Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University,...

50
Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980- 8577, Japan In collaboration with K. Esfarjani, K. Sasaki, T.M. Briere, R.V. Belosludov, H. Mizuseki, M. Mikami, Y.Kawazoe, and B.I. Yakobson

Transcript of Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University,...

Page 1: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Computational Nanoelectronics

A. A. FarajianInstitute for Materials Research, Tohoku University, Sendai 980-8577,

Japan

In collaboration with

K. Esfarjani, K. Sasaki, T.M. Briere, R.V. Belosludov, H. Mizuseki, M. Mikami, Y.Kawazoe, and B.I. Yakobson

Page 2: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Overview: Molecular electronics insertion strategy; Active atom wire interconnects

Keeping the initial target application simple, cheap and unsophisticated: passive interconnects

Initial products will be silicon complements with response time of the order of second: sensors

Moving on to active devices, with novel function, form, or cost advantage

Finally; introducing entirely new generation of products: commercial delivery time of more than one decade

Molecular ElectronicsJ.M. Tour, World Scientific (2003)

Page 3: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Nanotube molecular quantum wiresCredit: C. Dekker

Page 4: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Nanotube nanotransistor Credit: C. Dekker

Page 5: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Nanotube logic nanogate Credit: C. Dekker

Page 6: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Doped nanotube bundle Credit: R. Smalley

Page 7: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Doping with C60- and Cs+

Credit: G.-H. Jeong

2 nm

4 nm

(b)

(a)

Page 8: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Formation of junction between empty and Cs+ –doped parts

Credit: G.-H. Jeong

Page 9: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Conductance of a single benzene moleculeCredit: J.M. Tour

Page 10: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

DNA conductance along axis D. Porath et al.

Page 11: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Specific systems within the prescribed scheme:

Shielded, passive/active, molecular wires: polythiophene/polyaniline inside cyclodextrines

Building upon the existing silicon base: Bi line on Si surface

Active (rectifying) device: doped nanotube junction

How good is DNA? Cheking DNA’s transport

Page 12: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Doped nanotube junction

Page 13: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Negative differential resistance

Page 14: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Rectifying effect

Page 15: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Doped Nanotube Junctions

Page 16: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Ab initio calculation:inside doping is favored by ~ 0.2 eV

Page 17: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Ab initio calculation:energetics of light and heavy dopings

Page 18: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Ab initio calculation:band structures of light and heavy dopings

Page 19: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Ab initio calculation:density of states of light and heavy dopings

Page 20: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Junction and Bulk Geometries

Page 21: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Surface Green’s Function Matching

Page 22: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Screening charge pattern for doped metallic junction

(initial shifts of chemical potentials: 2.5 eV)

Page 23: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Screening charge pattern for doped semiconducting junction (initial shifts of chemical potentials: 2.5 eV)

Page 24: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Metallic nanotube doped by a charged dopant

Page 25: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Screening charge pattern of (5,5) for an external point charge 1.0 e

Page 26: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Bi line on Si(001): relatively stable

Page 27: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Bi line on Si(001): stable

Page 28: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Hamiltonian and overlap

Using the above-mentioned basis, the Hamiltonian of the system is obtained using Gaussian 98 program

Moreover, as the basis is non-orthogonal, the overlap matrix is also obtained

The Hamiltonian and overlap matrices are then used in calculating the conductance of the system using the Green’s function approach

Page 29: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Reflected and Transmitted Amplitudes; Transmission Matrix

1,;,

;1

,;,1;11

1,;

;1

,;,1;11

1,;

),(S

)(

nnAnABA

nB

BAnn

nAnnAnAABABnBtn

nBnnBnBBBBBBnBrn

GSTVE

GGG

GGG

G

GGG

GGGG

Page 30: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Junction and Bulk Geometries

Page 31: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Conductance

2;,;

,

2

2

||),(S||)(2

),(T2

),(

nA

BAnnnB

nn

VEv

v

h

e

VEh

eVE

Page 32: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Conductance, alternative derivation

Conductance [2e2/h]:

With

Being the Green’s function of the molecule (junction part of the system)

)(Tr ),( 12 GGVE MOLMOL

)( 211

HESG MOLMOL

Page 33: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Surface Green’s functions

And

With Σ1(2) being the surface terms describing the semi-infinite parts attached to the junction part

Finally)]()()[,()( 12 EfEfVEdEVI

)(i 2)1()2(1)2(1

Page 34: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

PT attached to gold contacts

Page 35: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

PT in cross-linked Alpha CD

Page 36: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

PT in Beta CD

Page 37: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Molecular wire:transport through shielded polythiophene

Page 38: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

HOMO-LUMO energies(Hartree)

PT in ACD non-

interacting

PT in BCD interacting

PT in BCD non-

interacting

PT

LUMO -0.1288 -0.1355 -0.1273 -0.1290

HOMO -0.1366 -0.1431 -0.1378 -0.1381

Page 39: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Density of States

Page 40: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Conductance

Page 41: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Spatial Extension of MOs (n~80; E~0.3)

LUMO

HOMO

LUMO+n

Page 42: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

DNA conductance perpendicular to axis in collaboration with T.M. Briere

Au(111) STM Tip

Au(111) Substrate

Page 43: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

AT Base Pair

Page 44: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

CG Base Pair

Page 45: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Bulk Gold Contact

Page 46: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Density of States (Fermi energy ~ -0.1)

Page 47: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Conductance

Page 48: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

AT: Spatial distribution of HOMO (E ~ -0.154)

Page 49: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

AT: Spatial distribution of LUMO+n (E ~ 0.570)

Page 50: Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan In collaboration with K. Esfarjani,

Conclusions:

Two stable positions for Cs along diagonal direction

Rectifying effect New nearly flat bands

via doping Alignment of Frmi

energy and van Hofe singularity: possibility of superconductivity

In DNA transport, dominant current-carrying states are localized on the hydrogen bonds

A high density of states does not necesserarily mean high conductance

AT and CG have different conductance due to differently localized states