Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs)...

28
22 April 2020 Compressing Subject-specific Brain-Computer Interface Models into One Model by Superposition in Hyperdimensional Space Michael Hersche Philipp Rupp Luca Benini Abbas Rahimi Integrated Systems Laboratory D-ITET ETH Zürich

Transcript of Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs)...

Page 1: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

22 April 2020

Compressing Subject-specific Brain-Computer Interface Models into One Model by Superposition in Hyperdimensional Space

Michael Hersche

Philipp Rupp

Luca Benini

Abbas Rahimi

Integrated Systems LaboratoryD-ITET ETH Zürich

Page 2: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Towards wearable embedded Motor-Imagery Brain – Computer Interfaces (MI-BCIs)

2

Left Hand

EEG data acquisition

“Left Hand”…

Classifier

Page 3: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Towards wearable embedded Motor-Imagery Brain – Computer Interfaces (MI-BCIs)

Why embedded embedded MI-BCI?▪ User comfort▪ Latency▪ Security & privacy▪ Long-term usability

2

Embedded MI-BCI

Page 4: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Subject-specific models pose a challenge for embedded MI-BCIs

3

▪ MI-Brain signals are highly subject dependentNeed to train subject-specific models

▪ Store multiple subject-specific models on device▪ Device for multiple subjects

▪ Model selection on unseen subjects

▪ We need to reduce memory footprint!

Embedded MI-BCI

Model 1

Model 2

Model n

Global model

Global Model M1

M2

Mn

Quantization Superposition

Page 5: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

This Work: Model compression by hyperdimensional superposition▪ Compress subject-specific CNN models with superposition

▪ Novel retraining method to counteract compression noise

▪ Compress two compact SoA CNNs by up to 3x with slightly better accuracy

▪ Shallow ConvNet +1.46%

▪ EEGNet +2.41%

4

Page 6: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

The BCI competition IV-2a dataset is still a big challenge

▪ 9 subjects

▪ 2 sessions per subject: training and test set

▪ 288 trials per session and subject

▪ 4 different MI tasks initiated by visual cue

▪ Left hand/right hand/feet/tongue

▪ 22 EEG channels sampled with 250 Hz

5

Sub 1

Sub 2

Sub 9

Sub 1

Sub 2

Sub 9

Session 1 (Training) Session 2 (Testing)

Day 1 Day 2

… …

Page 7: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Shallow Convnet1 is a light-weightand accurate CNN for MI classification

6

One model per subject (sub-spec)

47,240 weights

74.3% on 4-class MI

[1] Schirrmeister et al. , “Deep learning with convolutional neural networks for EEG decoding and visualization,” Human Brain Mapping 2017

1110

0 0

27 0 112 .

22

1110

0

22

1,000 weights 35,200 weights 11,040 weights

Page 8: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

ℝ𝑑

𝑊1

𝑊2

𝑊3

ℝ𝑑

Orthogonalization by key-value binding in hyperdimensional space

7

Values

Retrieval

𝑊𝑖 = K𝑖 ⊙𝑉𝑖

𝐾3⊛𝑊3

𝐾2⊛𝑊2

𝑉1 = 𝐾1⊛𝑊1

Key-value pairs(orthogonal)

ℝ𝑑

𝑊1

𝑊2

𝑊3

Binding

𝑉𝑖 = K𝑖 ⊛𝑊𝑖

Retrieved values

Page 9: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Orthogonalized key-value pairs are superimposed and retrieved in hyperdimensional space

1) Superimpose multiple key-value pairs

2) Retrieve values

8

𝑊 ∈ℝ𝑑 – value

𝐾 ∈ ℝ𝑑 , 𝐾 ~𝑁(0 ,1

𝑑𝑰𝑑 – key

⊛ – circular convolution⊙ – circular correlation

𝑆 =

𝑖

𝐾𝑖 ⊛𝑊𝑖

𝑊𝑘 = 𝐾𝑘 ⊙𝑆= 𝐾𝑘 ⊙𝐾𝑘 ⊛𝑊𝑘 +

𝑖≠𝑘

𝐾𝑘 ⊙𝐾𝑖 ⊛𝑊𝑖 = 𝑊𝑘 + 𝑛

Page 10: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Key-weight binding of compressible weights

e 1

d eig t m del 1

u e t 1

compressible weights

model size

Page 11: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Superposition of key-value pairs reduces the memory footprint while staying in same dimensionality

10

e 1

eig t m del 1

u e t 1

Page 12: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Superposition of key-value pairs reduces the memory footprint while staying in same dimensionality

10

e 1

eig t m del 1

u e t 1

d eig t m del 2

u e t 2

e 2

Page 13: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Superposition of key-value pairs reduces the memory footprint while staying in same dimensionality

10

e 1

eig t m del 1

u e t 1

d eig t m del 2

u e t 2

e 2

d eig t m del

e

u e t

Page 14: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Superposition of key-value pairs reduces the memory footprint while staying in same dimensionality

10

Compression Rate =𝑁𝑠

𝑁𝑠(1−𝑟)+𝑟𝑟 ≔

𝑑

model size

e 1

eig t m del 1

u e t 1

d eig t m del 2

u e t 2

e 2

d eig t m del

e

u e t

...

