Composites Intro

74
MMF42007 Komposit (PIL) Dr. Ir. Anne Zulfia MSc

description

Composites Introduction

Transcript of Composites Intro

Page 1: Composites Intro

MMF42007 Komposit (PIL)

Dr. Ir. Anne Zulfia MSc

Page 2: Composites Intro

Pengenalan Material Komposit

Page 3: Composites Intro

The world of materials

PE, PP, PCPA (Nylon)

Polymers,elastomers

Butyl rubberNeoprene

Polymer foamsMetal foams

FoamsCeramic foams

Glass foams

Woods

Naturalmaterials

Natural fibres:Hemp, Flax,

Cotton

GFRPCFRP

CompositesKFRP

Plywood

AluminaSi-Carbide

Ceramics,glasses

Soda-glassPyrex

SteelsCast ironsAl-alloys

MetalsCu-alloysNi-alloysTi-alloys

Page 4: Composites Intro
Page 5: Composites Intro

Pengertian Komposit

Komposit merupakan kombinasi dari dua material atau lebih yang memiliki fasa yang berbeda menjadi suatu material baru yang memiliki properti lebih baik dari keduanya.

Jika kombinasi ini terjadi dalam skala makroskopis maka disebut sebagai komposit.

Jika kombinasi ini terjadi secara mikoroskopis (molekular level) maka disebut sebagai alloy atau paduan.

Page 6: Composites Intro

Composites

Composites are formed from two or more types of materials. Examples include polymer/ceramic and metal/ceramic composites. Composites are used because overall properties of the composites are superior to those of the individual components. For example: polymer/ceramic composites have a greater modulus than the polymer component, but aren't as brittle as ceramics.

Page 7: Composites Intro

Composite materials – Introduction

• Definition: a material composed of 2 or more constituents– Reinforcement phase (e.g., Fibers)– Binder phase (e.g., compliant matrix)

• Advantages– High strength and stiffness– Low weight ratio– Material can be designed in addition to the structure

Page 8: Composites Intro

Two types of composites are:

 

Fiber Reinforced Composites

                                   

 

Particle Reinforced Composites

                                   

Page 9: Composites Intro

Particle reinforced composites support higher tensile, compressive and shear stresses.

                                                                                        

                                Figure 1. Examples for particle-reinforced composites.

(Spheroidized steel and automobile

Page 10: Composites Intro

The following are some of the reasons why composites are selected for certain applications:

High strength to weight ratio (low density high tensile strength)

 High creep resistance

 High tensile strength at elevated temperatures

 High toughness

Page 11: Composites Intro

Examples of Composites

• Natural– Wood

• flexible cellulose fibers held together with stiff lignin

– Bone• strong protein collagen and hard, brittle apatite

• Artificial (man-made)– constituent phases are chemically distinct

Page 12: Composites Intro

Definitions

• Composites often have only two phases

• Matrix phase – continuous - surrounds other phase

• Dispersed phase– discontinuous phase

Matrix (light)Dispersed phase (dark)

Page 13: Composites Intro

Objectives

• Definitions in composite materials– dispersed phase, matrix

• Structure of composites– particle-reinforced– fiber reinforced– structural composites

Page 14: Composites Intro

Introduction

• Engineering applications often require unusual combinations of properties– esp. aerospace, underwater, and transportation– can’t be achieved with a single material– e.g. - aerospace requires strong, stiff, light, and

abrasion resistant material• most strong, stiff materials are dense and

heavy• most light materials are not abrasion resistant

• Solution is in composite materials

Page 15: Composites Intro

Examples of Composites

• Natural– Wood

• flexible cellulose fibers held together with stiff lignin

– Bone• strong protein collagen and hard, brittle apatite

• Artificial (man-made)– constituent phases are chemically distinct

Page 16: Composites Intro

Classification of Artificial Composites

Composites

Particulate Fiber Structural

ContinuousDiscontinuous

Laminates SandwichPanels

LargeParticle

DispersionStrengthened

Aligned Random

Page 17: Composites Intro

Properties of Composites

Dependent on:

• constituent phases

• relative amounts

• geometry of dispersed phase– shape of particles– particle size– particle distribution– particle orientation

