Computational Complexity and High Energy Physics August 1st, … · 2017. 8. 23. · Rigorous free...

30
Rigorous free fermion entanglement renormalization from wavelets arXiv: 1707.06243 Jutho Haegeman Ghent University in collaboration with: Brian Swingle, Michael Walter, Jordan Cotler, Glen Evenbly, Volkher Scholz Computational Complexity and High Energy Physics August 1st, 2017

Transcript of Computational Complexity and High Energy Physics August 1st, … · 2017. 8. 23. · Rigorous free...

  • Rigorous free fermion entanglement renormalization from wavelets

    arXiv: 1707.06243

    Jutho Haegeman

    Ghent University

    in collaboration with:
Brian Swingle, Michael Walter,


    Jordan Cotler, Glen Evenbly, Volkher Scholz

    Computational Complexity and High Energy Physics
August 1st, 2017

  • OVERVIEW

    Tensor networks and quantum field theories

    MERA: quantum circuits, renormalization, wavelets

    One-dimensional Dirac fermions

    Fermi surface: Non-relativistic two-dimensional fermions

    Rigorous approximation result

    Outlook and extensions

  • TENSOR NETWORKS …

    Diagrammatic notationvector:matrix:matrix product:Yang-Baxter equation:

    =

    H = (Cd)�NQuantum system of N spins:

    |�� =d�

    sn=1

    �s1,s2,...,sN |s1� � |s2� � · · · � |sN �

    dimensional vectordN

    rank N tensor

    s1s2 sN

    ‘approximate’ with 
a tensor network
decomposition

  • TENSOR NETWORKS …

    Variational families of states for quantum many body systems, 
motivated by the structure of entanglement in low energy states (area law) ……

    � =(MPS)

    (PEPS)(MERA)

    |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i

    ⇒ classical simulation⇒ Complexity scaling (MPS): Hastings; Arad, Kitaev, Landau, Vazirani, Vidick, …

  • … AND QUANTUM FIELD THEORY (1)

    Variational approach to lattice gauge theory (Hamiltonians)

    Very successful for (1+1)d QFT, e.g. Schwinger model 
TMR Byrnes et al, B Buyens et al, MC Bañuls et al, S Montangero et al, …

    (Partial) string breaking for heavy probe charges:

    L · g0 3 6 9 12 15

    0

    5

    10

    15

    20

    25

    VQ(L)/g (m/g = 1)

    0.75

    1

    1.75

    2.5

    3.25

    4.5

    5

    Q

    L · g0 3 6 9 12 15

    0

    5

    10

    15

    20

    25VQ(L)/g (m/g = 0.5)

    L · g0 3 6 9 12 15

    0

    5

    10

    15

    20

    25VQ(L)/g (m/g = 0.25)

    Boye Buyens, Jutho Haegeman, Henri Verschelde, Frank Verstraete, Karel Van Acoleyen, PRX 6, 041040 (2016)

  • … AND QUANTUM FIELD THEORY (1)

    Variational approach to lattice gauge theory (Hamiltonians)

    Very successful for (1+1)d QFT, e.g. Schwinger model 
TMR Byrnes et al, B Buyens et al, MC Bañuls et al, S Montangero et al, …

    (Partial) string breaking for heavy probe charges:

    Boye Buyens, Jutho Haegeman, Henri Verschelde, Frank Verstraete, Karel Van Acoleyen, PRX 6, 041040 (2016)

    z · g-15 -10 -5 0 5 10 15

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5⟨Ψ̄(z)γ0Ψ(z)⟩ (Q = 4.5)

    z · g-15 -10 -5 0 5 10 15

    -5

    -4

    -3

    -2

    -1

    0

    1

    2⟨E(z)⟩/g (Q = 4.5)

  • … AND QUANTUM FIELD THEORY (1)

    Variational approach to lattice gauge theory (Hamiltonians)

    Very successful for (1+1)d QFT, e.g. Schwinger model 
TMR Byrnes et al, B Buyens et al, MC Bañuls et al, S Montangero et al, …

    (Partial) string breaking for heavy probe charges:

    Boye Buyens, Jutho Haegeman, Henri Verschelde, Frank Verstraete, Karel Van Acoleyen, PRX 6, 041040 (2016)

    z · g-15 -10 -5 0 5 10 150

    0.05

    0.1

    0.15

    0.2

    0.25

    ∆SQ(z) (L · g = 0.55)

