2/2

L = 10000 mm fy = 400 MPa d = 0.9 * h mm

+ve Moment Ms/Mr = 0.635 ฯ m = 0.0081 fr = 0.6 *

Mmax/Mcr = 3.24 Ig/Icr m = 2.99 Eb = 200000 MPa

ฮฑL/max=ML/Mmax = -3.00 -2.33 -1.86 -1.22 -1.00 -0.67 -0.43 -0.25 0.00

ML = -4.23E+8 -3.29E+8 -2.62E+8 -1.72E+8 -1.41E+8 -9.39E+7 -6.04E+7 -3.52E+7 0.00E+0 N mm

Mm = 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 N mm

Mmax = 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8 1.41E+8

MR = -4.23E+8 -3.29E+8 -2.62E+8 -1.72E+8 -1.41E+8 -9.39E+7 -6.04E+7 -3.52E+7 0.00E+0 N mm

K=1.2-0.2M0/Mm= 0.400 0.533 0.629 0.756 0.800 0.867 0.914 0.950 1.000

Constant Stiffness Results Using Constant Stiffness Equations ฮ”mid=K(5MmL2)/(48EcI)

ฮ”g(Gross) 4.03 5.37 6.33 7.60 8.05 8.72 9.20 9.56 10.06 mm

ฮ”cr(Cracked) 12.05 16.07 18.94 22.76 24.10 26.11 27.54 28.62 30.13 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3 Mcr =(0.3โˆšf'c)Ig/y= N mm

Branson's Ie= 1.85E+9 1.85E+9 1.85E+9 1.85E+9 1.85E+9 1.85E+9 1.85E+9 1.85E+9 1.85E+9 mm4

ฮ”Ie(Branson) 11.76 15.69 18.49 22.22 23.53 25.49 26.89 27.94 29.41 mm

% error, Branson 17.94 3.21 3.59 8.36 9.00 9.21 9.04 8.83 8.08

CSA A23.3 Clause 9.8.2.4 Ie avg=.7Ie max+.15(IeL+IeR) or Ie =0.85Ie max + 0.15 IeL

Ie L (Bransons)= 4.71E+9 3.72E+9 3.06E+9 2.16E+9 1.85E+9 1.44E+9 1.57E+9 5.40E+9 1.85E+9 mm4

Ie R (Bransons)= 4.71E+9 3.72E+9 3.06E+9 2.16E+9 1.85E+9 1.44E+9 1.57E+9 5.40E+9 1.85E+9 mm4

Ie 9.8.2 (Bransons)= 2.71E+9 2.41E+9 2.21E+9 1.94E+9 1.85E+9 1.73E+9 1.76E+9 2.91E+9 1.85E+9 mm4

ฮ”Ie,avg(A23.3) 8.04 12.03 15.46 21.15 23.53 27.29 28.18 17.72 29.41 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) 16.35 18.28 20.01 22.76 23.90 25.84 27.31 28.41 29.99 mm

Exact Integration Ie(x)Analytical ฮ”1= -1.36 -1.06 -0.79 -0.40 -0.26 -0.08 -0.01 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.03 0.03 0.04 0.04 0.04 0.05 0.05 0.05 0.04 mm

Analytical ฮ”3= 8.49 9.13 9.68 10.61 11.01 11.71 12.29 12.78 13.57 mm

Analytical ฮ”4= 8.49 9.13 9.68 10.61 11.01 11.71 12.29 12.78 13.57 mm

Analytical ฮ”5 or ฮ”5+6= 0.03 0.03 0.04 0.04 0.04 0.05 0.05 0.05 0.04 mm

Analytical ฮ”6= -1.36 -1.06 -0.79 -0.40 -0.26 -0.08 -0.01 0.00 0.00 mm

ฮ”Ie(x)(Exact) 14.34 16.21 17.85 20.51 21.59 23.34 24.66 25.68 27.21 mm

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm(Mcr/Mmax)2] ฮณ=(1.6ฮพ 3-0.6ฮพ 4)/(Mcr/Mmax)

2+2.4ln(2-ฮพ )

I'e (ฮณ=1) (M(x)=Mmax) = 1.93E+9 1.93E+9 1.93E+9 1.93E+9 1.93E+9 1.93E+9 1.93E+9 1.93E+9 1.93E+9 mm4

ฮ”ฮณ=1(Approx) 11.29 15.05 17.74 21.32 22.58 24.46 25.80 26.81 28.22 mm

ฮพ =1-โˆš(1-Mcr/Mmax)= 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168

ฮณ= 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53

Bischoff's I'e = 2.00E+9 2.00E+9 2.00E+9 2.00E+9 2.00E+9 2.00E+9 2.00E+9 2.00E+9 2.00E+9 mm4

ฮ”I'e(Proposed) 10.89 14.51 17.11 20.56 21.77 23.59 24.88 25.85 27.21 mm

% error, proposed 24.07 10.44 4.15 0.26 0.86 1.05 0.89 0.70 0.00

Maximum Deflection Results using numerical and approximation methods ฮ”max โ‰ˆ ฮ”I'e โˆš(Mmax/Mm)

ฮ”max,Ie(x)(Exact) 14.34 16.21 17.85 20.51 21.59 23.34 24.66 25.68 27.21 mm

Length:Defl, L/ฮ”max= 697 617 560 488 463 428 405 389 367

ฮ”max,I'e(Proposed) 10.89 14.51 17.11 20.56 21.77 23.59 24.88 25.85 27.21 mm

3.24E+7

๐‘“๐‘โ€ฒ

Page 214: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

199

Figure P-1 - Midspan Deflection Computed using Shrinkage Restraint Mcr โ€“ Beam with

Ig/Icr=3 Mm/Mcr=3.2, ML=MR

The lines plotted in Figure P-1 use data from Example P1 per Table P-1 and Table P-2.

Figure P-2 - Copy of Figure O-1, Ig/Icr=3, Mm /Mcr=2.2 โ€“ Compare to Figure P-1

๐‘€๐‘๐‘Ÿ = ๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก

(all)

Page 215: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

200

Table P-3 - Data for UDL Beam, Ig/Icr=4.9, New A23.3 Mcr Example P2 โ€“ Page 1

Example P2 (Example 3.6.2e modified to New Mcr) ฮฆc = 0.65 pg 1/2

UDL Continuous w0 = 8.605 N/mm fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 7500 mm Ec = 27000 MPa use: Mcr = 0.67 frIg/yt

Let MR=0 b = 3.636* h mm ฮฑ1 = 0.796 Mcr= 0.24361 * N mm

d = 0.85 * h mm ฮฒ1 = 0.880

M0,0 = w0 L2/8 = 6.05E+7 N mm ฮฆb = 0.85

End Moment Ms/Mr = 0.635 fy = 400 MPa ฮฑ R = 0 *ฮฑ L

+ve Moment Ms/Mr = 0.635 Eb = 200000 MPa n=Eb/Ec= 7.40741

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -2.99 -2.09 -1.78 -1.37 -1.01 -0.74 -0.49 -0.22 0

wUDL = 19.31 16.37 15.30 13.88 12.57 11.57 10.62 9.53 8.61 N/mm

M0 = 1.36E+8 1.15E+8 1.08E+8 9.76E+7 8.84E+7 8.13E+7 7.47E+7 6.70E+7 6.05E+7 N mm

ฮฑL = ML/M0 = -1.33 -1.10 -1 -0.85 -0.69 -0.55 -0.40 -0.20 0

ฮฑR = MR/M0 = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

ML = -1.81E+8 -1.27E+8 -1.08E+8 -8.29E+7 -6.10E+7 -4.47E+7 -2.99E+7 -1.34E+7 0.00E+0 N mm

MR = 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 N mm

Mm = 4.55E+7 5.18E+7 5.38E+7 5.61E+7 5.79E+7 5.90E+7 5.98E+7 6.03E+7 6.05E+7 N mm

Mmax = 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 N mm

ฮฑcr = Mcr/Mmax= 0.5025 0.5025 0.5025 0.5025 0.5025 0.5025 0.5025 0.5025 0.5025

Mcr = 3.04E+7 3.04E+7 3.04E+7 3.04E+7 3.04E+7 3.04E+7 3.04E+7 3.04E+7 3.04E+7 N mm

h = 275.0 275.0 275.0 275.0 275.0 275.0 275.0 275.0 275.0 mm

d = 233.8 233.8 233.8 233.8 233.8 233.8 233.8 233.8 233.8 mm

b = 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 mm

Ig = 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 mm4

L1 = 1929 1449 1240 927 593 301 -12 -429 -847 mm

L2 = 3231 2864 2704 2464 2208 1984 1744 1425 1105 mm

LR4 = 738 801 829 870 914 953 994 1050 1105 mm

LR5 = -565 -614 -635 -667 -701 -730 -762 -804 -847 mm

Member Properties Determined with Factored Loads

Left End Kr L = 5.21 3.65 3.10 2.39 1.76 1.29 0.00 0 0 MPa

ฯ L = 0.0184 0.0121 0.0100 0.0075 0.0054 0.0039 0.0000 0 0

AL=ฯLbd= 4301 2819 2346 1765 1271 919 0 0 0 mm2

Icr L = 8.99E+8 6.64E+8 5.79E+8 4.64E+8 3.56E+8 2.72E+8 1.73E+9 1.73E+9 1.73E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.481 0.617 0.666 0.732 0.795 0.843 0.000 0 0

ML/Mcr = -5.94 -4.16 -3.54 -2.73 -2.01 -1.47 -0.98 -0.44 0.00

Ig/Icr L = 1.93 2.61 3.00 3.74 4.87 6.38 1.00 1.00 1.00

Midspan Kr m = 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 MPa

ฯ m = 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054

Icr m = 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 3.54E+8 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.796 Mmax/Mcr = 1.99 Ig/Icr m = 4.90 Am=ฯmbd= 1261 mm2

Right End Kr R = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 MPa

ฯ R = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0

AR=ฯRbd= 0 0 0 0 0 0 0 0 0 mm2

Icr R = 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 1.73E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0

MR/Mcr = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ig/Icr R = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 216: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

201

Table P-4 - Data for UDL Beam, Ig/Icr=4.9, New A23.3 Mcr Example P2 โ€“ Page 2

New Mcr Example P2 w0 = 8.61 N/mm fc' = 36 MPa b = 3.636* h mm pg 2/2

L = 7500 mm fy = 400 MPa d = 0.85 * h mm

+ve Moment Ms/Mr = 0.635 ฯ m = 0.0054 fr = 0.6 *

Mmax/Mcr = 1.99 Ig/Icr m = 4.90 Eb = 200000 MPa

ฮฑL/max=ML/Mmax = -2.99 -2.09 -1.78 -1.37 -1.01 -0.74 -0.49 -0.22 0.00

ML = -1.81E+8 -1.27E+8 -1.08E+8 -8.29E+7 -6.10E+7 -4.47E+7 -2.99E+7 -1.34E+7 0.00E+0 N mm

Mm = 4.55E+7 5.18E+7 5.38E+7 5.61E+7 5.79E+7 5.90E+7 5.98E+7 6.03E+7 6.05E+7 N mm

Mmax = 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7 6.05E+7

MR = 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 N mm

K=1.2-0.2M0/Mm= 0.603 0.756 0.800 0.852 0.895 0.924 0.950 0.978 1.000

Constant Stiffness Results Using Constant Stiffness Equations ฮ”mid=K(5MmL2)/(48EcI)