Page 18: Composites Intro

Composite Parameters

For a given matrix/dispersed phase system:

• Concentration

• Size

• Shape

• Distribution

• Orientation

Page 19: Composites Intro

Concentration

SizeShape

Distribution Orientation

ParametersParameters

Page 20: Composites Intro

Classification of Artificial Composites

Composites

Particulate Fiber Structural

ContinuousDiscontinuous

Laminates SandwichPanels

LargeParticle

DispersionStrengthened

Aligned Random

Page 21: Composites Intro

Partikel sebagai penguat (Particulate composites)

Large particleInteraksi antara partikel dan matrik terjadi tidak dalam skala atomik atau molekular

Partikel seharusnya berukuran kecil dan terdistribusi merata

Contoh dari large particle composit: cement dengan sand atau gravel, cement sebagai matriks dan sand sebagai partikel

Light Phase –Matrix (Cobalt)

Dark Phase-Particulate (WC

Page 22: Composites Intro

Particle-Reinforced Composites

• Divided into two classes– (based on strengthening mechanism)

• Large particle– interaction between particles and matrix

are not on the atomic or molecular level– particle/matrix interface strength is critical

• Dispersion strengthened– 0.01-0.1m particles– inhibit dislocation motion

Page 23: Composites Intro

Large Particle Composites

Examples:

• Some polymers with added fillers are really large particle composites

• Concrete (cement with sand or gravel)– cement is matrix, sand is particulate

Page 24: Composites Intro

CERMET Cutting Tool

Light phase - Matrix (Cobalt)

Dark phase- Particulate (WC)

Page 25: Composites Intro

Large Particle Composites

Desired Characteristics

• Particles should be approximately equiaxed

• Particles should be small and evenly distributed

• Volume fraction dependent on desired properties

Page 26: Composites Intro

Volume Fraction in Large Particle Composites

• Elastic modulus is dependent on the volume fraction

• “Rule of mixtures” equation– E- elastic modulus, V- volume fraction, m- matrix, p-

particulate

– upper bound

– lower bound

Ec EmVm EpVp

Ec EmEp

EpVm EmVp

Page 27: Composites Intro

Rule of Mixtures

conc. of particulatesE

- m

atrix

E -

par

ticul

ate

* **

**

*

*

Upper bound

Lower bound

ActualValues

Page 28: Composites Intro

Large-Particle Composite Materials

• All three material types– metals, ceramics, and polymers

• CERMET (ceramic-metal composite)– cemented carbide (WC, TiC embedded in Cu

or Ni)– cutting tools (ceramic hard particles to cut, but

a ductile metal matrix to withstand stresses)– large volume fractions are used (up to 90%!)

Page 29: Composites Intro

Large Particle CompositesConcrete

• Concrete is not cement)– Concrete is the composite of cement and an

aggregate (fine sand or coarse gravel)

• Reinforced concrete– a composite (large particle composite) - with a

matrix which is a composite– steel rods, wires, bars (rebar, sometimes

stretched elastically while concrete dries to put system in compression)

Page 30: Composites Intro

Dispersion Strengthened Composites

• Metals and metal alloys– hardened by uniform dispersion of fine particles of a very hard

material (usually ceramic)

• Strengthening occurs through the interactions of dislocations and the particulates

• Examples• Thoria in Ni

• Al/Al2O3 sintered aluminum powder SAP

• GP zones in Al

Page 31: Composites Intro

Classification of Artificial Composites

Composites

Particulate Fiber Structural

ContinuousDiscontinuous

Laminates SandwichPanels

LargeParticle

DispersionStrengthened

Aligned Random

Page 32: Composites Intro

Fiber sebagai reinforced

Fiber yang digunakan harus:

• Mempunyai diameter yang lebih kecil dari diameter bulknya (matriksnya) namun harus lebih kuat dari bulknya

• Harus mempunyai tensile strength yang tinggi

Page 33: Composites Intro

Matriks yang dipadukan dengan fiber berfungsi sebagai :

• Penjepit fiber• Melindungi fiber dari kerusakan permukaan• Pemisah antara fiber dan juga mencegah

timbulnya perambatan crack dari suatu fiber ke fiber lain

• Berfungsi sebagai medium dimana eksternal stress yang diaplikasikan ke komposit, ditransmisikan dan didistribusikan ke fiber.