    100200300400

    x

    z · g-15 -10 -5 0 5 10 150

    0.05

    0.1

    0.15

    0.2

    0.25

    ∆SQ(z) (L · g = 2.55)

    z · g-15 -10 -5 0 5 10 150

    0.05

    0.1

    0.15

    0.2

    0.25

    ∆SQ(z) (L · g = 7.35)

    z · g-15 -10 -5 0 5 10 150

    0.05

    0.1

    0.15

    0.2

    0.25

    ∆SQ(z) (L · g = 13.15)

  • … AND QUANTUM FIELD THEORY (1)

    Variational approach to lattice gauge theory (Hamiltonians)

    Very successful for (1+1)d QFT, e.g. Schwinger model 
TMR Byrnes et al, B Buyens et al, MC Bañuls et al, S Montangero et al, …

    Real time evolution: quenches, onset of thermalization?

    Boye Buyens, Jutho Haegeman, Florian Hebenstreit, Frank Verstraete, Karel Van Acoleyen, arXiv:1612.00739

    t · g0 3 6 9 12 15 18

    0

    1

    2

    3

    4

    5

    ∆S(t)

    t · g0 3 6 9 12 15 18

    0

    0.1

    0.2

    0.3

    0.4

    N(t)

    N(t)Nβ0±0.05

    t · g0 3 6 9 12 15 18

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5E(t)/g

    E(t)/gEβ0±0.05/g

  • … AND QUANTUM FIELD THEORY (1)

    Variational approach to lattice gauge theory (Hamiltonians)

    Very successful for (1+1)d QFT, e.g. Schwinger model 
TMR Byrnes et al, B Buyens et al, MC Bañuls et al, S Montangero et al, …

    Can be extended to (2+1)d (and (3+1)d?): 
first explorations by L Tagliacozzo, E Zohar, …

  • Tensor networks for continuous systems:

    Continuous MPS: (Verstraete & Cirac, 2010)Chiral condensate in the Gross-Neveu model (N→∞)

    Continuous MERA:So far: only GaussiansInteresting analytical tool to investigate relation with holography

    ⇒ Advertisement: PhD & PostDoc positions available @UGent

    … AND QUANTUM FIELD THEORY (2)

    λ(Λ)σ/

    Λ0.01

    0.1

    1

    λ-1(Λ) = [(N - 1)g(Λ)2]-10.6 0.8 1.0 1.2 1.4 1.6

    exactafitbD = 6

    D = 8D = 10D = 16

  • Multiscale entanglement renormalization ansatz (G Vidal)

    Captures power law decay of correlations, logarithmic violation of area law in (1+1)d, …Possible relation with holography (AdS/CFT correspondence)

    MERA, RENORMALIZATION & WAVELETS

    |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i

    Coarse-grain quantum state

    Disentangle high energy
degrees of freedom

    Variational 
ansatz

    Quantum 
circuit that 


    prepares state

  • Tensor network renormalization interpretation: 
(G Evenbly & G Vidal; S Yang, ZC Gu, XG Wen)

    MERA, RENORMALIZATION & WAVELETS

    imag

    inar

    y tim

    e
ev

    olut

    ion

    d⌧

  • Tensor network renormalization interpretation: 
(G Evenbly & G Vidal; S Yang, ZC Gu, XG Wen)

    MERA, RENORMALIZATION & WAVELETS

    2d⌧

    imag

    inar

    y tim

    e
ev

    olut

    ion

  • Tensor network renormalization interpretation: 
(G Evenbly & G Vidal; S Yang, ZC Gu, XG Wen)

    MERA, RENORMALIZATION & WAVELETS

    4d⌧

    imag

    inar

    y tim

    e
ev

    olut

    ion

  • Tensor network renormalization interpretation: 
(G Evenbly & G Vidal; S Yang, ZC Gu, XG Wen)

    For classical stat mech systems: can also be done using non-negative matrix factorization → M. Bal et al, PRL 118, 250602 (2017)

    MERA, RENORMALIZATION & WAVELETS

    4d⌧

    imag

    inar

    y tim

    e
ev

    olut

    ion

  • MERA, RENORMALIZATION & WAVELETS

    Wavelets and renormalization: multiscale analysis

  • MERA, RENORMALIZATION & WAVELETS

    Wavelets and renormalization: multiscale analysis

  • MERA, RENORMALIZATION & WAVELETS

    Wavelets and renormalization: multiscale analysis

  • MERA, RENORMALIZATION & WAVELETS

    Wavelets and MERA: G Evenbly & S White, PRL 116, 140403 (2016)

    A free fermion MERA (unitaries generated by quadratic operators) implements a wavelet transform at the single particle level.

    |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i|1i

    |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i|1i

    scaling coefficients

    wavelet coefficients

  • MERA, RENORMALIZATION & WAVELETS

    Wavelets and MERA: G Evenbly & S White, PRL 116, 140403 (2016)

    A free fermion MERA (unitaries generated by quadratic operators) implements a wavelet transform at the single particle level.