ฮ”g(Gross) 3.43 4.90 5.39 5.99 6.48 6.82 7.11 7.39 7.58 mm

ฮ”cr(Cracked) 16.84 24.02 26.41 29.34 31.78 33.45 34.85 36.21 37.14 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3 Mcr =(0.3โˆšf'c)Ig/y= N mm

Branson's Ie= 4.26E+8 4.26E+8 4.26E+8 4.26E+8 4.26E+8 4.26E+8 4.26E+8 4.26E+8 4.26E+8 mm4

ฮ”Ie(Branson) 13.96 19.92 21.90 24.34 26.36 27.74 28.90 30.03 30.80 mm

% error, Branson 1.02 14.81 16.96 18.27 18.43 18.21 17.89 17.15 16.23

CSA A23.3 Clause 9.8.2.4 Ie avg=.7Ie max+.15(IeL+IeR) or Ie =0.85Ie max + 0.15 IeL

Ie L (Bransons)= 9.01E+8 6.71E+8 5.89E+8 4.90E+8 4.27E+8 4.62E+8 1.73E+9 4.26E+8 4.26E+8 mm4

Ie R (Bransons)= 4.26E+8 4.26E+8 4.26E+8 4.26E+8 4.26E+8 4.26E+8 4.26E+8 4.26E+8 4.26E+8 mm4

Ie 9.8.2 (Bransons)= 4.97E+8 4.63E+8 4.51E+8 4.36E+8 4.26E+8 4.32E+8 6.22E+8 4.26E+8 4.26E+8 mm4

ฮ”Ie,avg(A23.3) 11.97 18.35 20.71 23.80 26.35 27.39 19.80 30.03 30.80 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) 20.21 24.48 26.09 28.49 30.65 32.23 33.59 35.05 36.06 mm

Exact Integration Ie(x)Analytical ฮ”1= -2.57 -1.43 -1.02 -0.54 -0.20 -0.04 0.00 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.19 0.20 0.20 0.20 0.21 0.21 0.21 0.19 0.14 mm

Analytical ฮ”3= 1.82 3.84 4.78 6.20 7.69 8.94 10.21 11.75 13.11 mm

Analytical ฮ”4= 14.32 14.67 14.69 14.63 14.46 14.25 13.98 13.57 13.11 mm

Analytical ฮ”5 or ฮ”5+6= 0.06 0.07 0.08 0.09 0.09 0.10 0.11 0.12 0.14 mm

Analytical ฮ”6= 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 mm

ฮ”Ie(x)(Exact) 13.82 17.35 18.73 20.58 22.26 23.47 24.51 25.63 26.50 mm

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm(Mcr/Mmax)2] ฮณ=(1.6ฮพ

3-0.6ฮพ

4)/(Mcr/Mmax)

2+2.4ln(2-ฮพ )

I'e (ฮณ=1) (M(x)=Mmax) = 4.42E+8 4.42E+8 4.42E+8 4.42E+8 4.42E+8 4.42E+8 4.42E+8 4.42E+8 4.42E+8 mm4

ฮ”ฮณ=1(Approx) 13.45 19.19 21.10 23.45 25.39 26.73 27.84 28.93 29.67 mm

ฮพ =1-โˆš(1-Mcr/Mmax)= 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295

ฮณ= 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43

Bischoff's I'e = 4.95E+8 4.95E+8 4.95E+8 4.95E+8 4.95E+8 4.95E+8 4.95E+8 4.95E+8 4.95E+8 mm4

ฮ”I'e(Proposed) 12.01 17.14 18.84 20.94 22.68 23.87 24.86 25.84 26.50 mm

% error, proposed 13.09 1.22 0.63 1.76 1.90 1.71 1.43 0.79 0.00

Maximum Deflection Results using numerical and approximation methods ฮ”max โ‰ˆ ฮ”I'e โˆš(Mmax/Mm)

ฮ”max,Ie(x)(Exact) 15.76 18.55 19.60 21.14 22.60 23.64 24.53 25.64 26.50 mm

Length:Defl, L/ฮ”max= 476 404 383 355 332 317 306 293 283

ฮ”max,I'e(Proposed) 13.86 18.53 19.99 21.74 23.19 24.18 25.02 25.87 26.50 mm

2.27E+7

๐‘“๐‘โ€ฒ

Page 217: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

202

Figure P-3 โ€“ Midspan and Maximum Deflection Computed using Shrinkage Restraint

Mcr โ€“ Slab with Ig/Icr=5, Mmax/Mcr=2, and MR=0

The lines plotted in Figure P-3 use data from Example P2 per Table P-3 and Table P-4.

Figure P-4 - Copy of Figure O-5, Ig/Icr=5, Mmax/Mcr=1.3 โ€“ Compare to Figure P-3

๐‘€๐‘๐‘Ÿ = ๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก

(all)

Page 218: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

203

Table P-5 - Data for UDL Beam, Ig/Icr=17, Reduced Mcr Example P3 โ€“ Page 1

Example P3 (Example 3.6.2h modified to New Mcr) ฮฆc = 0.65 ฮตcu = 0.0035 mm/mm pg 1/2

UDL Continuous w0 = 6.480 N/mm fc' = 36 MPa fr = 0.6 * MPa

Vary ML, Mm constant L = 10000 mm Ec = 27000 MPa use: Mcr = 0.67 frIg/yt

Let ML=MR b = 0.5* h mm ฮฑ1 = 0.796 Mcr= 0.0335 * N mm

d = 0.85 * h mm ฮฒ1 = 0.880 ฯ b=ฮฑ1ฮฒ1ฯ†cf'cฮตcu/(ฯ†bffu(ฮตcu+ffu/Ef))

M0,0 = w0 L2/8 = 8.10E+7 N mm ฯ†b = 0.75 ฯ b = 0.00578

End Moment Ms/Mr = 0.635 ffu = 690 MPa ฮฑ R = 1 *ฮฑ L

+ve Moment Ms/Mr = 0.374 Eb = 44000 MPa n=Eb/Ec= 1.63

Member Properties Determined from Provided Info (Primairly Servicability) Units

ฮฑL/max=ML/Mmax= -3.00 -2.33 -1.56 -1.22 -1.00 -0.85 -0.43 -0.25 0

wUDL = 25.92 21.60 16.62 14.40 12.96 12.00 9.26 8.10 6.48 N/mm

M0 = 3.24E+8 2.70E+8 2.08E+8 1.80E+8 1.62E+8 1.50E+8 1.16E+8 1.01E+8 8.10E+7 N mm

ฮฑL = ML/M0 = -0.75 -0.70 -0.61 -0.55 -0.50 -0.46 -0.30 -0.20 0

ฮฑR = MR/M0 = -0.75 -0.70 -0.61 -0.55 -0.50 -0.46 -0.30 -0.20 0

ML = -2.43E+8 -1.89E+8 -1.27E+8 -9.90E+7 -8.10E+7 -6.90E+7 -3.47E+7 -2.03E+7 0.00E+0 N mm

MR = -2.43E+8 -1.89E+8 -1.27E+8 -9.90E+7 -8.10E+7 -6.90E+7 -3.47E+7 -2.03E+7 0.00E+0 N mm

Mm = 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 N mm

Mmax = 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 N mm

ฮฑcr = Mcr/Mmax= 0.536 0.536 0.536 0.536 0.536 0.536 0.536 0.536 0.536

Mcr = 4.34E+7 4.34E+7 4.34E+7 4.34E+7 4.34E+7 4.34E+7 4.34E+7 4.34E+7 4.34E+7 N mm

h = 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 mm

d = 510.0 510.0 510.0 510.0 510.0 510.0 510.0 510.0 510.0 mm

b = 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 mm

Ig = 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 5.40E+9 mm4

L1 = 1902 1606 1130 843 618 446 -185 -543 -1197 mm

L2 = 3297 3135 2873 2715 2592 2497 2150 1954 1594 mm

LR4 = 3297 3135 2873 2715 2592 2497 2150 1954 1594 mm

LR5 = 1902 1606 1130 843 618 446 -185 -543 -1197 mm

Member Properties Determined with Factored Loads

Left End c L = 180.79 134.23 85.93 65.92 53.32 45.08 0 0 0 mm

AL= 4227 2041 741 417 265 186 0 0 0 mm2

ฯ L =As/bd= 0.0276 0.0133 0.0048 0.0027 0.0017 0.0012 0 0 0

Icr L = 1.21E+9 6.59E+8 2.66E+8 1.56E+8 1.02E+8 7.26E+7 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทL=1 โ€“ Icr L/Ig = 0.775 0.878 0.951 0.971 0.981 0.987 0.000 0 0

ML/Mcr = -5.60 -4.35 -2.92 -2.28 -1.87 -1.59 -0.80 -0.47 0.00

Ig/Icr L = 4.45 8.20 20.28 34.64 53.11 74.41 1.00 1.00 1.00

Midspan c m = 93.98 93.98 93.98 93.98 93.98 93.98 93.98 93.98 93.98 mm

ฯ m =Am/bd= 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059

Icr m = 3.19E+8 3.19E+8 3.19E+8 3.19E+8 3.19E+8 3.19E+8 3.19E+8 3.19E+8 3.19E+8 mm4

ฮทm=1 โ€“ Icr m/Ig = 0.941 Mmax/Mcr = 1.87 Ig/Icr m = 16.92 Am=ฯmbd= 904 mm2

Right End cR = 180.79 134.23 85.93 65.92 53.32 45.08 0.00 0 0 mm

AR= 4227 2041 741 417 265 186 0 0 0 mm2

ฯ R =AR/bd= 0.0276 0.0133 0.0048 0.0027 0.0017 0.0012 0.0000 0.0000 0.0000

Icr R = 1.21E+9 6.59E+8 2.66E+8 1.56E+8 1.02E+8 7.26E+7 5.40E+9 5.40E+9 5.40E+9 mm4

ฮทR=1 โ€“ Icr R/Ig = 0.775 0.878 0.951 0.971 0.981 0.987 0.000 0 0

MR/Mcr = -5.60 -4.35 -2.92 -2.28 -1.87 -1.59 -0.80 -0.47 0.00

Ig/Icr R = 4.45 8.20 20.28 34.64 53.11 74.41 1.00 1.00 1.00

Simply

Supprt'd

๐‘“๐‘โ€ฒ

โ„Ž3 ๐‘“๐‘โ€ฒ

Page 219: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

204

Table P-6 - Data for UDL Beam, Ig/Icr=17, Reduced Mcr Example P3 โ€“ Page 2

New Mcr Example P3 w0 = 6.48 N/mm fc' = 36 MPa ฯ b = 0.00578 pg 2/2

L = 10000 mm ffu = 690 MPa ฯ m = 0.0059

Ms /Mr (+ve) = 1.698 Mmax/Mcr = 1.87 Ig/Icr m = 16.92 Eb = 44000 MPa

ฮฑL/max=ML/Mmax = -3.00 -2.33 -1.56 -1.22 -1.00 -0.85 -0.43 -0.25 0.00

ML = -2.43E+8 -1.89E+8 -1.27E+8 -9.90E+7 -8.10E+7 -6.90E+7 -3.47E+7 -2.03E+7 0.00E+0 N mm

Mm = 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 N mm

Mmax = 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7 8.10E+7

MR = -2.43E+8 -1.89E+8 -1.27E+8 -9.90E+7 -8.10E+7 -6.90E+7 -3.47E+7 -2.03E+7 0.00E+0 N mm

K=1.2-0.2M0/Mm= 0.400 0.533 0.687 0.756 0.800 0.830 0.914 0.950 1.000

Constant Stiffness Results Using Constant Stiffness Equations ฮ”mid=K(5MmL2)/(48EcI)

