Computational Discovery of Hypersonic ... - APUS Lab

45
Computational Discovery of Hypersonic Aerothermoelastic Scaling Laws Dr. Daning Huang APUS Lab, apus.psu.edu A erospace multi-P hysical and U nconventional S ystems Prepared for AERSP Seminar, 10/30/2019

Transcript of Computational Discovery of Hypersonic ... - APUS Lab

Page 1: Computational Discovery of Hypersonic ... - APUS Lab

Computational Discovery ofHypersonic Aerothermoelastic Scaling Laws

Dr. Daning Huang

APUS Lab, apus.psu.edu

Aerospace multi-Physical and Unconventional Systems

Prepared for AERSP Seminar, 10/30/2019

Page 2: Computational Discovery of Hypersonic ... - APUS Lab

Hypersonic: โ‰ฅ Mach 5

A conceptual hypersonic commercial jet

Image source: Boeing 2018

Forget about 14 hours one-way trip.

Letโ€™s do round trip in 4 hours!Image source:Google Maps2

Page 3: Computational Discovery of Hypersonic ... - APUS Lab

โ€ขMaturing propulsionโ€ขAdvanced materialsโ€ขSupercomputers

Hypersonic flight: A historical view

3USAF SAB report โ€œWhy and Whither Hypersonic Research in the USAFโ€

Hypersonic Commercial Jet Image source: Boeing

SR-72Image source: Lockheed Martin

Res

earc

h e

ffo

rt

X-51 WaveriderImage source: Boeing

2020+

Modeling and Testing challenges from 1988 NASP report:Because of the uncertainties ... in aerodynamic

loads and heating, ... precision of computation and lack of ground test facilities to replicate thermal and structural flight loads, the current ability to meet the structural designers requirements are marginal to non existent.

Page 4: Computational Discovery of Hypersonic ... - APUS Lab

A technical barrier: Aerothermoelasticity

4

Aerothermoelasticity

SR-72Image source: Lockheed Martin

Aerothermoelastic response of a 2D skin panel

Page 5: Computational Discovery of Hypersonic ... - APUS Lab

To Understand Aerothermoelasticity

Hypersonic

Aerothermoelasticity

Analysis &

Design

Validate

Understand &

Validate

Modeling Testing?5

??

Page 6: Computational Discovery of Hypersonic ... - APUS Lab

Modeling: Multi-Physics

6

Hypersonic

Aerothermodynamics

Heat

Conduction

Structural

Dynamics

Heat flux

Temperature Deformation

Pressure

Temperature

Deformation

โ€ข Real gas effect

โ€ข Viscous interaction

โ€ข Compressible turbulence

โ€ข Thermal management

โ€ข Material degradation

โ€ข Charring and ablation

โ€ข Flutter and buckling

โ€ข Fatigue and creep

โ€ข Reliability assessment

Page 7: Computational Discovery of Hypersonic ... - APUS Lab

Modeling: Timescale disparity

HighModel FidelityLow

Brute force simulation:๐Ÿ๐ŸŽ๐Ÿ” steps ร— sec/step = Weeks

Flight-long simulationโ€ข Culler, McNamara, et al. 2010

Lead to erroneous results:โ– Huang, Rokita, Friedmann, 2018

Transient simulation using RANS, LES, DNSโ€ข Ostoich, Bodony, 2013โ€ข McNamara, Crowell, Shinde, et al.,

since 2013

Characteristic times

Flight 1000 s

Thermal 1 s

Structure 0.05 s

Fluid 0.001 s

Computationallyintractable!

7

Academic problems using simple analytical models

โ€ข Lamorte, Friedmann, 2013, 2014โ€ข Blades, 2013

Page 8: Computational Discovery of Hypersonic ... - APUS Lab

Modeling: Accelerating simulationsBrute force simulation:๐Ÿ๐ŸŽ๐Ÿ” steps ร— sec/step = Weeks

Efficient coupling schemes to reduce number of time steps

Reduced order models (ROMs) to reduce cost per time step

Example:Multi-cycling scheme, Miller, McNamara, AIAAJ 2018

โ†’ Unable to reduce the cost of fluid solver โ€“ the real bottleneck

Example:Kriging-based ROM, Falkiewics, Cesnik, McNamara, AIAAJ 2011

โ†’ Can we do better?Arbitrary geometric scales, structural and thermal responses.