Page 34: Composites Intro

Matriks yang digunakan harus :

• Ductility tinggi

• Memiliki modulus elastisitans lebih rendah daripada fiber

• Mempunyai ikatan yang bagus antara matriks dan fiber

• Biasanya secara umum yang digunakan adalah polimer dan logam

Page 35: Composites Intro

  a. Short(discontinuous) fiber reinforced composites

Aligned Random

b. Continuous fiber (long fiber) reinforced composites

Page 36: Composites Intro

Fiber yang biasa digunakan antara lain :

Fibers – Glass– Sangat umun digunakan, fiber yang murah adalah

glass fiber yang sering digunakan untuk reinforcement dalam matrik polimer

– Komposisi umum adalah 50 – 60 % SiO2 dan paduan lain yaitu Al, Ca, Mg, Na, dll.

– Moisture dapat mengurangi kekuatan dari glass fiber

– Glass fiber sangat rentan mengalami static fatik– Biasanya digunakan untuk: piping, tanks, boats,

alat-alat olah raga

Page 37: Composites Intro

Sifat-Sifatnya• Densitynya cukup rendah ( sekitar 2.55 g/cc)• Tensile strengthnya cukup tinggi (sekitar 1.8

GPa)• Biasanya stiffnessnya rendah (70GPa)• Stabilitas dimensinya baik• Resisten terhadap panas• Resisten terhadap dingin• Tahan korosi

Page 38: Composites Intro

Keuntungan :• Biaya murah• Tahan korosi• Biayanya relative lebih rendah dari komposit

lainnya

Kerugian• Kekuatannya relative rendah • Elongasi tinggi• Keuatan dan beratnya sedang (moderate)

Jenis-jenisnya antara lain :– E-Glass - electrical, cheaper– S-Glass - high strength

Page 39: Composites Intro

Fibers - Aramid (kevlar, Twaron) Biasanya digunakan untuk : Armor,

protective clothing, industrial, sporting goods

Keuntungan :kekutannya cukup tinggi, dan lebih ductile dari carbon

Page 40: Composites Intro

Carbon Fibers • Densitaskarbon cukup ringan yaitu sekitar 2.3

g/cc• Struktur grafit yang digunakan untuk membuat

fiber berbentuk seperti kristal intan.• Karakteristik komposit dengan serat karbon :

– ringan;– kekuatan yang sangat tinggi;– kekakuan (modulus elastisitas) tinggi.

• Diproduksi dari poliakrilonitril (PAN), melalui tiga tahap proses :

• Stabilisasi = peregangan dan oksidasi;• Karbonisasi= pemanasan untuk mengurangi O, H,

N;• Grafitisasi = meningkatkan modulus elastisitas.

Page 41: Composites Intro

Flat flakes sebagai penguat (Flake composites)

Fillers sebagai penguat (Filler composites)

Page 42: Composites Intro

Structurtal Composite

Page 43: Composites Intro

Fiber-Reinforced Composites

• Technologically, the most important type of composite

• Characterized in terms of specific strength or specific modulus = strength (or E) per weight– usually want to maximize specific strength

and modulus

• Subclasses:– Short fiber and continuous fiber lengths

Page 44: Composites Intro

Fiber PhaseRequirements for the fiber• The small diameter fiber must be much

stronger than the bulk material• High tensile strength

Different classifications• whiskers (single crystal - large aspect ratio)• fibers (polycrystalline or amorphous)• wires (large diameters - usually metal)

Page 45: Composites Intro

Matrix Phase

Function• Binds fibers together• Acts as a medium through which

externally applied stress is transmitted and distributed to the fibers

• Protects fiber from surface damage• Separates fibers and prevents a crack

from one fiber from propagating through another

Page 46: Composites Intro

Matrix Phase

Requirements• Ductile• Lower E than for fiber• Bonding forces between fiber and matrix

must be high– otherwise fiber will just “pull-out” of matrix

• Generally, only polymers and metals are used as matrix material (they are ductile)

Page 47: Composites Intro

Influence of Fiber Length• Mechanical properties depend on:

• mechanical properties of the fiber• how much load the matrix can transmit to the

fiber– depends on the interfacial bond between the fiber and

the matrix

• Critical fiber length - depends on• fiber diameter, fiber tensile strength• fiber/matrix bond strength

Page 48: Composites Intro

Influence of Fiber Length

• Critical fiber length - lc– “Continuous” fibers l >>

15 lc– “Short” fibers are anything

shorter 15 lc lc = fd/2c

where

d = fiber diameterc = fiber-matrix bond strengthf = fiber yield strength

No Reinforcement

Page 49: Composites Intro

Influence of Fiber Orientation

• Fiber parameters– arrangement with respect to each other– distribution– concentration

• Fiber orientation– parallel to each other– totally random– some combination

Page 50: Composites Intro

Influence of Fiber Orientation

• Stage I - elastic deformation with intermediate • Stage II - matrix yields• Failure - Non-catastrophic. When fibers fracture, you now have new fiber

length and matrix is still present

Page 51: Composites Intro

Aligned Fibers

• When fibers are aligned– properties of material are highly anisotropic– modulus in direction of alignment is a function

of the volume fraction of the E of the fiber and matrix

– modulus perpendicular to direction of alignment is considerably less (the fibers do not contribute)

Page 52: Composites Intro

Randomly Oriented Fibers

• Properties are isotropic– not dependent on direction

• Ultimate tensile strength is less than for aligned fibers

• May be desirable to sacrifice strength for the isotropic nature of the composite

Page 53: Composites Intro

Fiberglass Reinforced Composites

Glass is a common reinforcement

• it is easily drawn into fibers

• it is cheap and readily available

• it is easy to process into composites

• it can produce very strong, very light composites (high specific strength)

• it is usually chemically inert (does not degrade in harsh environments)

Page 54: Composites Intro

Elastic Behavior Derivation(Longitudinal Loading)

Consider longitudinal loading of continuous fibers, with good fiber/matrix bonding. under these conditions matrix strain = fiber strain (isostrain condition).

m = f = c

The total load on the composite, Fc, is then equal to loads carried by the matrix and the fibers

Fc = Fm + Ff

Substituting for the stresses

cAc = mAm + fAf

Rearranging

c = m Am/Ac + f Af /Ac

were Am /Ac and Af /Ac are the area fractions of matrix and fibers, respectively. If the fiber length are all equal than then these terms are equivalent to the volume fractions

Vf = Af /Ac & Vm = Am /Ac

c = m Vm + f V

Using the isostrain constraint and Hookes Law, = E

Ec EmVm Ef Vf

Can also show ratio of loadcarried by fiber and matrix:Ff/Fm = EfVf/EmVm

Fc = Ff + Fm

Page 55: Composites Intro

Elastic Behavior Derivation(Transverse Loading)

Consider transverse loading of continuous fibers, with good fiber/matrix bonding. under these conditions matrix strain = fiber strain (isostress condition).

m = f = c =

The total strain of the composite is given by

c = m Vm = f Vf

Using Hookes Law = E and the isostress constraint

Ec = (Em) Vm + (Ef) Vf

Dividing by , Algebraically this becomes

Ec EmE f

E f Vm EmV f

Page 56: Composites Intro

Volume Fraction in Fiber Composites

• Elastic modulus is dependent on the volume fraction of fibers

• “Rule of mixtures” equation (again)– E - elastic modulus, V- volume fraction, m- matrix, f- fiber– upper bound

– lower bound

Ec EmVm E fV f

Ec EmE f

E fVm EmV f

(iso-strain)(iso-strain)

(iso-stress)(iso-stress)

Page 57: Composites Intro

Rule of Mixtures

ActualValues

conc. of fibers

E-

mat

rix

E -

fib

er* *

*

**

*

*

Upper bound

Lower bound

(iso-strain)

(iso-stress)

Ec EmVm E fV f

EcEmE f

E fVm EmV f

Page 58: Composites Intro

Example

• Calculate the composite modulus for polyester reinforced with 60 vol% E-glass under iso-strain conditions.