ฮ”g(Gross) 2.31 3.09 3.98 4.37 4.63 4.80 5.29 5.50 5.79 mm

ฮ”cr(Cracked) 39.17 52.23 67.29 73.99 78.34 81.24 89.53 93.03 97.92 mm

Branson's Method ฮ”Ie Ie=Icr+(Ig-Icr)(Mcr/Mmax)3 Mcr =(0.3โˆšf'c)Ig/y= N mm

Branson's Ie= 6.44E+8 6.44E+8 6.44E+8 6.44E+8 6.44E+8 6.44E+8 6.44E+8 6.44E+8 6.44E+8 mm4

ฮ”Ie(Branson) 19.40 25.87 33.33 36.65 38.80 40.24 44.34 46.08 48.50 mm

% error, Branson 37.94 24.01 15.56 15.12 15.84 16.58 17.76 18.41 20.11

ACI 440.1R clause 8.3.2.2 Ie=Icr+(ฮฒdIg-Icr)(Mcr/Mmax)3 ฮฒd= 0.204 ฮฒd=0.2(ฯm/ฯ b)<1 Ie R = Ie L

Ie m (ACI440.1R) = 3.69E+8 3.69E+8 3.69E+8 3.69E+8 3.69E+8 3.69E+8 3.69E+8 3.69E+8 3.69E+8 mm4

ฮ”Ie,ฮฒd(ACI440) 33.84 45.12 58.14 63.93 67.69 70.19 77.36 80.38 84.61 mm

Ie L (ACI440.1R) = Ie R = 1.22E+9 6.70E+8 2.81E+8 1.73E+8 1.22E+8 9.58E+7 5.40E+9 3.69E+8 3.69E+8 mm4

Ie 9.8.2 (& ACI440.1R)= 6.26E+8 4.59E+8 3.43E+8 3.11E+8 2.95E+8 2.87E+8 1.88E+9 3.69E+8 3.69E+8 mm4

ฮ”Ie,avg(A23.3) 19.98 36.28 62.66 76.04 84.70 90.25 15.21 80.38 84.61 mm

Deflection using the S806 Method with Numerical Integration

โˆ†ฮฒ=0(S806) 52.06 55.53 62.28 67.08 71.32 74.98 83.99 87.67 93.86 mm

Exact Integration Ie(x)Analytical ฮ”1= -2.34 -2.38 -1.85 -1.26 -0.75 -0.39 0.00 0.00 0.00 mm

Analytical ฮ”2 or ฮ”1+2= 0.10 0.11 0.13 0.14 0.14 0.15 0.17 0.16 0.13 mm

Analytical ฮ”3= 17.87 19.29 21.46 22.71 23.66 24.36 26.80 28.08 30.23 mm

Analytical ฮ”4= 17.87 19.29 21.46 22.71 23.66 24.36 26.80 28.08 30.23 mm

Analytical ฮ”5 or ฮ”5+6= 0.10 0.11 0.13 0.14 0.14 0.15 0.17 0.16 0.13 mm

Analytical ฮ”6= -2.34 -2.38 -1.85 -1.26 -0.75 -0.39 0.00 0.00 0.00 mm

ฮ”Ie(x)(Exact) 31.26 34.04 39.47 43.17 46.11 48.24 53.92 56.48 60.71 mm

Length:Defl, L/ฮ”mid= 320 294 253 232 217 207 185 177 165

Proposed Method ฮ”I'e I'e=Icr/[1-ฮณฮทm(Mcr/Mmax)2] ฮณ=(1.6ฮพ 3-0.6ฮพ 4)/(Mcr/Mmax)

2+2.4ln(2-ฮพ )

I'e (ฮณ=1) (M(x)=Mmax) = 4.37E+8 4.37E+8 4.37E+8 4.37E+8 4.37E+8 4.37E+8 4.37E+8 4.37E+8 4.37E+8 mm4

ฮ”ฮณ=1(Approx) 28.58 38.11 49.10 53.99 57.16 59.28 65.33 67.88 71.45 mm

ฮพ =1-โˆš(1-Mcr/Mmax)= 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.319

ฮณ= 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41

Bischoff's I'e = 5.15E+8 5.15E+8 5.15E+8 5.15E+8 5.15E+8 5.15E+8 5.15E+8 5.15E+8 5.15E+8 mm4

ฮ”I'e(Proposed) 24.29 32.38 41.72 45.87 48.57 50.37 55.51 57.68 60.71 mm

% error, proposed 22.31 4.87 5.70 6.25 5.34 4.42 2.94 2.13 0.00

L/ฮ” exact 319.89 293.77 253.33 231.63 216.88 207.31 185.45 177.06 164.70

Maximum Deflection Results using numerical and approximation methods ฮ”max โ‰ˆ ฮ”I'e โˆš(Mmax/Mm)

ฮ”max,Ie(x)(Exact) 31.26 34.05 39.48 43.18 46.11 48.24 53.92 56.48 60.72 mm

ฮ”max,I'e(Proposed) 24.29 32.38 41.72 45.87 48.57 50.37 55.51 57.68 60.71 mm

3.24E+7

Page 220: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

205

Figure P-5 - Midspan Deflection Computed using Shrinkage Restraint Mcr โ€“ Slab with

Ig/Icr=17, Mm/Mcr=1.9, and ML=MR

The lines plotted in Figure P-5 use data from Example P3 per Table P-5 and Table P-6.

Figure P-6 - Copy of Figure O-8, Ig/Icr=17, Mm/Mcr=1.3 โ€“ Compare to Figure P-5

๐‘€๐‘๐‘Ÿ = ๐‘“๐‘Ÿ๐ผ๐‘”/๐‘ฆ๐‘ก

(all)

Page 221: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

206

The Effects of Cracking near Supports Appendix Q

The amount of cracking near supports does affect deflection. When the stiffness at

supports is changed, the result will normally be a different bending moment distribution

and a different deflection. In idealized testing, or for design, these different results can

be surprising.

Deflections can be reduced, in theory, if end segments experience more cracking while

the negative end-moments are kept constant. This result makes sense when one looks at

the effect that each segment of the beam has on deflection. The figures in Appendix L

show graphs of ๐‘š๐‘€/๐ธ๐ผ, the virtual moment function which is integrated to determine

deflection. The graphical area above the negative moment segments reduces deflection

at midspan. Increased cracking at the ends will decrease the moment of inertia, ๐ผ, in

these segments; thus, the area in the negative moment region is increased and deflection

reduced. This full scenario could occur if negative-moment pre-loading is performed

when determining the midspan deflection of a beam which has cantilever segments past

the supports on both ends. This is because the ends of the member must be able to

rotate in the manner that reduces midspan deflection. In most other cases, however,

deflection will increase if negative-moment pre-loading occurs because the reduced

end-stiffness will cause bending moments to redistribute such that the negative

moments will reduce and the positive moments will increase.

Conversely, if the stiffness at the supports is increased without shifting the

corresponding bending moments of a continuous member, then deflection will increase.

For example, if a beam has been analyzed with a particular set of cracked stiffnesses

Page 222: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

207

and the only change made to calculations is that more top reinforcing is added, then the

stiffer end-segments will result in more midspan deflection. To accurately determine

the deflection, however, the moment diagram would have to be determined again using

the new stiffnesses.

The effect of cracking in the negative moment region and the amount of rotation at

supports are important. Using the bending moment function, ๐‘€, from a constant

stiffness model is simple, but can often cause deflection to be underpredicted. It may be

difficult to accurately determine the bending moments required in order to calculate

continuous member deflections. In general, when cracking occurs near the beam

supports, the bending moment will shift towards midspan. Also, pattern loading or

changing adjacent span lengths will change the rotation at the supports, which will shift

the positive and negative bending moments. The deflection equations provided for

continuous members assume the designer has determined the bending moment correctly.

The correct worst case moment for deflection can be found by putting the different pre-

loading possibilities and load cases on a member; it also requires use of the correct

moment distribution and cracked stiffnesses all along the member. A reasonably simple

method can be used to determine a very good approximation for the load sequence

which causes maximum deflection. First, use a constant stiffness model to determine

the reduced end stiffness using the worst negative bending load-pattern(s). Again using

a constant stiffness model, determine the reduced midspan stiffness using the worst

positive bending load-pattern. Next, model the member with the appropriate segments

having these reduced end and midspan stiffnesses. Apply the worst case positive

Page 223: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

208

bending load-pattern to this reduced stiffness model and to determine the bending

moments and deflection. While that answer may underpredict or overpredict deflection,

it is likely to be quite accurate. To obtain an alternate answer that is likely to be slightly

conservative, calculate deflection using a new stiffness model where cracking is based

on only the bending moments obtained from the reduced stiffness model mentioned

above.

For work in this report, it is assumed that the simple bending moment function which

passes through ๐‘€๐ฟ, ๐‘€๐‘š, and ๐‘€๐‘… is the only moment function that is relevant to

deflection. Some spreadsheet model tests were performed to test this assumption by

modelling increased the end-moments, to account for pre-loading, before adding the

normal load case. If the end-segments are more heavily cracked, without reinforcing

being added or bending moments being shifted, there will be less midspan deflection.

However, if increased end-moments are possible under service loads, then increased

end-moments will also occur under ultimate loads, so the designer must increase

reinforcing at supports. This added stiffness appears to produce an effect which

approximately offsets the additional cracking and produces sufficiently accurate

deflection results. If any particular case if believed to be an exception, the engineer

should determine deflection using integration with an appropriate stiffness function.

Page 224: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

209

Midspan and Maximum Deflection of Linear- Appendix R

Elastic Members

There can be a significant different between midspan and maximum deflection. Section

6.3 of the Canadian Concrete Design Handbook (CAC 2005) provides deflection

calculations for prismatic linear-elastic members that are loaded primarily with a

uniformly distributed load. For end-moments where ๐‘€๐ฟ โ‰ซ ๐‘€๐‘…, there is a relatively

large difference between deflection results as indicated in that section and the maximum

deflection determined using integration. This difference was subsequently investigated

and determined to be the difference between midspan deflection and maximum

deflection, predominantly. As such, the same issue applies to all equations which use

the midspan deflection ๐พ factor provided in Table 2-2 and derived in Appendix A.

To summarize the relationship between midspan and maximum deflection, non-

dimensionalized results are produced and indicated in Figure R-1, Table R-7, Table R-8,

and Table R-9. These centered point load and equal third-point loaded results were

obtained using numerical integration (although the same plots could be obtained using

analytical integration). An example derivation of the full uniformly distributed loading

graph was produced for this appendix using common linear-elastic beam formulas. For

these results, the deflection was determined at 0.5 m intervals on 10 m beam and the

maximum deflection was selected. The difference between midspan and maximum

deflection, comparing the different loading types on the same graphs, is provided in

Figure R-1. See List of Symbols for symbol definitions.

Page 225: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

210

Figure R-1 - Examples of Differences between Midspan and Maximum Deflection

Equations used in Table R-1 to Table R-7 are as provided in Appendix I, except for new

equations as provided below. The total deflection from a uniformly distributed load

with end-moments, โˆ†๐‘ˆ ๐‘ง (๐‘ฅ), denotes the load case number for the end-moments with

the subscript ๐‘ง. Deflection is determined using superposition.