8

Page 9: Computational Discovery of Hypersonic ... - APUS Lab

Testing: Flight test v. s. Wind tunnel test

9

Flight test: Full-size prototype

Pros:โ€ข Cheaperโ€ข More detailed measurementโ€ข Controlled environmentโ€ข Testing without compromising safetyCons:โ€ข Is it possible?

Pros:โ€ข Full duplication of flight conditionsCons:โ€ข Expensiveโ€ข Time-consumingโ€ข Limited measurement optionsโ€ข Failure may result in program cancellation

Image source: NASA

Wind tunnel test: Scaled-down replica

Image source: NASA

Page 10: Computational Discovery of Hypersonic ... - APUS Lab

Scaling law

Model construction

Map back to full scale

Testing: Hypersonic Aerothermoelastic Scaling?

Most studies concentrated in 1960โ€™s (Dugundji 1966) โ€“ analytical dimensional analysis

โ€ข Possible for high supersonic flow (M<3.5)โ€ข For hypersonic flow: Possible only for a

unity scale ratio.

10

Full-size prototype

Flight test: High cost/risk

??Scaled-down replica

Wind tunnel test

Image source: NASA Image source: NASA

Page 11: Computational Discovery of Hypersonic ... - APUS Lab

Objectives

Modeling:

โ€ข Develop a computational framework for fast long-time-duration aerothermoelastic simulation of hypersonic structures.

โ€ข Examine the aerothermoelastic behavior of hypersonic skin panels.

Testing:

โ€ข Develop a two-pronged approach to generating refined hypersonic aerothermoelastic scaling laws.

โ€ข Develop scaled models for composite skin panels in hypersonic flow suitable for testing under realistic wind tunnel conditions.

11

Page 12: Computational Discovery of Hypersonic ... - APUS Lab

I. IntroductionII. Modeling: The HYPATE FrameworkIII. Testing: Numerical Scaling LawsIV. ApplicationsV. Summary and Outlook

Page 13: Computational Discovery of Hypersonic ... - APUS Lab

Python wrapper

Structural Solver

(C++)

Python wrapper

Thermal Solver

(C++)

HYPersonic AeroThermoElasticsimulation environment

pyJenny library for nonlinear finite element analysis

Huang, Rokita, Friedmann, AIAAJ 2018

Python wrapper

Low-Fidelity (Python)

ROM (C++)

CFD (Fortran)

Fluid Solver

ADflow from UM-MDOLab โ€“ Now open-sourced at github.com/mdolab/adflowc.f. publication in JCP 2019.

Data transfer

Coupling Schemes

โ€ข Loosely-coupled for transient response

โ€ข Tightly-coupled for quasi-steady response

13

Python wrapper

Linearized Stability

Analysis (C++)

Page 14: Computational Discovery of Hypersonic ... - APUS Lab

ROM-based

Aerodynamic

Solver

Accelerating the aerodynamic solver by ๐Ÿ๐ŸŽ๐Ÿ’

Structural

Solver

Thermal

Solver

Body temperature

Surface deformation

Surface temperature

Pressure distribution

Heat flux distribution

Output:โ€ข Pressure distributionโ€ข Heat flux distribution

Input:โ€ข Surface deformationโ€ข Surface temperature

Precomputed CFD-based sample solutions

Interpolation:Gaussian process

regressionDimension reduction:

Proper orthogonal decomposition

14Falkiewics, Cesnik, McNamara, AIAAJ 2011; Crowell, McNamara, AIAAJ 2012Huang, Rokita, Friedmann, SciTech 2017

CFD-based

Aerodynamic

Solver

ROM: Reduced-Order Model

Page 15: Computational Discovery of Hypersonic ... - APUS Lab

Extrapolation of an interpolative ROM

๐‘น๐‘ถ๐‘ด๐’“๐’†๐’‡

Reference states:โ€ข Fixed flight conditionsโ€ข Fixed geometric scale

๐‘น๐‘ถ๐‘ด๐’„๐’๐’“

New states:โ€ข Arbitrary flight conditionsโ€ข Arbitrary geometric scale

=๐’‡๐’„๐’๐’“

Correction factor

*

Conventional ROM is not suitable for analysis and design:

โžขROM for a fixed state: geometry + flight conditions

โžขROM for all the possible states โ†’ Heavy offline computational burden

Geometric scale

Alt

itu

de

15Huang, Friedmann, Rokita, AIAAJ 2019

๐‘“๐‘๐‘œ๐‘Ÿ =๐‘…๐‘‚๐‘€๐‘๐‘œ๐‘Ÿ

๐‘…๐‘‚๐‘€๐‘Ÿ๐‘’๐‘“

A: Analytical low-fidelity model

โ‰ˆ๐ด๐‘๐‘œ๐‘Ÿ(๐‘๐‘’๐‘ค ๐‘†๐‘ก๐‘Ž๐‘ก๐‘’๐‘ )

๐ด๐‘Ÿ๐‘’๐‘“(๐‘…๐‘’๐‘“ ๐‘†๐‘ก๐‘Ž๐‘ก๐‘’๐‘ )

Page 16: Computational Discovery of Hypersonic ... - APUS Lab

Cutting down number of steps by ๐Ÿ๐ŸŽ๐Ÿ‘

Loosely-coupled (Conventional)

Time step size: Fluid time ~ 0.001s

Tightly-coupled

Time step size: Thermal time ~ 1s

16Miller, McNamara, AIAAJ 2015Huang, Friedmann, SciTech 2016 Huang, Friedmann, Rokita, AIAAJ 2019

Tightly-coupled scheme would not work for unstable responses

Page 17: Computational Discovery of Hypersonic ... - APUS Lab

Full response (based on ROM)

AT ๐‚ แˆถ๐“ + ๐๐ˆ(๐“) = ๐๐“ (๐ฎ, ๐“)

AE ๐Œ แˆท๐ฎ + ๐‚ แˆถ๐ฎ + ๐…๐ˆ(๐ฎ, ๐“) = ๐…๐’(๐ฎ, แˆถ๐ฎ)

Quasi-steady response, ๐‘ก๐ด๐‘‡ โˆผ 1๐‘ 

AT ๐‚ แˆถ๐“qs + ๐๐ˆ(๐“qs) = ๐๐“ (๐ฎ

qs, ๐“qs)

AE ๐…๐ˆ(๐ฎqs, ๐“qs) = ๐…๐’(๐ฎ

qs, ๐ŸŽ)

Transient response (AE only), ๐‘ก๐ด๐ธ โˆผ 0.01๐‘ 

๐Œ แˆท๐ฎuns + ๐‚ แˆถ๐ฎuns + ๐…๐ˆ(๐ฎuns, ๐“qs) = ๐…๐’(๐ฎ

uns, แˆถ๐ฎuns)

Tight coupling works for stable response

๐Š =๐››๐…๐ˆ

๐››๐ฎ, ๐Š๐ด =

๐››๐…๐’

๐››๐ฎ; Neglect damping

Linearized stability analysis:Generalized eigenvalue problem

๐Š โˆ’ ๐Š๐ด เดฅ๐ฎ = ๐œ†๐‘”๐Œเดฅ๐ฎ

๐“ = ๐“qs + ๐“uns, ๐“uns โ‰ˆ ๐ŸŽ๐ฎ = ๐ฎqs + ๐ฎuns

Tikhonovโ€™s Theorem (singular perturbation analysis)โ€ข When stable, full response โ‰ˆ quasi-steady responseโ†’ Tightly-coupled scheme.โ€ข Stability of full response = Stability of transient response โ†’ Linearized stability analysis.

AT: AerothermalAE: Aeroelastic

Errorโˆผ ๐‘‚๐‘ก๐ด๐ธ

๐‘ก๐ด๐‘‡= ๐‘‚(10โˆ’2)

17

Page 18: Computational Discovery of Hypersonic ... - APUS Lab

Real-Time aerothermoelastic simulation

1

2

4

8

16

32

64

CFD Conventional ROM Extrapolative ROM

Days

Hours

Minutes

Online simulation

Offline computation

CFD

Brute force

Conventional ROM

+ loose-coupling

10 days

2 hours

50 hours

30 min

1 hour

18

Computational cost of a 30-min flight-long simulation

Extrapolative ROM

+ tight-coupling

* On a computer cluster

* On a workstation using 5 Intel Xeon X5650 processors

Page 19: Computational Discovery of Hypersonic ... - APUS Lab

I. IntroductionII. Modeling: The HYPATE Framework

III. Testing: Numerical Scaling LawsIV. ApplicationsV. Summary and Outlook

โ€ข Extrapolative ROM: Cost per step, Minutes โ†’ milliseconds

โ€ข Efficient coupling: Number of steps, 106 โ†’ 103

โ€ข Enabled fast high-fidelity flight-long simulation

Page 20: Computational Discovery of Hypersonic ... - APUS Lab

I. IntroductionII. Modeling: The HYPATE FrameworkIII. Testing: Numerical Scaling LawsIV. ApplicationsV. Summary and Outlook