    Free fermion ground state: fill all negative energy modes
→ fill set of modes that span the negative energy subspace (Fermi/Dirac sea)→ construct wavelets that are completely supported in either positive or negative energy subspace

    |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i |0i|1i

    wavelet coefficients

  • Massless Dirac fermions on the lattice: staggering (Kogut-Susskind)

    1+1 DIRAC FERMIONS

    0 e�ik � 1

    eik � 1 0

    � 1 1

    ieik/2 �ieik/2�=

    1 1

    ieik/2 �ieik/2�

    sin(k/2) 00 � sin(k/2)

    �, k 2 [�⇡,+⇡)

    0 e�ik � 1

    eik � 1 0

    �u(k) = u(k)

    �| sin(k/2)| 0

    0 | sin(k/2)|

    �, k 2 [�⇡,+⇡)

    u(k) =1p2

    1 1

    �isign(k)eik/2 isign(k)eik/2�=

    1 00 �isign(k)eik/2

    �1p2

    1 11 �1

    HD = �X

    n

    b†1,nb2,n � b†2,nb1,n+1 + b

    †2,nb1,n � b

    †1,n+1b2,n

    HD =

    Z +⇡

    �⇡

    dk

    2⇡

    b1(k)b2(k)

    �† 0 e�ik � 1

    eik � 1 0

    � b1(k)b2(k)

  • 1+1 DIRAC FERMIONS

    u(k) =1p2

    1 1

    �isign(k)eik/2 isign(k)eik/2�=

    1 00 �isign(k)eik/2

    �1p2

    1 11 �1

    A pair of wavelet transforms such that wavelet filters in Fourier domain have equal magnitude and a relative phase difference .

    Scaling filters should have phase difference 
(half shift or half delay condition) → same phase difference for wavelets from higher levels of the transform (scale invariance).

    Impossible with filters of finite support ⇒ approximation?

    �isign(k)eik/2(gw(k), hw(k))

    (gs(k), hs(k)) eik/2

  • 1+1 DIRAC FERMIONS

    K = 4

    L = 6

    Problem considered by Selesnick et al: a family of solutions, satisfying , in terms of two parameters K and L, leading to filters of width 2(K+L):

    hs(k) = ei✓(k)gs(k)

  • FERMI SURFACES

    Non-relativistic fermions hopping at half filling:

    H1 = �X

    n2Za†nan+1 + a

    †n+1an

    b1,n = (�1)na2n, b2,n = (�1)na2n+1 HD

    H2 = �X

    (m,n)2Z2a†m,nam+1,n + a

    †m+1,nam,n + a

    †m,nam,n+1 + a

    †m,n+1am,n

    b1,x,y = (�1)x+yax+y,x�y, b2,x,y = (�1)x+yax+y+1,x�y

    H =

    Z

    [�⇡,⇡)2dk

    x

    dky

    b1(kx, ky)b2(kx, ky)

    �† 0 (1� e�ikx)(1� e�iky )

    (1� eikx)(1� eiky ) 0

    � b1(kx, ky)b2(kx, ky)

    u(kx

    , ky

    ) =

    1 00 �isign(k

    x

    )eikx/2

    � 1 00 �isign(k

    y

    )eiky/2

    �1p2

    1 11 �1

  • FERMI SURFACES

    Branching MERA (Evenbly & Vidal)R Shankar, RG approach to interacting fermions (RMP 66, 129)

  • FERMI SURFACES

    S(R) c2R+ 2(R/2)S1d MERA(R/2) + S(R/2) . . . 2c1R log2 R+O(R) 11where

    N trz̄ ≡z̄−1∑

    z=0

    Rz(

    (lz + 2)D − (lz)

    D)

    (41)