โˆ†๐‘ˆ ๐‘ง(๐‘ฅ) = โˆ†๐‘€๐ฟ(๐‘ฅ) + โˆ†๐‘€๐‘…

(๐‘ฅ) + โˆ†๐‘ˆ๐ท๐ฟ(๐‘ฅ)

For cases with ๐‘€๐‘… = 0 and ๐‘€๐‘… =๐‘€๐ฟ

2 , no new calculations required

For UDL, if ๐‘€๐‘… =๐‘€๐‘š๐‘Ž๐‘ฅ

2 then

๐‘€๐‘…

๐‘€0=๐‘€๐ฟ

๐‘€0โˆ’ 20 + โˆš384 โˆ’ 48

๐‘€๐ฟ

๐‘€0

An identical load and beam is used for Table R-1 to Table R-7. Similar plots would be

produced if midspan moment was plotted instead of maximum moment. To determine

identical midspan moments for those graphs, values for the ratios of ๐‘€๐ฟ ๐‘€0โ„ and

๐‘€๐‘… ๐‘€0โ„ are strategically selected for each case and the following equations are used:

where ๐‘€๐ฟ = ๐‘€๐‘… = 0: ๐‘ค0 = ๐‘ค๐‘ˆ๐ท๐ฟ

other cases: ๐‘ค๐‘ˆ๐ท๐ฟ =๐‘ค0

1 +๐‘€๐ฟ

2๐‘€0+

๐‘€๐‘…

2๐‘€0+ (

๐‘€๐ฟ

4๐‘€0โˆ’

๐‘€๐‘…

4๐‘€0)2

๐‘€0 =๐‘ค๐‘ˆ๐ท๐ฟ๐ฟ

2

8 ; ๐‘€๐‘š = ๐‘€0 +

๐‘€๐ฟ+๐‘€๐‘…

2 ; ๐‘€๐‘š๐‘Ž๐‘ฅ = ๐‘€0 +

๐‘€๐ฟ+๐‘€๐‘…

2+(๐‘€๐ฟ โˆ’๐‘€๐‘…)

2

16๐‘€0

Page 226: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

211

Table R-1 - Example Midspan vs Maximum Deflection for UDL โ€“ Page 1

Spreadsheet Function: Compare maximum and midspan deflection for a uniformly dustributed udl pg

h = 400 mm 1 of 7

b = 200 mm fc' = 36 MPa Mcr = 19.2 kN m wUDL= 1.0 N/mm

Ig = mm4 Ec = 27000 MPa L = 10000 mm M0= 12.5 kN m

1) Uniformly Distributed Load with varying Left End-Moment and Right End-Moment = 0

UDL Case 1: UDL Case 2: UDL Case 3: UDL Case 4: UDL Case 5:

ML= 0.0 kN m ML= -3.0 kN m ML= -6.25 kN m ML= -8.5 kN m ML= -11.0 kN m

MR= 0.0 kN m MR= 0.0 kN m MR= 0.0 kN m MR= 0.0 kN m MR= 0.0 kN m

Mm= 12.5 kN m Mm= 11.0 kN m Mm= 9.4 kN m Mm= 8.3 kN m Mm= 7.0 kN m

Mmax= 12.5 kN m Mmax= 11.0 kN m Mmax= 9.6 kN m Mmax= 8.6 kN m Mmax= 7.6 kN m

x ฮ”M_L ฮ”UDL ฮ”U1(x) ฮ”M_L ฮ”UDL ฮ”U2(x) ฮ”M_L ฮ”UDL ฮ”U3(x) ฮ”M_L ฮ”UDL ฮ”U4(x) ฮ”M_L ฮ”UDL ฮ”U5(x)

0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

500 0 0.72 0.72 -0.16 0.72 0.56 -0.34 0.72 0.38 -0.46 0.72 0.26 -0.59 0.72 0.13

1000 0 1.42 1.42 -0.30 1.42 1.12 -0.62 1.42 0.80 -0.84 1.42 0.58 -1.09 1.42 0.33

1500 0 2.08 2.08 -0.41 2.08 1.67 -0.85 2.08 1.23 -1.16 2.08 0.92 -1.50 2.08 0.58

2000 0 2.69 2.69 -0.50 2.69 2.19 -1.04 2.69 1.64 -1.42 2.69 1.27 -1.83 2.69 0.85

2500 0 3.22 3.22 -0.57 3.22 2.65 -1.19 3.22 2.03 -1.61 3.22 1.61 -2.09 3.22 1.13

3000 0 3.68 3.68 -0.62 3.68 3.06 -1.29 3.68 2.38 -1.76 3.68 1.92 -2.27 3.68 1.40

3500 0 4.04 4.04 -0.65 4.04 3.39 -1.36 4.04 2.68 -1.85 4.04 2.19 -2.39 4.04 1.65

4000 0 4.31 4.31 -0.67 4.31 3.64 -1.39 4.31 2.92 -1.89 4.31 2.42 -2.44 4.31 1.86

4200 0 4.38 4.38 -0.67 4.38 3.71 -1.39 4.38 2.99 -1.89 4.38 2.49 -2.45 4.38 1.93

4400 0 4.44 4.44 -0.67 4.44 3.78 -1.39 4.44 3.05 -1.89 4.44 2.55 -2.45 4.44 2.00

4600 0 4.49 4.49 -0.66 4.49 3.82 -1.38 4.49 3.10 -1.88 4.49 2.60 -2.44 4.49 2.05

4800 0 4.51 4.51 -0.66 4.51 3.85 -1.37 4.51 3.14 -1.87 4.51 2.65 -2.42 4.51 2.10

5000 0 4.52 4.52 -0.65 4.52 3.87 -1.36 4.52 3.16 -1.84 4.52 2.68 -2.39 4.52 2.13

5200 0 4.51 4.51 -0.64 4.51 3.87 -1.34 4.51 3.18 -1.82 4.51 2.70 -2.35 4.51 2.16

5400 0 4.49 4.49 -0.63 4.49 3.86 -1.31 4.49 3.17 -1.78 4.49 2.70 -2.31 4.49 2.18

5600 0 4.44 4.44 -0.62 4.44 3.83 -1.28 4.44 3.16 -1.75 4.44 2.70 -2.26 4.44 2.18

5800 0 4.38 4.38 -0.60 4.38 3.78 -1.25 4.38 3.13 -1.70 4.38 2.68 -2.20 4.38 2.18

6000 0 4.31 4.31 -0.58 4.31 3.72 -1.22 4.31 3.09 -1.65 4.31 2.65 -2.14 4.31 2.17

6200 0 4.21 4.21 -0.56 4.21 3.65 -1.18 4.21 3.04 -1.60 4.21 2.61 -2.07 4.21 2.14

6400 0 4.10 4.10 -0.54 4.10 3.56 -1.13 4.10 2.97 -1.54 4.10 2.56 -1.99 4.10 2.11

6600 0 3.98 3.98 -0.52 3.98 3.45 -1.09 3.98 2.89 -1.48 3.98 2.50 -1.91 3.98 2.06

6800 0 3.83 3.83 -0.50 3.83 3.33 -1.04 3.83 2.79 -1.41 3.83 2.42 -1.83 3.83 2.00

7000 0 3.68 3.68 -0.47 3.68 3.20 -0.99 3.68 2.69 -1.34 3.68 2.33 -1.74 3.68 1.94

7200 0 3.50 3.50 -0.45 3.50 3.06 -0.93 3.50 2.57 -1.27 3.50 2.24 -1.64 3.50 1.86

7500 0 3.22 3.22 -0.41 3.22 2.81 -0.85 3.22 2.37 -1.15 3.22 2.07 -1.49 3.22 1.73

8000 0 2.69 2.69 -0.33 2.69 2.35 -0.69 2.69 1.99 -0.94 2.69 1.74 -1.22 2.69 1.46

8500 0 2.08 2.08 -0.25 2.08 1.83 -0.53 2.08 1.55 -0.72 2.08 1.36 -0.93 2.08 1.15

9000 0 1.42 1.42 -0.17 1.42 1.25 -0.36 1.42 1.06 -0.49 1.42 0.93 -0.63 1.42 0.79

9500 0 0.72 0.72 -0.09 0.72 0.63 -0.18 0.72 0.54 -0.25 0.72 0.47 -0.32 0.72 0.40

10000 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00

load on a uniform elastic beam (I g) with different end-moment conditions

1.07E+009

0

1

2

3

4

5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ฮ”(D

efl

ecti

on

)

x (Position)

ฮ”๐‘ˆ4(๐‘ฅ)

ฮ”๐‘ˆ3(๐‘ฅ)

ฮ”๐‘ˆ2(๐‘ฅ)

ฮ”๐‘ˆ1(๐‘ฅ)

ฮ”๐‘ˆ5(๐‘ฅ)

Page 227: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

212

Table R-2 - Example Midspan vs Maximum Deflection for UDL โ€“ Page 2

Spreadsheet Function: Compare maximum and midspan deflection for a uniformly dustributed udl pg

h = 400 mm 2 of 7

b = 200 mm fc' = 36 MPa Mcr = 19.2 kN m wUDL= 1.0 N/mm

Ig = mm4 Ec = 27000 MPa L = 10000 mm M0= 12.5 kN m

1) Uniformly Distributed Load with varying Left End-Moment and Right End-Moment = 0

UDL Case 6: UDL Case 7: UDL Case 8: UDL Case 9: UDL Case 10:

ML= -12.5 kN m ML= -13.7 kN m ML= -14.5 kN m ML= -15.5 kN m ML= -16.7 kN m

MR= 0.0 kN m MR= 0.0 kN m MR= 0.0 kN m MR= 0.0 kN m MR= 0.0 kN m

Mm= 6.3 kN m Mm= 5.7 kN m Mm= 5.3 kN m Mm= 4.8 kN m Mm= 4.2 kN m

Mmax= 7.0 kN m Mmax= 6.6 kN m Mmax= 6.3 kN m Mmax= 6.0 kN m Mmax= 5.5 kN m

x ฮ”M_L ฮ”UDL ฮ”U6(x) ฮ”M_L ฮ”UDL ฮ”U7(x) ฮ”M_L ฮ”UDL ฮ”U8(x) ฮ”M_L ฮ”UDL ฮ”U9(x) ฮ”M_L ฮ”UDL ฮ”U10(x)

0 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00

500 -0.67 0.72 0.05 -0.73 0.72 -0.01 -0.78 0.72 -0.06 -0.83 0.72 -0.11 -0.90 0.72 -0.18

1000 -1.24 1.42 0.18 -1.36 1.42 0.06 -1.43 1.42 -0.02 -1.53 1.42 -0.11 -1.65 1.42 -0.23

1500 -1.71 2.08 0.37 -1.87 2.08 0.21 -1.98 2.08 0.10 -2.12 2.08 -0.04 -2.28 2.08 -0.20

2000 -2.08 2.69 0.60 -2.28 2.69 0.40 -2.42 2.69 0.27 -2.58 2.69 0.10 -2.78 2.69 -0.10

2500 -2.37 3.22 0.85 -2.60 3.22 0.62 -2.75 3.22 0.47 -2.94 3.22 0.28 -3.17 3.22 0.05

3000 -2.58 3.68 1.09 -2.83 3.68 0.85 -3.00 3.68 0.68 -3.20 3.68 0.47 -3.45 3.68 0.23

3500 -2.72 4.04 1.32 -2.98 4.04 1.06 -3.15 4.04 0.89 -3.37 4.04 0.67 -3.63 4.04 0.41