Page 15: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Approximate retrieval from compressed representation yields huge accuracy loss

11

...

d eig t m del 1

u e t 1

e 1

𝑊1

73.59

52.44

45

50

55

60

65

70

75

80

1 1.26

Acc

ura

cy [

%]

Compression Rate

Sup(FC)

Page 16: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Iterative Retraining

12

...

d eig t m del 1

u e t 1

e 1

Page 17: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Iterative Retraining

12

for i =1:Ns1) Retrieve weights for subject i2) Retrain model for subject i3) Update compressed representation

...

d eig t m del 1

u e t 1

e 1

etraining

Page 18: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Iterative Retraining

12

for i =1:Ns1) Retrieve weights for subject i2) Retrain model for subject i3) Update compressed representation

e 1

...

d eig t m del 1

u e t 1 u e t 1

e 1

etraining

Page 19: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Iterative Retraining

12

for i =1:Ns1) Retrieve weights for subject i2) Retrain model for subject i3) Update compressed representation

e 2

...

d eig t m del 2

u e t 2 u e t 2

e 2

etraining

Page 20: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Iterative Retraining

12

for i =1:Ns1) Retrieve weights for subject i2) Retrain model for subject i3) Update compressed representation

e

...

d eig t m del

u e t u e t

e

etraining

Page 21: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Retraining recovers the performance on training set

13

Trai

nin

g M

iscl

assi

fica

tio

n

Retraining Iteration

1) Retrieve weights

2) Retrain model

3) Update compressed representation

Subject 1

Page 22: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Randomized subject ordering and hyperparameter selection improve iterative retraining▪ Randomized subject ordering

Change subject order after every retraining iteration

▪ Hyperparameter selection

▪ 5-fold cross-validation on training set

▪ Find best hyperparameters

▪ Batch size

▪ Number of epochs per iteration

▪ Learning rate

▪ Number of retraining iterations

14

Sub 1

Sub 2

Sub 9

Session 1 (Training & Validation)

Page 23: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Retraining recovers the misclassification on validation set

15

Validation misclassificationbefore compression

Page 24: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

With retraining we compress FC or Conv layer with no accuracy loss

16

1,000 weights 35,200 weights 11,040 weights

73.59

52.44

75.14 75.05

60.46

45

50

55

60

65

70

75

80

1 1.26 1.26 2.95 7.61

Acc

ura

cy [

%]

Compression Rate

Sup(FC)no retraining

Sup(FC) Sup(Conv)

Sup(FC + Conv)

1110

0 0

27 0 112 .

22

1110

0

22

Page 25: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Superposition even compresses tiny EEGNet

17

352 weights 512 weights 1,088 weights

1 0

1

272 112 .

22

112

22

1

2,464 weights

72.3274.73

45

50

55

60

65

70

75

80

1 1.9

Acc

ura

cy [

%]

Compression Rate

Sup(FC)

512 weights

Page 26: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Our compression improves both Shallow ConvNet and EEGNet

18

EEGNet Shallow ConvNet

3x

+1.46%

+2.41%

1.9x

Page 27: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

Conclusion

▪ Hyperdimensional superposition compresses already compact MI-BCI CNN models

▪ Iterative retraining recovers loss

▪ Compress two SoA light-weight networks

▪ Shallow ConvNet (47k weights) by 3x at 1.46% higher accuracy

▪ EEGNet (2.5k weights) by 1.9x at 2.41% higher accuracy

▪ Code is available!

19

https://github.com/MHersche/bci-model-superpos

Page 28: Compressing Subject-specific Brain-Computer Interface ... · Brain –Computer Interfaces (MI-BCIs) Why embedded embedded MI-BCI? User comfort Latency Security & privacy Long-term

22 April 2020

Compressing Subject-specific Brain-Computer Interface Models into One Model by Superposition in Hyperdimensional Space

Michael Hersche

Philipp Rupp

Luca Benini

Abbas Rahimi

Integrated Systems LaboratoryD-ITET ETH Zürich