Page 21: Computational Discovery of Hypersonic ... - APUS Lab

Example of Analytical scaling law

Subsonic

aerodynamics

Model construction

Map back to full scale

PrototypeFlight conditions[๐‘โˆž, ๐‘€โˆž, ๐‘‡โˆž]

Scaled modelWind tunnel conditions

[๐‘๐‘ค๐‘ก , ๐‘€๐‘ค๐‘ก , ๐‘‡๐‘ค๐‘ก]

Satisfy all similarity parameters

๐‘…๐‘’๐‘๐‘Ÿ๐‘œ๐‘ก๐‘œ๐‘ก๐‘ฆ๐‘๐‘’ = ๐‘…๐‘’๐‘š๐‘œ๐‘‘๐‘’๐‘™

๐‘€๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ก๐‘œ๐‘ก๐‘ฆ๐‘๐‘’ = ๐‘€๐‘Ž๐‘š๐‘œ๐‘‘๐‘’๐‘™

21

Image source: NARAImage source: Airbus

Page 22: Computational Discovery of Hypersonic ... - APUS Lab

Analytical scaling law for aerothermoelasticity

22

Geometryโ„Ž

๐ฟ, เดคโ„Ž

Thermal characteristic time

๐น๐‘œ =๐‘˜๐‘ ๐‘ก

เทœ๐œŒ๐‘  ฦธ๐‘๐‘๐‘  ๐ฟ2

Structural properties

๐‘๐‘‡๐‘ฅ ๐ฟ2

๐ท๐‘ฅ๐‘ฅ

Reference temperatures

๐‘‡๐‘‡๐‘‡๐‘†,๐‘‡0๐‘‡๐‘†,๐‘‡๐น๐‘‡๐‘†

ND dynamic pressure

๐œ†๐น =๐›พ๐‘โˆž๐‘€โˆž

๐ฟ3

๐ท๐‘ฅ๐‘ฅ

Reynolds number ๐‘…๐‘’0 =๐œŒ0 ๐‘‰๐ฟ

๐œ‡0

ND heat flux parameter

๐ต๐‘–๐น =๐‘˜๐‘“

๐‘˜๐‘ ๐‘…๐‘’0๐‘ƒ๐‘Ÿ0

๐‘‰2

ฦธ๐‘๐‘๐‘“ ๐‘‡๐‘‡

ND: Nondimensional

Flight conditions [๐‘โˆž, ๐‘€โˆž, ๐‘‡โˆž] for aerothermal similarity

Flight conditions [๐‘โˆž, ๐‘€โˆž, ๐‘‡โˆž] for aeroelastic similarity

Principal barrier to complete

aerothermoelastic similarity:

Differing requirements for aeroelastic

and aerothermal similarity.

Assume all satisfied

Page 23: Computational Discovery of Hypersonic ... - APUS Lab

Two-pronged approach for scaling

23

Given

prototype

Design

scaled model

Friedmann, JFS 2004; Huang, Friedmann, SciTech 2019

Maximizes the similarity

in aerothermoelastic

response

Two-pronged approach

Classical approachAnalytical derivation of aerothermoelasticsimilarity parameters

Obtain refinedaerothermoelastic

scaling laws

โ€œModernโ€ approachNumerical aerothermoelastic

simulations (prototype/scaled)

โ€ข Contains ad hoc assumptions that ignores:o Turbulence and real gas effect in fluid problemo Geometric nonlinearity in structural problemo Temperature-dependent material properties

โ€ข Provides scaling info., but inaccurate.