4000 -2.78 4.31 1.53 -3.04 4.31 1.26 -3.22 4.31 1.08 -3.44 4.31 0.86 -3.71 4.31 0.59

4200 -2.78 4.38 1.60 -3.05 4.38 1.33 -3.23 4.38 1.15 -3.45 4.38 0.93 -3.72 4.38 0.66

4400 -2.78 4.44 1.66 -3.05 4.44 1.40 -3.23 4.44 1.22 -3.45 4.44 1.00 -3.71 4.44 0.73

4600 -2.77 4.49 1.72 -3.03 4.49 1.45 -3.21 4.49 1.28 -3.43 4.49 1.06 -3.70 4.49 0.79

4800 -2.74 4.51 1.77 -3.01 4.51 1.50 -3.18 4.51 1.33 -3.40 4.51 1.11 -3.67 4.51 0.85

5000 -2.71 4.52 1.81 -2.97 4.52 1.55 -3.15 4.52 1.37 -3.36 4.52 1.16 -3.62 4.52 0.90

5200 -2.67 4.51 1.84 -2.93 4.51 1.58 -3.10 4.51 1.41 -3.31 4.51 1.20 -3.57 4.51 0.94

5400 -2.62 4.49 1.86 -2.88 4.49 1.61 -3.04 4.49 1.44 -3.25 4.49 1.23 -3.50 4.49 0.98

5600 -2.57 4.44 1.88 -2.81 4.44 1.63 -2.98 4.44 1.47 -3.18 4.44 1.26 -3.43 4.44 1.01

5800 -2.50 4.38 1.88 -2.74 4.38 1.64 -2.90 4.38 1.48 -3.10 4.38 1.28 -3.34 4.38 1.04

6000 -2.43 4.31 1.88 -2.66 4.31 1.64 -2.82 4.31 1.49 -3.01 4.31 1.29 -3.25 4.31 1.06

6200 -2.35 4.21 1.86 -2.58 4.21 1.63 -2.73 4.21 1.48 -2.92 4.21 1.30 -3.14 4.21 1.07

6400 -2.27 4.10 1.83 -2.48 4.10 1.62 -2.63 4.10 1.47 -2.81 4.10 1.29 -3.03 4.10 1.07

6600 -2.18 3.98 1.80 -2.38 3.98 1.59 -2.52 3.98 1.45 -2.70 3.98 1.28 -2.91 3.98 1.07

6800 -2.08 3.83 1.76 -2.28 3.83 1.56 -2.41 3.83 1.42 -2.58 3.83 1.26 -2.78 3.83 1.06

7000 -1.97 3.68 1.70 -2.16 3.68 1.51 -2.29 3.68 1.39 -2.45 3.68 1.23 -2.64 3.68 1.04

7200 -1.87 3.50 1.64 -2.05 3.50 1.46 -2.17 3.50 1.34 -2.31 3.50 1.19 -2.49 3.50 1.01

7500 -1.70 3.22 1.53 -1.86 3.22 1.36 -1.97 3.22 1.25 -2.10 3.22 1.12 -2.27 3.22 0.96

8000 -1.39 2.69 1.30 -1.52 2.69 1.16 -1.61 2.69 1.07 -1.72 2.69 0.96 -1.86 2.69 0.83

8500 -1.06 2.08 1.02 -1.16 2.08 0.92 -1.23 2.08 0.85 -1.32 2.08 0.76 -1.42 2.08 0.66

9000 -0.72 1.42 0.70 -0.78 1.42 0.63 -0.83 1.42 0.59 -0.89 1.42 0.53 -0.96 1.42 0.46

9500 -0.36 0.72 0.36 -0.40 0.72 0.32 -0.42 0.72 0.30 -0.45 0.72 0.27 -0.48 0.72 0.24

10000 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00

1.07E+009

load on a uniform elastic beam (I g) with different end-moment conditions

-0.5

0

0.5

1

1.5

2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ฮ”(D

efl

ecti

on

)

x (Position)

ฮ”๐‘ˆ6(๐‘ฅ)

ฮ”๐‘ˆ (๐‘ฅ)ฮ”๐‘ˆ (๐‘ฅ)ฮ”๐‘ˆ9(๐‘ฅ)

ฮ”๐‘ˆ10 (๐‘ฅ)

Page 228: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

213

Table R-3 - Example Midspan vs Maximum Deflection for UDL โ€“ Page 3

Spreadsheet Function: Compare maximum and midspan deflection for a uniformly dustributed udl pg

h = 400 mm 3 of 7

b = 200 mm fc' = 36 MPa Mcr = 19.2 kN m wUDL= 1.0 N/mm

Ig = mm4 Ec = 27000 MPa L = 10000 mm M0= 12.5 kN m

2) Uniformly Distributed Load with varying Left End-Moment and Right End-Moment = Left End-Moment /2

UDL Case 11: UDL Case 12: UDL Case 13: UDL Case 14:

ML= 0.0 kN m ML= -3.0 kN m ML= -7.18 kN m ML= -9.0 kN m

MR= 0.00 kN m MR= -1.50 kN m MR= -3.59 kN m MR= -4.50 kN m

Mm= 12.5 kN m Mm= 10.3 kN m Mm= 7.1 kN m Mm= 5.8 kN m

Mmax= 12.50 kN m Mmax= 10.26 kN m Mmax= 7.18 kN m Mmax= 5.85 kN m

x ฮ”M_R ฮ”UDL ฮ”U11(x) ฮ”M_L ฮ”M_R ฮ”UDL ฮ”U12(x) ฮ”M_L ฮ”M_R ฮ”UDL ฮ”U13(x) ฮ”M_L ฮ”M_R ฮ”UDL ฮ”U14(x)

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

500 0.00 0.72 0.72 -0.16 -0.04 0.72 0.52 -0.38 -0.10 0.72 0.23 -0.48 -0.13 0.72 0.11

1000 0.00 1.42 1.42 -0.30 -0.09 1.42 1.04 -0.71 -0.21 1.42 0.50 -0.89 -0.26 1.42 0.27

1500 0.00 2.08 2.08 -0.41 -0.13 2.08 1.54 -0.98 -0.30 2.08 0.80 -1.23 -0.38 2.08 0.47

2000 0.00 2.69 2.69 -0.50 -0.17 2.69 2.02 -1.20 -0.40 2.69 1.09 -1.50 -0.50 2.69 0.69

2500 0.00 3.22 3.22 -0.57 -0.20 3.22 2.45 -1.36 -0.49 3.22 1.37 -1.71 -0.61 3.22 0.90

3000 0.00 3.68 3.68 -0.62 -0.24 3.68 2.82 -1.48 -0.57 3.68 1.63 -1.86 -0.71 3.68 1.11

3500 0.00 4.04 4.04 -0.65 -0.27 4.04 3.12 -1.56 -0.64 4.04 1.84 -1.96 -0.80 4.04 1.29

4000 0.00 4.31 4.31 -0.67 -0.29 4.31 3.35 -1.60 -0.70 4.31 2.01 -2.00 -0.88 4.31 1.43

4200 0.00 4.38 4.38 -0.67 -0.30 4.38 3.41 -1.60 -0.72 4.38 2.06 -2.00 -0.90 4.38 1.48

4400 0.00 4.44 4.44 -0.67 -0.31 4.44 3.47 -1.60 -0.74 4.44 2.11 -2.00 -0.92 4.44 1.52

4600 0.00 4.49 4.49 -0.66 -0.31 4.49 3.51 -1.59 -0.75 4.49 2.14 -1.99 -0.94 4.49 1.55

4800 0.00 4.51 4.51 -0.66 -0.32 4.51 3.53 -1.58 -0.77 4.51 2.17 -1.98 -0.96 4.51 1.57

5000 0.00 4.52 4.52 -0.65 -0.33 4.52 3.54 -1.56 -0.78 4.52 2.18 -1.95 -0.98 4.52 1.59

5200 0.00 4.51 4.51 -0.64 -0.33 4.51 3.54 -1.53 -0.79 4.51 2.19 -1.92 -0.99 4.51 1.60

5400 0.00 4.49 4.49 -0.63 -0.33 4.49 3.52 -1.51 -0.79 4.49 2.18 -1.89 -1.00 4.49 1.60

5600 0.00 4.44 4.44 -0.62 -0.33 4.44 3.49 -1.47 -0.80 4.44 2.17 -1.85 -1.00 4.44 1.59

5800 0.00 4.38 4.38 -0.60 -0.33 4.38 3.45 -1.44 -0.80 4.38 2.15 -1.80 -1.00 4.38 1.58

6000 0.00 4.31 4.31 -0.58 -0.33 4.31 3.39 -1.40 -0.80 4.31 2.11 -1.75 -1.00 4.31 1.56

6200 0.00 4.21 4.21 -0.56 -0.33 4.21 3.32 -1.35 -0.79 4.21 2.07 -1.69 -0.99 4.21 1.52

6400 0.00 4.10 4.10 -0.54 -0.33 4.10 3.23 -1.30 -0.79 4.10 2.01 -1.63 -0.98 4.10 1.49

6600 0.00 3.98 3.98 -0.52 -0.32 3.98 3.13 -1.25 -0.77 3.98 1.95 -1.57 -0.97 3.98 1.44

6800 0.00 3.83 3.83 -0.50 -0.32 3.83 3.02 -1.19 -0.76 3.83 1.88 -1.50 -0.95 3.83 1.39

7000 0.00 3.68 3.68 -0.47 -0.31 3.68 2.89 -1.13 -0.74 3.68 1.80 -1.42 -0.93 3.68 1.32

7200 0.00 3.50 3.50 -0.45 -0.30 3.50 2.76 -1.07 -0.72 3.50 1.71 -1.34 -0.90 3.50 1.26

7500 0.00 3.22 3.22 -0.41 -0.28 3.22 2.53 -0.97 -0.68 3.22 1.57 -1.22 -0.85 3.22 1.15

8000 0.00 2.69 2.69 -0.33 -0.25 2.69 2.10 -0.80 -0.60 2.69 1.29 -1.00 -0.75 2.69 0.94

8500 0.00 2.08 2.08 -0.25 -0.20 2.08 1.62 -0.61 -0.49 2.08 0.98 -0.76 -0.61 2.08 0.70

9000 0.00 1.42 1.42 -0.17 -0.15 1.42 1.10 -0.41 -0.36 1.42 0.65 -0.52 -0.45 1.42 0.46

9500 0.00 0.72 0.72 -0.09 -0.08 0.72 0.55 -0.21 -0.19 0.72 0.32 -0.26 -0.24 0.72 0.22

10000 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00

load on a uniform elastic beam (I g) with different end-moment conditions

1.07E+009

0

1

2

3

4

5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ฮ”(D

efl

ecti

on

)

x (Position)

ฮ”๐‘ˆ11 (๐‘ฅ)

ฮ”๐‘ˆ12 (๐‘ฅ)

ฮ”๐‘ˆ13 (๐‘ฅ)

ฮ”๐‘ˆ14 (๐‘ฅ)

Page 229: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

214

Table R-4 - Example Midspan vs Maximum Deflection for UDL โ€“ Page 4

Spreadsheet Function: Compare maximum and midspan deflection for a uniformly dustributed udl pg

h = 400 mm 4 of 7

b = 200 mm fc' = 36 MPa Mcr = 19.2 kN m wUDL= 1.0 N/mm

Ig = mm4 Ec = 27000 MPa L = 10000 mm M0= 12.5 kN m

2) Uniformly Distributed Load with varying Left End-Moment and Right End-Moment = Left End-Moment /2

