Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood...

19
Jean-Frédéric Gerbeau Project-team REO INRIA Paris-Rocquencourt & Laboratoire J-L. Lions, Paris 6 university France Computational Methods for Blood flow Associated Team “Cardio”

Transcript of Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood...

Page 1: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Jean-Frédéric GerbeauProject-team REO

INRIA Paris-Rocquencourt & Laboratoire J-L. Lions, Paris 6 universityFrance

Computational Methods for Blood flow

Associated Team “Cardio”

Page 2: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Associated Team “Cardio”

Coordinator• Irène Vignon-Clementel

Members• Stanford (CVBRL, Dept Bioengineering & Mech Engng)

C. Taylor, A. Figueroa, N. Xiao, G. Troianowski, J Feinstein, A Marsden, S Shadden, J Kim, R. Raghu

• INRIA: - Project-team REO: J-F. Gerbeau, M. Fernández, I. Vignon-

Clementel, M. Astorino, C. Bertoglio, G. Troianowski- Project-team MACS: D. Chapelle, P. Moireau

2

Website: https://idal-siege.inria.fr/cardio/

Page 3: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Associated Team “Cardio”

Similar goals and complementary approaches• Modeling the blood flow in large arteries• Interaction simulation / medical data

Collaboration themes• Boundary conditions (fluid & fluid-structure)• Advance post-processing techniques• Image-based fluid-structure interaction

3

Page 4: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Outline

• Surgical planning• Fluid-Structure Interaction in blood flows• Medical Data assimilation / Inverse problems• Viscoelasticity (Rashmi Raghu, Stanford)

4

Page 5: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Surgical planning

5

Glenn-Fontan surgery• congenital heart disease• multi-step complex

procedure

Glenn FontanNumerical simulations• Patient-specific geometries• Forecast pressure drop, flow split, wall-shear stress

Troianowski, Taylor, Feinstein, Vignon-ClementelStanford/INRIA

http://www.americanheart.org

Page 6: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Internships of A. Birolleau, G. Troianowski

Geometry from 5 patients MRI data

Page 7: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Surgical planning

7

Y-graft in general improves:• energy efficiency• hepatic flow distribution• SVC pressure under rest & exercise

Troianowski, Taylor, Feinstein, Vignon-Clementel

Page 8: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Fluid-Structure Interaction

8

Aorta (CVBRL, Stanford)

Cardiac valves(Hôpital Laval)

u uσf

σf

u

u

Coupler

Fluid Solid

ρf∂u

∂t |x+ (u−w) ·∇u

− 2µdiv(u) +∇p = 0, in Ωf(t)

divu = 0, in Ωf(t)

ρs∂2d

∂t2− div

F (d)S(d)

= 0, in Ωs

Page 9: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

• Many works about fluid boundary conditions... but not that many about wall !

C. Taylor et al. , StanfordAbdominal aorta

Blood flow in aortaExternal tissue support

Moireau, Xiao, Astorino, Figueroa, Chapelle, Taylor, JFG, (Biomech Model Mech 2011)

• Typical b.c. on the external part of the vessel :

σsn = p0n

• A simple and affordable way to model the external tissues :

σsn = −ksd− cs∂d

∂t

Page 10: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

DataContours without supportContour with support

Legend:Solid

Fluid Pressure with supportPressure without supportFlow with supportFlow without support

DiastoleSystole

spinespine

spinesp

ine

spinesp

ine

!

!

!

1

2

3

!1

!2

!3

60

80

100

120

140

0.0 0.3 0.90.6

60

80

100

120

140

0.0 0.3 0.90.60

10

20

30

40

0

40

80

120

160

60

80

100

120

140

0.0 0.3 0.90.60

90

180

270

360

!0

!0

(mmHg)

(cc/s)

(mmHg)

(cc/s)

Blood flow in aortaComparison simulation / images

Moireau, Xiao, Astorino, Figueroa, Chapelle, Taylor, JFG, (Biomech Model Mech 2011)

Page 11: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Medical Data Assimilation

Data assimilation• Reduce model uncertainties using observations• Access to “hidden” quantities• Smooth the data

11

INRIA CVBRL, Stanford

Page 12: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Data assimilation in FSI

12

• Partial observations of X: Z = H(X)

• Uncertainties on the initial condition X0 and the parameters θ

• FSI dynamical system:

BX = A(X, θ) +RX(0) = X0

• Time discretization: Xn+1 = Fn+1(Xn, θ)

• State variable: X=[u, p,df ,d,v]

• Parameters: θ = [Young modulus, viscosity, boundary conditions, . . . ]

Page 13: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Data assimilation

• State estimation through “simple” feedback terms. For example, for velocity measurements:

Moireau, Chapelle, Le Tallec, 2008

• Parameter estimation : reduced Unscented Kalman filter (SEIK) Dinh Tuan Pham, 2001 Moireau, Chapelle, 2009

• With respect to a variational approach: no tangent, no adjoint• Counterpart : as many resolutions as parameters (“particles”)...• ... but easy to run them in parallel

MX + KX = f −γHT (HX − Yobs)

Page 14: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Summary

14

• Prediction:

Xn+1− = Fn+1(Xn

+, θn+, Z

n+1,K)θn+1− = θn+

• Correction:

Xn+1+ = X

n+1− + K

n+1X (Zn+1 −H(Xn+1

− ))θn+1+ = θ

n+1− + K

n+1θ (Zn+1 −H(Xn+1

− ))

Luenberger filterfor the state

Kalman-like filter forfor the parameters

Data assimilation

Page 15: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Newton Loop 3d visco-hyperelastic in

large displacement

Newton Loop 3d visco-hyperelastic in

large displacement

Newton Loop 3d visco-hyperelastic in

large displacement

FSI master controlling the messages between

the codes

FSI master controlling the messages between

the codes

FSI master controlling the messages between

the codes

Implementation

Fluid

Observations: Full displacements, normal displacements or surfaces

Structure3D hyperelasticity

Stress on the interface

FSI coupler

interface velocity and displ.

Correction step of the identification process

Data assimilation: parametric estimation

solid disp and vel fluid disp and vel

observationsparameters

Page 16: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

16

Rp

Rd

Stiffness estimationParameter estimation

• Synthetic data with E1 = 0.5, E2 = 2, E3 = 4MPa• Initial guess: E = 2MPa in the three regions• Observations: wall velocity

• Parameter estimation: Young modulus E in 3 regions

Simulation : C.Bertoglio (INRIA)

Page 17: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

• Similar experiment with 5 regions• With noise (10%) and resampling:

17

0 0.2 0.4 0.6 0.80

0.5

1

1.5

2

Time [s]Yo

ungs

mod

ulus

[M

Pa]

0 0.2 0.4 0.6 0.8−2

−1.5

−1

−0.5

0

0.5

1

Time [s]

Velo

city

[cm

/s]

PerfectNoised

Simulation : C.Bertoglio (INRIA)

Page 18: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Data assimilation(state only)

Direct similationSimulation: N. Xiao (Stanford)

Example 2State estimation

Page 19: Computational Methods for Blood flow - Inria · 360 π 0 π 0 (mmHg) (cc/s) (mmHg) (cc/s) Blood flow in aorta Comparison simulation / images Moireau, Xiao, Astorino, Figueroa, Chapelle,

Future

• Charley Taylor & col. are about to leave Stanford• ...but not the end of the collaboration !

With A. Figueroa & N. Xiao : - inverse problems in full-body-scale 3D vasculature

With A. Marsden (UC San Diego) : - Pulmonary arteries in the Transatlantic Network (Leducq

foundation)- Respiration modeling

19