• Epolyester = 6.9 x 103 MPa

• EE-glass = 72.4 x 10 3 MPa

Ec = (0.4)(6.9x103 MPa) + (0.6)(72.4x103 MPa) = 46.2 x 103 MPa

Page 59: Composites Intro

In Class Example

A continuous and aligned glass reinforced composite consists of 40 vol% glass fiber having E = 69 GPa and a polyester resin matrix, that when hardened, has E = 3.4 GPa.

a) Compute modulus of elasticity under longitudinal and transverse loading.

b) If the cross-sectional area is 250 mm2 and a stress of 50 MPa is applied longitudinally, compute magnitude of load carried by each the fiber and matrix phases.

c) Determine strain on each phase in c

Page 60: Composites Intro

Other Composite Properties

• In general, the rule of mixtures (for upper

and lower bounds) can be used for any

property Xc - thermal conductivity,

density, electrical conductivity…etc.

Xc = XmVm + XfVf

Xc = XmXf/(VmXf + VfVm)

Page 61: Composites Intro

Tensile Strength

• In longitudinal direction, the tensile strength is given by the equation below if we assume the fibers will fail before the matrix:

c = ’mVm + ’fVf

Page 62: Composites Intro

Discontinuous Fibers• Aligned

c =

fVf(1-lc/2l) + ’mVm for l > lc

c = (lc/d)Vf + ’

mVm for l < lc

• Random

Ec = KEfVf + EmVm where K ~ 0.1 to 0.6

3/8

1/5

Page 63: Composites Intro

Fiber and Matrix Phases • Fibers

• whiskers: flawless, large l/d ratio, very strong• fiber• wires

• Matrix– polymer or metal-matrix: used for their ductility

• bind fibers, transmits load to fibers• matrix should be more ductile, fiber should have higher E• matrix protects fibers from surface damage (cracks)• matrix prevents cracks propagating from one fiber to the next which could

cause catastrophic failure.

– ceramics-matrix: used to increase fracture toughness of ceramic

• Essential that Fiber-Matrix bond be strong

Page 64: Composites Intro

Fiber and Matrix Phases

Page 65: Composites Intro

Polymer-Matrix Composites • Fibers

• Glass Fiber - fiberglass

• Carbon fiber - graphitic and amorphous C

• Aramid fiber - Kevlar, highly linear polymer chain

• Matrix• polyester and vinyl esters - fiberglass

• epoxies - aerospace applications, stronger, resistant to moisture

• polyimides - high temperature

• high temperature thermoplastics - PEEK, PPS, PEI, aerospace

Page 66: Composites Intro

Metal Ceramic-Matrix Composites

Metal-Matrix Composites

Ceramic-Matrix Composites

Employed to increase the fracture toughness of the ceramic Example: Transformation toughened zirconia

Page 67: Composites Intro

Other Composites

Carbon-Carbon Composites carbon fiber in pyrolyzed carbon matrix high tensile strength and modulus at high temperature (2000ºC) low coefficient of thermal expansion high thermal conductivities low thermal shock potential Applications include; rocket motors, friction materials in aircraft, advanced turbine engine components, ablative shields for reentry vehicles

Hybrid composites two or more different kinds of fibers.

Page 68: Composites Intro

Classification of Artificial Composites

Composites

Particulate Fiber Structural

ContinuousDiscontinuous

Laminates SandwichPanels

LargeParticle

DispersionStrengthened

Aligned Random

Page 69: Composites Intro

Structural Composites

• Definition– composed of both homogeneous and

composite materials– properties depend on constituent materials

and on geometrical design of the elements

• Types– laminar composites– sandwich panels

Page 70: Composites Intro

Laminar Composites

• Two dimensional sheets or panels with a preferred high-strength direction

• Q. What is a natural example of this?

• A. Wood

• Q. What is a man made example

• A. Plywood - Layers are stacked and subsequently bonded together so that the high strength direction varies

Page 71: Composites Intro

Plywood

QuickTime™ and aGraphics decompressor

are needed to see this picture.

QuickTime™ and aCinepak decompressor

are needed to see this picture.

Page 72: Composites Intro

Sandwich Panels

• Two strong outer sheets (called faces) separated by a layer of less dense material or core (which has lower E and lower strength)

• Core– separates faces– resists deformation perpendicular to the

faces– often honeycomb structures

• Used in roofs, walls, wings

Page 73: Composites Intro

Sandwich Panel

Page 74: Composites Intro

Structurtal Composite