UDL Case 15: UDL Case 16: UDL Case 17:

ML= -10.0 kN m ML= -11.0 kN m ML= -11.7 kN m

MR= -5.00 kN m MR= -5.50 kN m MR= -5.85 kN m

Mm= 5.0 kN m Mm= 4.3 kN m Mm= 3.7 kN m

Mmax= 5.1 kN m Mmax= 4.4 kN m Mmax= 3.9 kN m

x ฮ”M_L ฮ”M_R ฮ”UDL ฮ”U15(x) ฮ”M_L ฮ”M_R ฮ”UDL ฮ”U16(x) ฮ”M_L ฮ”M_R ฮ”UDL ฮ”U17(x)

0 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

500 -0.54 -0.14 0.72 0.04 -0.59 -0.16 0.72 -0.03 -0.63 -0.17 0.72 -0.08

1000 -0.99 -0.29 1.42 0.14 -1.09 -0.32 1.42 0.02 -1.16 -0.34 1.42 -0.07

1500 -1.37 -0.42 2.08 0.29 -1.50 -0.47 2.08 0.11 -1.60 -0.50 2.08 -0.01

2000 -1.67 -0.56 2.69 0.46 -1.83 -0.61 2.69 0.24 -1.95 -0.65 2.69 0.09

2500 -1.90 -0.68 3.22 0.64 -2.09 -0.75 3.22 0.39 -2.22 -0.79 3.22 0.21

3000 -2.07 -0.79 3.68 0.82 -2.27 -0.87 3.68 0.53 -2.42 -0.92 3.68 0.33

3500 -2.17 -0.89 4.04 0.98 -2.39 -0.98 4.04 0.67 -2.54 -1.04 4.04 0.46

4000 -2.22 -0.97 4.31 1.11 -2.44 -1.07 4.31 0.79 -2.60 -1.14 4.31 0.57

4200 -2.23 -1.00 4.38 1.15 -2.45 -1.10 4.38 0.83 -2.61 -1.17 4.38 0.61

4400 -2.22 -1.03 4.44 1.19 -2.45 -1.13 4.44 0.87 -2.60 -1.20 4.44 0.64

4600 -2.21 -1.05 4.49 1.22 -2.44 -1.15 4.49 0.90 -2.59 -1.23 4.49 0.67

4800 -2.20 -1.07 4.51 1.25 -2.42 -1.18 4.51 0.92 -2.57 -1.25 4.51 0.69

5000 -2.17 -1.09 4.52 1.27 -2.39 -1.19 4.52 0.94 -2.54 -1.27 4.52 0.71

5200 -2.14 -1.10 4.51 1.28 -2.35 -1.21 4.51 0.95 -2.50 -1.28 4.51 0.73

5400 -2.10 -1.11 4.49 1.28 -2.31 -1.22 4.49 0.96 -2.46 -1.30 4.49 0.74

5600 -2.05 -1.11 4.44 1.28 -2.26 -1.22 4.44 0.96 -2.40 -1.30 4.44 0.74

5800 -2.00 -1.11 4.38 1.27 -2.20 -1.23 4.38 0.96 -2.34 -1.30 4.38 0.74

6000 -1.94 -1.11 4.31 1.25 -2.14 -1.22 4.31 0.94 -2.28 -1.30 4.31 0.73

6200 -1.88 -1.10 4.21 1.23 -2.07 -1.21 4.21 0.93 -2.20 -1.29 4.21 0.72

6400 -1.81 -1.09 4.10 1.19 -1.99 -1.20 4.10 0.90 -2.12 -1.28 4.10 0.70

6600 -1.74 -1.08 3.98 1.16 -1.91 -1.19 3.98 0.88 -2.04 -1.26 3.98 0.68

6800 -1.66 -1.06 3.83 1.11 -1.83 -1.16 3.83 0.84 -1.94 -1.24 3.83 0.65

7000 -1.58 -1.03 3.68 1.06 -1.74 -1.14 3.68 0.80 -1.85 -1.21 3.68 0.62

7200 -1.49 -1.00 3.50 1.01 -1.64 -1.10 3.50 0.76 -1.75 -1.17 3.50 0.58

7500 -1.36 -0.95 3.22 0.92 -1.49 -1.04 3.22 0.68 -1.59 -1.11 3.22 0.52

8000 -1.11 -0.83 2.69 0.74 -1.22 -0.92 2.69 0.55 -1.30 -0.98 2.69 0.41

8500 -0.85 -0.68 2.08 0.55 -0.93 -0.75 2.08 0.40 -0.99 -0.80 2.08 0.29

9000 -0.57 -0.49 1.42 0.35 -0.63 -0.54 1.42 0.24 -0.67 -0.58 1.42 0.17

9500 -0.29 -0.27 0.72 0.16 -0.32 -0.29 0.72 0.11 -0.34 -0.31 0.72 0.07

10000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00

load on a uniform elastic beam (I g) with different end-moment conditions

1.07E+009

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ฮ”(D

efl

ecti

on

)

x (Position)

ฮ”๐‘ˆ15 (๐‘ฅ)

ฮ”๐‘ˆ16 (๐‘ฅ)

ฮ”๐‘ˆ1 (๐‘ฅ)

Page 230: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

215

Table R-5 - Example Midspan vs Maximum Deflection for UDL โ€“ Page 5

Spreadsheet Function: Compare maximum and midspan deflection for a uniformly dustributed udl pg

h = 400 mm 5 of 7

b = 200 mm fc' = 36 MPa Mcr = 19.2 kN m wUDL= 1.0 N/mm

Ig = mm4 Ec = 27000 MPa L = 10000 mm M0= 12.5 kN m

3) Uniformly Distributed Load with varying Left End-Moment and Right End-Moment = Maximum Moment /2

UDL Case 21: UDL Case 22: UDL Case 23: UDL Case 24:

ML= 0.0 kN m ML= -3.0 kN m ML= -7.18 kN m ML= -9.5 kN m

MR= -5.05 kN m MR= -4.40 kN m MR= -3.59 kN m MR= -3.18 kN m

Mm= 10.0 kN m Mm= 8.8 kN m Mm= 7.1 kN m Mm= 6.2 kN m

Mmax= 10.10 kN m Mmax= 8.81 kN m Mmax= 7.18 kN m Mmax= 6.36 kN m

x ฮ”M_R ฮ”UDL ฮ”U21(x) ฮ”M_L ฮ”M_R ฮ”UDL ฮ”U22(x) ฮ”M_L ฮ”M_R ฮ”UDL ฮ”U23(x) ฮ”M_L ฮ”M_R ฮ”UDL ฮ”U24(x)

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

500 -0.15 0.72 0.57 -0.16 -0.13 0.72 0.43 -0.38 -0.10 0.72 0.23 -0.51 -0.09 0.72 0.12

1000 -0.29 1.42 1.13 -0.30 -0.25 1.42 0.87 -0.71 -0.21 1.42 0.50 -0.94 -0.18 1.42 0.30

1500 -0.43 2.08 1.65 -0.41 -0.37 2.08 1.30 -0.98 -0.30 2.08 0.80 -1.30 -0.27 2.08 0.51

2000 -0.56 2.69 2.12 -0.50 -0.49 2.69 1.70 -1.20 -0.40 2.69 1.09 -1.58 -0.35 2.69 0.75

2500 -0.69 3.22 2.54 -0.57 -0.60 3.22 2.05 -1.36 -0.49 3.22 1.37 -1.80 -0.43 3.22 0.99

3000 -0.80 3.68 2.88 -0.62 -0.70 3.68 2.36 -1.48 -0.57 3.68 1.63 -1.96 -0.50 3.68 1.21

3500 -0.90 4.04 3.14 -0.65 -0.78 4.04 2.61 -1.56 -0.64 4.04 1.84 -2.06 -0.57 4.04 1.41

4000 -0.98 4.31 3.32 -0.67 -0.86 4.31 2.78 -1.60 -0.70 4.31 2.01 -2.11 -0.62 4.31 1.58

4200 -1.01 4.38 3.37 -0.67 -0.88 4.38 2.83 -1.60 -0.72 4.38 2.06 -2.12 -0.64 4.38 1.63

4400 -1.04 4.44 3.41 -0.67 -0.90 4.44 2.87 -1.60 -0.74 4.44 2.11 -2.11 -0.65 4.44 1.68

4600 -1.06 4.49 3.43 -0.66 -0.92 4.49 2.90 -1.59 -0.75 4.49 2.14 -2.10 -0.67 4.49 1.72

4800 -1.08 4.51 3.43 -0.66 -0.94 4.51 2.91 -1.58 -0.77 4.51 2.17 -2.09 -0.68 4.51 1.75

5000 -1.10 4.52 3.42 -0.65 -0.96 4.52 2.91 -1.56 -0.78 4.52 2.18 -2.06 -0.69 4.52 1.77

5200 -1.11 4.51 3.40 -0.64 -0.97 4.51 2.90 -1.53 -0.79 4.51 2.19 -2.03 -0.70 4.51 1.78

5400 -1.12 4.49 3.37 -0.63 -0.97 4.49 2.88 -1.51 -0.79 4.49 2.18 -1.99 -0.70 4.49 1.79

5600 -1.12 4.44 3.32 -0.62 -0.98 4.44 2.85 -1.47 -0.80 4.44 2.17 -1.95 -0.71 4.44 1.79

5800 -1.13 4.38 3.26 -0.60 -0.98 4.38 2.80 -1.44 -0.80 4.38 2.15 -1.90 -0.71 4.38 1.77

6000 -1.12 4.31 3.18 -0.58 -0.98 4.31 2.74 -1.40 -0.80 4.31 2.11 -1.85 -0.71 4.31 1.75

6200 -1.12 4.21 3.10 -0.56 -0.97 4.21 2.67 -1.35 -0.79 4.21 2.07 -1.79 -0.70 4.21 1.72

6400 -1.10 4.10 3.00 -0.54 -0.96 4.10 2.59 -1.30 -0.78 4.10 2.01 -1.72 -0.70 4.10 1.68

6600 -1.09 3.98 2.89 -0.52 -0.95 3.98 2.50 -1.25 -0.77 3.98 1.95 -1.65 -0.69 3.98 1.64

6800 -1.07 3.83 2.76 -0.50 -0.93 3.83 2.40 -1.19 -0.76 3.83 1.88 -1.58 -0.67 3.83 1.58

7000 -1.04 3.68 2.63 -0.47 -0.91 3.68 2.29 -1.13 -0.74 3.68 1.80 -1.50 -0.66 3.68 1.52

7200 -1.01 3.50 2.49 -0.45 -0.88 3.50 2.17 -1.07 -0.72 3.50 1.71 -1.42 -0.64 3.50 1.45

7500 -0.96 3.22 2.26 -0.41 -0.84 3.22 1.98 -0.97 -0.68 3.22 1.57 -1.29 -0.60 3.22 1.33

8000 -0.84 2.69 1.84 -0.33 -0.73 2.69 1.62 -0.80 -0.60 2.69 1.29 -1.06 -0.53 2.69 1.10

8500 -0.69 2.08 1.39 -0.25 -0.60 2.08 1.22 -0.61 -0.49 2.08 0.98 -0.81 -0.43 2.08 0.84