Page 24: Computational Discovery of Hypersonic ... - APUS Lab

Refining scaling laws by Optimization

โ€ข Objectives: ๐‘ฑ(๐’…) = [๐ฝ๐‘ข(๐’…), ๐ฝ๐‘‡(๐’…)]

โ€ข Error in structural response: ๐ฝ๐‘ข ๐’… = ฯƒ๐‘– ฮค๐’–๐‘–๐‘š(๐’…) เทœ๐‘ข๐‘š โˆ’ ฮค๐’–๐‘–

๐‘เทœ๐‘ข๐‘

2 1/2

โ€ข Error in thermal response: ๐ฝ๐‘‡ ๐’… = ฯƒ๐‘– ฮค๐‘ป๐‘–๐‘š(๐’…) ๐‘‡๐‘š โˆ’ ฮค๐‘ป๐‘–

๐‘ ๐‘‡๐‘2 1/2

โ€ข Ideal aerothermoelastic scaling: ๐ฝ๐‘ข = 0, ๐ฝ๐‘‡ = 0

โ€ข Design variables: ๐’…โ€ข Flow conditions, geometry, materialsโ€ฆ

โ€ข External loading and heating

โ€ข Constraintsโ€ข ๐’„๐ผ ๐’… โ‰ค 0: Wind tunnel and manufacturing limitations

โ€ข ๐’„๐ธ ๐’… = 0: Matching a partial set of similarity parameters

โ€ข Incomplete testingโ€ข Parameter relaxation

ND model response

ND prototype response

24Huang, Friedmann, SciTech 2019

Special strategies:

Page 25: Computational Discovery of Hypersonic ... - APUS Lab

Bayesian optimization for Black-box objectives

โ€ข Bayesian optimization:o Expensive black-box objective functionso A limited computational budgeto โ€œGlobalโ€ optimum for nonconvex problemo AKA efficient global optimization (EGO)

โžข Surrogate:o Gaussian process regressiono Prediction + Uncertainty

โžข Acquisition function:o Lower confidence boundo Exploitation & Exploration

Uncertainty of prediction

25

๐‘ฑ ๐’… = [๐ฝ๐‘ข ๐’… , ๐ฝ๐‘‡(๐’…)]๐’„๐ผ ๐’… โ‰ค 0๐’„๐ธ ๐’… = 0

Objectives:Subject to:Example: Scalar optimization

Page 26: Computational Discovery of Hypersonic ... - APUS Lab

Pareto front for Multiple objectives

๐ฝ๐‘ข

๐ฝ๐‘‡

Pareto Front

Pareto Optimal

solutions

Design

Point

26

๐‘ฑ ๐’… = [๐ฝ๐‘ข ๐’… , ๐ฝ๐‘‡(๐’…)]๐’„๐ผ ๐’… โ‰ค 0๐’„๐ธ ๐’… = 0

Objectives:Subject to:

Indirect approach:โ€ข Generate Pareto front and select

the design point.โ€ข Suitable for exploring the solution

distribution.

Error in structural response

Erro

r in

th

erm

al r

esp

on

se

Page 27: Computational Discovery of Hypersonic ... - APUS Lab

I. IntroductionII. Modeling: The HYPATE FrameworkIII. Testing: Numerical Scaling Laws

IV. ApplicationsV. Summary and Outlook

โ€ข Two-pronged approach: Dimensional analysis + Numerical simulation

โ€ข Scaling strategies: Incomplete testing + Parameter relaxation

โ€ข Multi-Objective Bayesian Optimization

Page 28: Computational Discovery of Hypersonic ... - APUS Lab

I. IntroductionII. Modeling: The HYPATE FrameworkIII. Testing: Numerical Scaling LawsIV. Applications

V. Summary and Outlook

โ€ข Aerothermoelastic analysis of hypersonic skin panels

โžข Boundary layer thickness and aspect ratio

โžข Flow orientation angle and material orthotropicity

โ€ข Refined scaling laws using two-pronged approach

Page 29: Computational Discovery of Hypersonic ... - APUS Lab

Case I: Aeroelastic scaling โ€“ Sanity check

Material ๐‘€โˆž ๐‘โˆž ฮ”๐‘‡ Side Thick

PrototypeInconel

7186.0 104๐‘ƒ๐‘Ž 1๐พ 1๐‘š 2๐‘š๐‘š

Scaled model

Ti 6242 ?? ?? ?? ?? ??