    ≈ 2D(l0)D−1

    z̄−1∑

    z=0

    Rz

    (

    1

    2D−1

    )z

    (42)

    = 2D(l0)D−1f(l0) (43)

    where in Eq. 42 we have only kept leading order in l0,and where

    f(l0) ≡z̄−1∑

    z=0

    Rz

    (

    1

    2D−1

    )z

    . (44)

    Thus we see that N trz̄ scales as the boundary law (l0)D−1

    times a multiplicative correction f(l0) that depends onthe branching structure of the underlying holographictree through Rz. It follows that the entanglement en-tropy S(ρ0) is bounded above by

    S(ρ0) ! kD(l0)D−1f (l0) , (45)

    where the constant kD depends on χ and D (but is in-dependent of l0). Here we have used that the first termon the rhs of Eq. 40, which also depends on l0 throughRz̄, can be seen to be of subleading order in l0, whencompared to (l0)D−1f(l0), for any relevant choice of Rz.Next we evaluate function f(l0) for two classes of holo-

    graphic trees.

    C. Regular holographic trees

    Let us evaluate the above upper bound on entangle-ment entropy for branching MERA with a regular holo-graphic tree with branching ratio b, where each node ofthe tree has exactly b child nodes. Notice that for thisfamily of trees the number of branches at depth z scalesas Rz = bz. Then the function f(l0) of Eq.44, whichdescribes the multiplicative correction to the boundarylaw, becomes

    f (l0) =z̄−1∑

    z=0

    (

    b

    2D−1

    )z

    . (46)

    Notice that this is a geometric series with common ratior = b21−D and, as such, can be summed explicitly. Thissum takes has a different functional dependance on l0contingent on whether the branching b is such that thecommon ratio is greater than, equal to or less-than unity.In these three cases, to leading order in l0 the functionf(l0) reads

    f (l0) ≈

    c1 b < 2D−1

    c2log2(l0) b = 2D−1

    c3(l0)(1−D+log

    2(b)) b > 2D−1

    (47)

    FIG. 9. (a) A depiction of part of a branching MERA inD = 2 dimensions. The density matrix ρz is obtained bycombining two copies of ρz+1 with isometries/decouplers wand disentanglers u, and then tracing out ntrz = 20 indices.(b-e) A branch of the branching MERA in D = 2 dimensionscan split into b = 1, 2, 3, 4 sub-branches at each level. Diagram(a) corresponds to the case of b = 2.

    for some constants c1, c2, and c3 that depend on D andb (but are independent of l0). These, together with Eq.45, lead to the following upper bounds for the scalingof entanglement in the branching MERA with a regularholographic tree

    Sl ≤

    c̃1 lD−1 b < 2D−1

    c̃2 lD−1 log2(l) b = 2D−1

    c̃3 llog2(b) b > 2D−1(48)

    for some constants c̃α = cαkD that depend on D, b, andχ. A subset of these results can be found on table III.Notice in particular that for b = 2D−1 we obtain a loga-rithmic correction to the boundary law for all dimensionsD, whereas b = 2D produces a bulk law.

    [

    ˜S(R) c2R+ 2˜S(R/2) · · · c2R log2(R) +O(R)]

    S1d MERA(R) c1 + S1d MERA(R/2) . . . c1 log2(R) +O(1)

    S2d MERA(R) c2R+ S2d MERA(R/2) . . . 2c2R+O(1)

  • RIGOROUS APPROXIMATION RESULT

    f 2 `2(Z) : a(f) =X

    n2Zf [n]an

    Given pair of scaling filters:

    B = k�sk1

    Let:

    G({fi}) = h |a†(f1) . . . a†(fN )a(fN+1) . . . a(f2N )| i

    |G({fi})⌦ �G({fi})⌦MERA | 24pNqC2�L/2 + 6✏(log2(C/✏))

    2Then:

    Where: C = 23/2p

    D({fi})B(K + L)L : number of layers in the MERA

    |hs(k)� eik/2gs(k)| ✏, 8k 2 [�⇡,+⇡)

  • RIGOROUS APPROXIMATION RESULT

    K=L=1 K=L=3

  • OUTLOOK AND EXTENSIONS

    Extensions

    Massive theories

    Pairing term: 
fermion number → fermion parity conservation

    Outlook

    Dirac cones, topological insulators,…?

    Relevance for interacting theories? 
(e.g. with asymptotic freedom)

  • QUESTIONS?