9000 -0.50 1.42 0.92 -0.17 -0.44 1.42 0.81 -0.41 -0.36 1.42 0.65 -0.54 -0.31 1.42 0.56

9500 -0.27 0.72 0.45 -0.09 -0.24 0.72 0.40 -0.21 -0.19 0.72 0.32 -0.27 -0.17 0.72 0.28

10000 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00

load on a uniform elastic beam (I g) with different end-moment conditions

1.07E+009

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ฮ”(D

efl

ecti

on

)

x (Position)

ฮ”๐‘ˆ21 (๐‘ฅ)

ฮ”๐‘ˆ22 (๐‘ฅ)

ฮ”๐‘ˆ23 (๐‘ฅ)

ฮ”๐‘ˆ24 (๐‘ฅ)

Page 231: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

216

Table R-6 - Example Midspan vs Maximum Deflection for UDL โ€“ Page 6

Spreadsheet Function: Compare maximum and midspan deflection for a uniformly dustributed udl pg

h = 400 mm 6 of 7

b = 200 mm fc' = 36 MPa Mcr = 19.2 kN m wUDL= 1.0 N/mm

Ig = mm4 Ec = 27000 MPa L = 10000 mm M0= 12.5 kN m

3) Uniformly Distributed Load with varying Left End-Moment and Right End-Moment = Maximum Moment /2

UDL Case 25: UDL Case 26: UDL Case 27:

ML= -11.5 kN m ML= -13.0 kN m ML= -14.4 kN m

MR= -2.85 kN m MR= -2.62 kN m MR= -2.41 kN m

Mm= 5.3 kN m Mm= 4.7 kN m Mm= 4.1 kN m

Mmax= 5.7 kN m Mmax= 5.2 kN m Mmax= 4.8 kN m

x ฮ”M_L ฮ”M_R ฮ”UDL ฮ”U25(x) ฮ”M_L ฮ”M_R ฮ”UDL ฮ”U26(x) ฮ”M_L ฮ”M_R ฮ”UDL ฮ”U27(x)

0 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

500 -0.62 -0.08 0.72 0.02 -0.70 -0.08 0.72 -0.05 -0.77 -0.07 0.72 -0.12

1000 -1.14 -0.16 1.42 0.12 -1.29 -0.15 1.42 -0.02 -1.43 -0.14 1.42 -0.14

1500 -1.57 -0.24 2.08 0.27 -1.77 -0.22 2.08 0.08 -1.97 -0.20 2.08 -0.09

2000 -1.92 -0.32 2.69 0.45 -2.17 -0.29 2.69 0.23 -2.40 -0.27 2.69 0.02

2500 -2.18 -0.39 3.22 0.65 -2.47 -0.35 3.22 0.40 -2.73 -0.33 3.22 0.16

3000 -2.38 -0.45 3.68 0.85 -2.69 -0.41 3.68 0.58 -2.98 -0.38 3.68 0.32

3500 -2.50 -0.51 4.04 1.04 -2.82 -0.46 4.04 0.75 -3.13 -0.43 4.04 0.48

4000 -2.56 -0.55 4.31 1.20 -2.89 -0.51 4.31 0.91 -3.20 -0.47 4.31 0.64

4200 -2.56 -0.57 4.38 1.25 -2.90 -0.52 4.38 0.96 -3.21 -0.48 4.38 0.69

4400 -2.56 -0.59 4.44 1.30 -2.89 -0.54 4.44 1.01 -3.20 -0.49 4.44 0.75

4600 -2.55 -0.60 4.49 1.34 -2.88 -0.55 4.49 1.06 -3.19 -0.51 4.49 0.79

4800 -2.52 -0.61 4.51 1.38 -2.85 -0.56 4.51 1.10 -3.16 -0.51 4.51 0.84

5000 -2.50 -0.62 4.52 1.41 -2.82 -0.57 4.52 1.13 -3.13 -0.52 4.52 0.87

5200 -2.46 -0.63 4.51 1.43 -2.78 -0.57 4.51 1.16 -3.08 -0.53 4.51 0.91

5400 -2.41 -0.63 4.49 1.44 -2.73 -0.58 4.49 1.18 -3.02 -0.53 4.49 0.93

5600 -2.36 -0.63 4.44 1.45 -2.67 -0.58 4.44 1.19 -2.96 -0.54 4.44 0.95

5800 -2.30 -0.63 4.38 1.45 -2.60 -0.58 4.38 1.20 -2.88 -0.54 4.38 0.96

6000 -2.24 -0.63 4.31 1.44 -2.53 -0.58 4.31 1.20 -2.80 -0.54 4.31 0.97

6200 -2.16 -0.63 4.21 1.42 -2.45 -0.58 4.21 1.19 -2.71 -0.53 4.21 0.97

6400 -2.09 -0.62 4.10 1.39 -2.36 -0.57 4.10 1.17 -2.61 -0.53 4.10 0.96

6600 -2.00 -0.61 3.98 1.36 -2.26 -0.56 3.98 1.15 -2.51 -0.52 3.98 0.95

6800 -1.91 -0.60 3.83 1.32 -2.16 -0.55 3.83 1.12 -2.39 -0.51 3.83 0.93

7000 -1.82 -0.59 3.68 1.27 -2.05 -0.54 3.68 1.08 -2.28 -0.50 3.68 0.90

7200 -1.72 -0.57 3.50 1.22 -1.94 -0.52 3.50 1.04 -2.15 -0.48 3.50 0.87

7500 -1.56 -0.54 3.22 1.12 -1.76 -0.50 3.22 0.96 -1.95 -0.46 3.22 0.81

8000 -1.28 -0.47 2.69 0.93 -1.44 -0.44 2.69 0.80 -1.60 -0.40 2.69 0.68

8500 -0.98 -0.39 2.08 0.72 -1.10 -0.36 2.08 0.62 -1.22 -0.33 2.08 0.53

9000 -0.66 -0.28 1.42 0.48 -0.74 -0.26 1.42 0.42 -0.83 -0.24 1.42 0.36

9500 -0.33 -0.15 0.72 0.24 -0.38 -0.14 0.72 0.20 -0.42 -0.13 0.72 0.18

10000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00

load on a uniform elastic beam (I g) with different end-moment conditions

1.07E+009

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ฮ”(D

efl

ecti

on

)

x (Position)

ฮ”๐‘ˆ25 (๐‘ฅ)

ฮ”๐‘ˆ26 (๐‘ฅ)

ฮ”๐‘ˆ2 (๐‘ฅ)

Page 232: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

217

Table R-7 - Example Midspan vs Maximum Deflection for UDL โ€“ Summary

Spreadsheet Function: Compare maximum and midspan deflection for a uniformly dustributed udl pg

7 of 7

Cases with MR=0 ML / ฮ”max / Cases with MR=ML/2 ML / ฮ”max /

ML Mmid Mmax ฮ”mid ฮ”max Mmax ฮ”mid ML Mmid Mmax ฮ”mid ฮ”max Mmax ฮ”mid

Case 1 0.0 12.5 12.5 4.5 4.5 0.00 1.00 Case11 0.0 12.5 12.5 4.5 4.5 0.00 1.00

Case 2 -3.0 11.0 11.0 3.9 3.9 -0.27 1.00 Case12 -3.0 10.3 10.3 3.5 3.5 -0.29 1.00

Case 3 -6.3 9.4 9.6 3.2 3.2 -0.65 1.00 Case13 -7.2 7.1 7.2 2.2 2.2 -1.00 1.00

Case 4 -8.5 8.3 8.6 2.7 2.7 -0.99 1.01 Case14 -9.0 5.8 5.9 1.6 1.6 -1.54 1.01

Case 5 -11.0 7.0 7.6 2.1 2.2 -1.45 1.02 Case15 -10.0 5.0 5.1 1.3 1.3 -1.95 1.01

Case 6 -12.5 6.3 7.0 1.8 1.9 -1.78 1.04 Case16 -11.0 4.3 4.4 0.9 1.0 -2.50 1.02

Case 7 -13.7 5.7 6.6 1.5 1.6 -2.08 1.06 Case17 -11.7 3.7 3.9 0.7 0.7 -3.00 1.04

Case 8 -14.5 5.3 6.3 1.4 1.5 -2.30 1.08

Case 9 -15.5 4.8 6.0 1.2 1.3 -2.60 1.12

Case10 -16.7 4.2 5.5 0.9 1.1 -3.01 1.20

Cases with MR=Mmax/2 ML / ฮ”max /

ML Mmid Mmax ฮ”mid ฮ”max Mmax ฮ”mid

Case21 0.0 10.0 10.1 3.4 3.4 0.00 1.00

Case22 -3.0 8.8 8.8 2.9 2.9 -0.34 1.00

Case23 -7.2 7.1 7.2 2.2 2.2 -1.00 1.00

Case24 -9.5 6.2 6.4 1.8 1.8 -1.49 1.01

Case25 -11.5 5.3 5.7 1.4 1.4 -2.02 1.03

Case26 -13.0 4.7 5.2 1.1 1.2 -2.49 1.06

Case27 -14.4 4.1 4.8 0.9 1.0 -2.99 1.11

load on a uniform elastic beam (I g) with different end-moment conditions

1.00

1.05

1.10

1.15

1.20

-3.00-2.50-2.00-1.50-1.00-0.500.00Rat

io o

f Max

imu

m t

o

Mid

span

Def

lect

ion

Ratio of End-Moment Relative to Maximum Positive Moment

๐‘€๐‘… = 0

๐‘€๐‘… = ๐‘€๐‘š๐‘Ž๐‘ฅ 2โ„

๐‘€๐‘… = ๐‘€๐ฟ /2

Page 233: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

218

To produce graphs comparing midspan and maximum deflection for centered point load

beams, identical maximum moments and concrete sections are used for all cases. Each

(numbered) load case provides different end-moments by selecting different ๐‘€๐ฟ/๐‘€0 and

๐‘€๐‘…/๐‘€0 ratios. To achieve identical midspan moment, point loads are varied as follows:

when ๐‘€๐ฟ = ๐‘€๐‘… = 0 โˆถ ๐‘ƒ0 = point load ; when ๐‘€๐‘… = 0 โˆถ ๐‘ƒs =๐‘ƒ0

1 + 0.5๐‘€๐ฟ ๐‘€0โ„

when ๐‘€๐‘… =๐‘€๐ฟ

2โˆถ ๐‘ƒs =

๐‘ƒ0

1 +0.75๐‘€๐ฟ

๐‘€0

; when ๐‘€๐‘… =๐‘€๐‘š

2โˆถ ๐‘ƒs =

2.5๐‘ƒ0

2 +๐‘€๐ฟ

๐‘€0

and ๐‘€๐‘…

๐‘€0=

๐‘ƒ02๐‘ƒs

For all cases: ๐‘€1๐‘ƒ๐ฟ =๐‘ƒs๐ฟ

4 ; ๐‘€๐‘š = ๐‘€๐‘š๐‘Ž๐‘ฅ = ๐‘€1๐‘ƒ๐ฟ +

๐‘€๐ฟ

2+๐‘€๐‘…

2

Table R-8 - Example Midspan vs Maximum Deflection for CPL โ€“ Summary

cpl pg

1 of 1

Midspan PL Cases with MR=0 ML / ฮ”max / Midspan PL Cases with MR=ML/2 ML / ฮ”max /

ML Mmid Mmax ฮ”mid ฮ”max Mmax ฮ”mid ML Mmid Mmax ฮ”mid ฮ”max Mmax ฮ”mid

Case 1 -375.0 125.0 125.0 0.8 1.1 -3.00 1.41 Case11 -312.9 125.0 125.0 0.2 0.3 -2.50 1.29