Aeroelastic response with uniform thermal stress in inviscid flowReproduce aeroelastic response on scaled models

Problem:

Objective:

29

Page 30: Computational Discovery of Hypersonic ... - APUS Lab

Analytical scaling v.s. Numerical scaling

Objective: Minimize the error in aeroelastic responses

๐ฝ๐‘ข ๐’… = ๐‘–

ฮค๐’–๐‘–๐‘š(๐’…) เทœ๐‘ข๐‘š โˆ’ ฮค๐’–๐‘–

๐‘เทœ๐‘ข๐‘

21/2

Design variables:

Constraints: ND time step size

ฮ”๐‘ก๐‘š =1

๐œ‰2

๐ท๐‘ฅ๐‘ฅ๐‘ แˆ˜๐ผm

๐ท๐‘ฅ๐‘ฅ๐‘š แˆ˜๐ผp

ฮ”๐‘ก๐‘

โ„Ž (mm) [0.2, 1.2]

๐‘โˆž (kPa) [3.0, 11.0]

ฮ”๐‘‡ (K) [0.5, 4.5]

Thickness-length ratio

โ„Ž

๐ฟโ„Ž๐‘š =

1

๐œ‰โ„Ž๐‘

ND pressure าง๐œ†๐น =๐›พ๐‘€โˆž

๐ฟ2

๐ท๐‘ฅ๐‘ฅ๐‘โˆž๐‘š = ๐œ‰3

๐ท๐‘ฅ๐‘ฅ๐‘š

๐ท๐‘ฅ๐‘ฅ๐‘ ๐‘โˆž

๐‘

ND thermal stress

ฮ”๐‘‡ ๐‘โ€ฒTxL2

Dxxฮ”๐‘‡๐‘š = ๐œ‰2

๐ท๐‘ฅ๐‘ฅ๐‘š ๐‘โ€ฒTx

p

๐ท๐‘ฅ๐‘ฅ๐‘ ๐‘โ€ฒTx

mฮ”๐‘‡๐‘

Characteristic time

๐ท๐‘ฅ๐‘ฅแˆ˜๐ผ ๐ฟ4

ฦธ๐‘ก ฦธ๐‘ก๐‘š =1

๐œ‰2

๐ท๐‘ฅ๐‘ฅ๐‘ แˆ˜๐ผm

๐ท๐‘ฅ๐‘ฅ๐‘š แˆ˜๐ผp

ฦธ๐‘ก๐‘

๐œ‰ =๐ฟ๐‘

๐ฟ๐‘š๐‘š: Model๐‘: Prototype

Assuming same gas (๐›พ) and ๐‘€โˆž:

30

Dowell, 1975

Page 31: Computational Discovery of Hypersonic ... - APUS Lab

Aeroelastic scaling law is recovered

Parametersโ„Ž

๐ฟ, 10โˆ’3 าง๐œ†๐น

ฮ”๐‘‡ ๐‘โ€ฒTxL2

Dxx

Prototype 2.000 566.1 47.88

๐œ‰ = 2 2.008 (0.38%) 566.9 (0.14%) 47.58 (0.63%)

๐œ‰ = 3 2.003 (0.17%) 561.4 (0.83%) 47.76 (0.26%)

๐œ‰ = 4 2.003 (0.17%) 566.7 (0.11%) 47.67 (0.44%)

Aeroelastic similarity parameters are satisfied with errors < 1%!

31

Page 32: Computational Discovery of Hypersonic ... - APUS Lab

Case II: Aerothermoelastic scaling

๐‘€โˆž Altitude Side

5.0-7.0 20-30 km 1.0 m

Component Material Thickness

Upper Sheet

Inconel 718

1 mm

Honeycomb Core 16 mm

Lower Sheet 1 mm

Component Material Thickness

Sheet Ti 6242 ??

๐‘€โˆž ๐‘โˆž ๐‘‡โˆž Side

?? ?? ?? ??

Prototype: Composite skin panel

Scaled model: Isotropic panel

32

Hypersonic Cruise Vehicle (HCV)

Image source: Zuchowski, 2012

Aerothermoelastic response of hypersonic skin panelsMinimize errors in average temperature and center deflection of aerothermoelastic response

Problem:

Objective:

Page 33: Computational Discovery of Hypersonic ... - APUS Lab

Design variables and constraints

Design Variables Constraints

Test conditions ๐‘€โˆž, ๐‘0, ๐‘‡0 Wind tunnel

Side length ๐ฟ (m) [0.1, 0.5]

Front panel length ๐ฟ๐‘™๐‘’ (m) [0.1, 2.0]

Thickness โ„Ž (mm) [1.0, 10.0]

Surface emissivity ๐œ– [0.5, 1.0]

Radiation temperature ๐‘‡๐‘Ÿ๐‘Ž๐‘‘ (K) [300, 2500]