Case 2 -311.8 125.0 125.0 1.2 1.4 -2.49 1.19 Case12 -283.8 125.0 125.0 0.5 0.5 -2.27 1.10

Case 3 -250.0 125.0 125.0 1.6 1.7 -2.00 1.09 Case13 -250.0 125.0 125.0 0.8 0.8 -2.00 1.04

Case 4 -188.6 125.0 125.0 2.0 2.1 -1.51 1.04 Case14 -184.2 125.0 125.0 1.4 1.4 -1.47 1.01

Case 5 -125.9 125.0 125.0 2.4 2.4 -1.01 1.01 Case15 -124.5 125.0 125.0 2.0 2.0 -1.00 1.00

Case 6 -62.5 125.0 125.0 2.8 2.8 -0.50 1.00 Case16 -71.4 125.0 125.0 2.5 2.5 -0.57 1.00

Case 7 -44.1 125.0 125.0 2.9 2.9 -0.35 1.00 Case17 -48.4 125.0 125.0 2.7 2.7 -0.39 1.00

Case 8 0.0 125.0 125.0 3.2 3.2 0.00 1.00 Case18 0.0 125.0 125.0 3.2 3.2 0.00 1.00

Midspan PL Cases with MR=Mmax/2

ML Mmid Mmax ฮ”mid ฮ”max ML/max ฮ”max/mid ML Mmid Mmax ฮ”mid ฮ”max ML/max ฮ”max/mid

Case21 -381.9 125.0 125.0 0.4 0.6 -3.06 1.70 Case25 -168.3 125.0 125.0 1.7 1.7 -1.35 1.01

Case22 -312.5 125.0 125.0 0.8 0.9 -2.50 1.18 Case26 -124.6 125.0 125.0 2.0 2.0 -1.00 1.00

Case23 -255.7 125.0 125.0 1.2 1.2 -2.05 1.07 Case27 -78.1 125.0 125.0 2.3 2.3 -0.63 1.00

Case24 -208.3 125.0 125.0 1.5 1.5 -1.67 1.03 Case28 0.0 125.0 125.0 2.8 2.8 0.00 1.00

-1.35 1.01

on a uniform elastic beam with different end-moment conditions

Spreadsheet Function: Compare maximum and midspan deflection for midspan point loads

1.00

1.05

1.10

1.15

1.20

-3.00-2.50-2.00-1.50-1.00-0.500.00

Rat

io o

f M

axim

um

to

M

idsp

an D

efl

ect

ion

Ratio of End-Moment Relative to Maximum Positive Moment

๐‘€๐‘… = ๐‘€๐‘š๐‘Ž๐‘ฅ 2โ„

๐‘€๐‘… = 0

๐‘€๐‘… = ๐‘€๐ฟ 2โ„

Page 234: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

219

To produce graphs for equal third-point loaded beams comparing midspan and

maximum deflection, identical maximum moments and beams are used for all cases.

Each load case provides different end-moments by selecting different ๐‘€๐ฟ/๐‘€๐‘š๐‘Ž๐‘ฅ and

๐‘€๐‘…/๐‘€๐‘š๐‘Ž๐‘ฅ ratios. To achieve identical midspan moment, loads are varied as follows:

when ๐‘€๐ฟ = ๐‘€๐‘… = 0 โˆถ ๐‘ƒ0 = total point load ; else ๐‘ƒs = ๐‘ƒ0 (1 โˆ’1

3

๐‘€๐ฟ

๐‘€๐‘š๐‘Ž๐‘ฅโˆ’2

3

๐‘€๐‘…

๐‘€๐‘š๐‘Ž๐‘ฅ)

๐‘€๐ฟ

๐‘€2๐‘ƒ๐ฟ=

๐‘€๐ฟ

๐‘€๐‘š๐‘Ž๐‘ฅ

1 โˆ’13

๐‘€๐ฟ

๐‘€๐‘š๐‘Ž๐‘ฅโˆ’23

๐‘€๐‘…

๐‘€๐‘š๐‘Ž๐‘ฅ

; ๐‘€๐‘…

๐‘€2๐‘ƒ๐ฟ=

๐‘€๐‘…

๐‘€๐‘š๐‘Ž๐‘ฅ

1 โˆ’13

๐‘€๐ฟ

๐‘€๐‘š๐‘Ž๐‘ฅโˆ’23

๐‘€๐‘…

๐‘€๐‘š๐‘Ž๐‘ฅ

As usual: ๐‘€2๐‘ƒ๐ฟ =๐‘ƒs๐ฟ

3 ; ๐‘€๐‘š = ๐‘€2๐‘ƒ๐ฟ +

๐‘€๐ฟ

2+๐‘€๐‘…

2 ; ๐‘€๐‘š๐‘Ž๐‘ฅ = ๐‘€2๐‘ƒ๐ฟ +

๐‘€๐ฟ

3+2๐‘€๐‘…

3

Table R-9 - Example Midspan vs Maximum Deflection for 2PL โ€“ Summary

2pl pg

1 of 1

2 PL @ 3rd pts Cases with MR=0 ML / ฮ”max / 2 PL @ 3rd pts Cases with MR=ML/2 ML / ฮ”max /

ML Mmid Mmax ฮ”mid ฮ”max Mmax ฮ”mid ML Mmid Mmax ฮ”mid ฮ”max Mmax ฮ”mid

Case 1 -343.8 67.7 125.0 2.3 2.9 -2.75 1.30 Case11 -375.0 93.8 125.0 2.7 2.9 -3.00 1.06

Case 2 -312.5 72.9 125.0 2.7 3.3 -2.50 1.20 Case12 -343.8 96.4 125.0 3.1 3.2 -2.75 1.05

Case 3 -281.3 78.1 125.0 3.2 3.7 -2.25 1.13 Case13 -312.5 99.0 125.0 3.5 3.6 -2.50 1.03

Case 4 -250.0 83.3 125.0 3.7 4.0 -2.00 1.09 Case14 -281.3 101.6 125.0 3.9 4.0 -2.25 1.02

Case 5 -187.5 93.8 125.0 4.7 4.8 -1.50 1.04 Case15 -250.0 104.2 125.0 4.3 4.4 -2.00 1.02

Case 6 -125.0 104.2 125.0 5.6 5.7 -1.00 1.01 Case16 -187.5 109.4 125.0 5.1 5.1 -1.50 1.01

Case 7 -62.5 114.6 125.0 6.6 6.6 -0.50 1.00 Case17 -125.0 114.6 125.0 5.9 5.9 -1.00 1.00

Case 8 0.0 125.0 125.0 7.5 7.5 0.00 1.00 Case18 0.0 125.0 125.0 7.5 7.5 0.00 1.00

2 PL @ 3rd pts Cases with MR=Mmax/2

ML Mmid Mmax ฮ”mid ฮ”max ML/max ฮ”max/mid ML Mmid Mmax ฮ”mid ฮ”max ML/max ฮ”max/mid

Case21 -375.0 72.9 125.0 2.1 2.6 -3.00 1.26 Case25 -250.0 93.8 125.0 4.0 4.2 -2.00 1.04

Case22 -343.8 78.1 125.0 2.6 3.0 -2.75 1.17 Case26 -187.5 104.2 125.0 5.0 5.0 -1.50 1.01

Case23 -312.5 83.3 125.0 3.0 3.4 -2.50 1.11 Case27 -125.0 114.6 125.0 5.9 5.9 -1.00 1.00

Case24 -281.3 88.5 125.0 3.5 3.8 -2.25 1.07 Case28 0.0 135.4 125.0 7.8 7.8 0.00 1.00

-2.00 1.04

on a uniform elastic beam with different end-moment conditions

Spreadsheet Function: Compare maximum and midspan deflection for 2 point load at 3rd points

1.00

1.05

1.10

1.15

1.20

-3.00-2.50-2.00-1.50-1.00-0.500.00

Rat

io o

f M

axim

um

to

M

idsp

an D

efl

ect

ion

Ratio of End-Moment Relative to Maximum Positive Moment

๐‘€๐‘… = ๐‘€๐‘š๐‘Ž๐‘ฅ 2โ„

๐‘€๐‘… = 0

๐‘€๐‘… = ๐‘€๐ฟ 2โ„

Page 235: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

220

Criticisms of CSA A23.3 and the Concrete Handbook Appendix S

The following paragraphs provide some criticisms, as relevant to work in this report, of

A23.3 (CSA 2004) and the Concrete Design Handbook (CAC 2005).

Criticism of Use of Bransonโ€™s Equation in CSA A23.3-04

CSA A23.3-04 (CSA 2004) employs Bransonโ€™s (1965) effective moment of inertia, an

empirically derived equation which has many limitations. Section 2.7 of this report

describes the limitations, which do not include lightly reinforced members and FRP

reinforced concrete members. The recent changes which mandate inclusion of

shrinkage restraint and pre-loading effect into cracking moment calculations do result in

fewer limitations for Bransonโ€™s equation. Nonetheless, use of the effective moment of

inertia provided in CSA A23.3-04 is prone to unnecessary error when compared to the

proposed rationally derived equations.

Criticism of 0.5 Mcr Modifier in CSA A23.3-04

The modified ๐‘€๐‘๐‘Ÿ for slabs is a correction for Bransonโ€™s (1965) equation. Results

indicate that use of Bransonโ€™s equation underpredicts deflection in some slabs. This

clause over-accounts for shrinkage-restraint because some members are outside the

valid range for Bransonโ€™s equation. An improved solution would:

Accurately account for additional deflection in all lightly reinforced members or

FRP reinforced members and only those members,

Would accurately and rationally account shrinkage-restraint where required.

Page 236: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

221

Criticism of Use of Midspan Moment in CSA A23.3-04

In equations provided by A23.3 (CSA 2004), there is an inherent error in using the

equations provided if the midspan bending moment of a member is not its maximum

moment under worst case service loads. If designers use the effective moment of inertia

at midspan, ๐ผ๐‘’๐‘š, as the standard suggests, the maximum deflection will often be under

predicted. This importance of using the maximum moment to compute ๐ผ๐‘’ or ๐ผ๐‘’โ€ฒ is

discussed further in Section 3.3. This report finds it rational to define ๐ผ๐‘’๐‘š as the

effective moment of inertia based on the maximum moment in the positive bending

segment of the member. Engineers who have less experience with bending deflection

calculations for concrete members may, however, read the definition in the standard and

decide ๐ผ๐‘’ ๐‘š should be based on the moment at precisely the mid-point between the

member supports.

Criticism of Concrete Design Handbook Using Midspan Deflection

The Concrete Design Handbook (CAC 2005) provides equations for the deflection in

Chapter 6. For end-moments where ๐‘€๐ฟ โ‰ซ ๐‘€๐‘…, it is important to calculate the maximum

deflection. The handbook should, but does not, clearly indicate that these equations

compute only midspan deflection. This is discussed further in Section 3.7.1.

Page 237: COMPUTED DEFLECTION OF CONTINUOUS REINFORCED CONCRETE ...

0

Curriculum Vitae

Candidateโ€™s full name: Garth Roger Christie

Universities attended: University of New Brunswick

Bachelor of Computer Science (1998-2003)

Bachelor of Science in Engineering (2003-2006)

Professional Experience: Eastern Designers & Company Ltd

Structural Engineer (2006-current)