Thermal characteristic time

๐น๐‘œ =๐‘˜๐‘ ๐‘ก

เทœ๐œŒ๐‘  ฦธ๐‘๐‘๐‘  ๐ฟ2

Reference temperatures

๐‘‡๐‘ค๐‘‡๐‘†,๐‘‡๐‘‡๐‘‡๐‘†,๐‘‡0๐‘‡๐‘†,๐‘‡๐น๐‘‡๐‘†

A partial set of similarity parameters for the parameter relaxation strategy

External radiant heating for the Incomplete testing strategy

33

Equality constraints:

Page 34: Computational Discovery of Hypersonic ... - APUS Lab

Ideal wind tunnel conditions โ€“ Iโ€ข Arbitrary flight conditions in wind tunnel

5.0 โ‰ค ๐‘€โˆž โ‰ค 7.0, 20 โ‰ค ๐ป โ‰ค 30๐‘˜๐‘š

โ€ข Prototype flight conditions:

๐‘€โˆž = 6.0, ๐ป = 25km

โ€ข Four cases:

๐ฟ๐‘š๐‘œ๐‘‘๐‘’๐‘™ =1

2,1

3,1

4,1

5(๐‘š)

Design Variables Constraints

Ideal wind tunnel

conditions

๐‘€โˆž [5.0,7.0]

๐‘0 (MPa) [0.276,86.18]

๐‘‡0 (K) [416.5, 2500.0]

Front panel ๐ฟ๐‘™๐‘’ (m) [0.1, 2.0]

Thickness โ„Ž (mm) [1.0, 10.0]

๐œ‰ =๐ฟ๐‘๐‘Ÿ๐‘œ๐‘ก๐‘œ๐‘ก๐‘ฆ๐‘๐‘’

๐ฟ๐‘š๐‘œ๐‘‘๐‘’๐‘™

Rapid increase in ๐ฝ๐‘‡

Rapid increase in ๐ฝ๐‘ข

Ideal scaling

34

Page 35: Computational Discovery of Hypersonic ... - APUS Lab

Ideal wind tunnel conditions โ€“ IIVariables ๐œ‰ = 2 ๐œ‰ = 3 ๐œ‰ = 4 ๐œ‰ = 5

๐‘€โˆž 6.841 5.653 5.407 6.250

๐‘0 (MPa) 64.76 39.16 38.58 73.30

๐‘‡0 (K) 2280. 1868. 2130. 2187.

๐ฟ๐‘™๐‘’ (m) 1.812 2.000 0.3516 0.1950

โ„Ž (mm) 10.00 5.971 4.317 4.150

35

๐œ‰ =๐ฟ๐‘๐‘Ÿ๐‘œ๐‘ก๐‘œ๐‘ก๐‘ฆ๐‘๐‘’

๐ฟ๐‘š๐‘œ๐‘‘๐‘’๐‘™

Page 36: Computational Discovery of Hypersonic ... - APUS Lab

Realistic wind tunnel conditions โ€“ I

โ€ข Prototype flight conditions:๐‘€โˆž = 6.0, ๐ป = 25๐‘˜๐‘š

โ€ข Realistic wind tunnel constraints:๐‘€โˆž = 5.0, 6.0, 7.0

โ€ข Two cases:

Design Variables Constraints

Test conditions ๐‘0, ๐‘‡0 WT5, WT6, WT7

Side length ๐ฟ (m) [0.1, 0.5]

Front panel length ๐ฟ๐‘™๐‘’ (m) [0.1, 2.0]

Thickness โ„Ž (mm) [1.0, 10.0]

Surface emissivity ๐œ– [0.5, 1.0]

Radiation temperature ๐‘‡๐‘Ÿ๐‘Ž๐‘‘ (K) [300, 2500]

Case 1: Parameter relaxation only

Case 2: Parameter relaxation and incomplete testing

36

Hypersonic Tunnel Facility (HTF),NASA Glenn Research Center

Page 37: Computational Discovery of Hypersonic ... - APUS Lab

๐‘€โˆž = 6

๐‘€โˆž = 5

๐‘€โˆž = 7

๐‘€โˆž = 6

๐‘€โˆž = 5

๐‘€โˆž = 7

Realistic wind tunnel conditions โ€“ II

Prototype: ๐‘€โˆž = 6.0Model: ๐‘€โˆž = 7.0

External heating

37

Case 1: Parameter

relaxation only

Case 2: Parameter relaxation

and incomplete testing

Aerothermoelastic scaling enabled!

Page 38: Computational Discovery of Hypersonic ... - APUS Lab

I. IntroductionII. Modeling: The HYPATE FrameworkIII. Testing: Numerical Scaling LawsIV. ApplicationsV. Summary and Outlook

Page 39: Computational Discovery of Hypersonic ... - APUS Lab

Key Novel Contributions

Testing: First ever hypersonic aerothermoelastic scaling implemented

โžขA new, two-pronged approach to aerothermoelastic scaling

o The classical approach augmented with numerical simulations.

o Formulated as a multi-objective optimization problem and solved using a Bayesian approach.

o Applied to the scaling of a finite-dimension panel configuration.

โžขPotential applications

o Map aerothermoelastic results from tests of scaled models to an actual vehicle.

o Potential for significant cost saving in hypersonic vehicle development.

40

โ†’ Accelerate the advent of Era of hypersonic flight

Page 40: Computational Discovery of Hypersonic ... - APUS Lab

Future works

โ€ข Joint efforts of the computational and experimental communitiesoComputation: Detailed design of scaled model for wind tunnel testing.

o Experiments: Measurement techniques for aerothermoelastic testing.

โ€ข Robust multidisciplinary design of hypersonic structureso Inclusion of epistemic uncertainties due to modeling, esp. fluid ROM.

o Exploitation of benign aerothermoelastic instabilities.

โ€ข Aerothermoelastic analysis with more complex physics and subsystemso Shock wave/boundary layer interaction, turbulent acoustic radiation, etc.

oCoupling with propulsion and control systems.

41

Page 41: Computational Discovery of Hypersonic ... - APUS Lab

Coupling with complex physics

42

โžขCoupling with shock-dominated flow

oChallenges: boundary layer transition,

turbulent acoustic radiation, localized

heating

oRequires: Large Eddy Simulation,

computational aeroacoustics, reduced-

order modeling

โ€ข Current collaborator: Dr. X.I.A. Yang

Shock Wave Boundary Layer Interaction on a 24 deg two-dimensional ramp at Mach 2.3 visualized trough Schlieren image.

Source: https://www.youtube.com/watch?v=aqudZCRiTbQ

Page 42: Computational Discovery of Hypersonic ... - APUS Lab

Aero-thermo-servo-propulso-elasticity

43

โžขCoupling with control system

o Time-dependent vehicle dynamics

o Spectrum overlapping of controller and

structural response

โžขCoupling with propulsion system

o Integrated airframe-propulsion system

o Aerothermoelastic deformation โ†’ Offset from

engine design point

Kitson and Cesnik, 2016

Lamorte, Friedmann et al., 2014

Page 43: Computational Discovery of Hypersonic ... - APUS Lab

Multi-physics Uncertainty Quantification

44

Uncertainty quantification

and propagation

Hypersonic

Aerothermoelasticity

Modeling Testing

Understand &

Validate

โžขIdentify knowledge gaps in modeling tools and

assess impact on analysis and design

oChallenges: Certification of hypersonic

vehicles, Design and optimization under

uncertainty

oRequires: Propagation of uncertainty in

high-dimensional dynamical system

โ€ข Current collaborator: Dr. Puneet Singla

Fluid

Solver

Structural

Solver

Thermal

Solver

Body temperature

Surface deformation

Surface temperature

Pressure distribution

Heat flux distribution

Page 44: Computational Discovery of Hypersonic ... - APUS Lab

Rotary-wing/eVTOL Aircraft Applications

45

โžขWith the VLRCOE folks

โ€ข Example I: Aeromechanics/Aeroacoustics

o Reduced-order modeling for real-time applications

o Numerical scaling laws for eVTOL-class aircraft

โ€ข Example II: Rotorcraft Icing

o Modeling: Develop PSUโ€™s own high-fidelity tools

o Testing: PSU-AERTS, NASA-IRT

Kreeger and Broeren, 2018

Gupta, Halloran, Sankar, Palacios, et al., 2018

Chia, 2017

Page 45: Computational Discovery of Hypersonic ... - APUS Lab

Thank you!

Questions?

Contact: [email protected] website: apus.psu.edu/join-usPersonal blog: smanist.github.io

Advertisement:

Spring 2020, AERSP 597:

Machine Learning in Aerospace Engineering

Topics (with applications!):

โ€ข Regression (least-squares, Gaussian process regression, multi-fidelity modeling)

โ€ข Reduced-order modeling (dimensional manipulation, projection-based models, esp. nonlinear systems)

โ€ข Neural networks * (networks for regression, recurrent networks)