Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex...

42
Complex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J. Robert Buchanan Department of Mathematics 2010 J. Robert Buchanan Complex Numbers and Euler’s Identity

Transcript of Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex...

Page 1: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Complex Numbers and Euler’s IdentityMATH 171 Freshman Seminar for Mathematics Majors

J. Robert Buchanan

Department of Mathematics

2010

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 2: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Background

Easy: solve the equation 0 = 1 − z2.

0 = 1 − z2

= (1 − z)(1 + z)

1 = z or − 1 = z

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 3: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Background

Easy: solve the equation 0 = 1 − z2.

0 = 1 − z2

= (1 − z)(1 + z)

1 = z or − 1 = z

Not (as) easy: solve the equation 0 = 1 + z2.

0 = 1 + z2

= −1 − z2

= (√−1 − z)(−

√−1 + z)√

−1 = z or −√−1 = z

Define i =√−1, then z = ±i .

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 4: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Complex Numbers

Definition

A number of the form z = a + bi where a and b are realnumbers and i =

√−1 is called a complex number . If a = 0

and b 6= 0 so that z = bi , then z is called an imaginarynumber .

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 5: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Picturing Complex Numbers

z = a + bi

Ha,bL

x

i y

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 6: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Polar Representation (1 of 2)

z = reiθ

Ha,bL

Θ

r

x

i y

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 7: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Polar Representation (2 of 2)

z = a + bi = reiθ

where

θ = tan−1(

ba

)

and

r =

{√

a2 + b2 if a > 0,−√

a2 + b2 if a < 0.

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 8: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Examples (1 of 3)

Example

Find the polar representation of the following complex numbers.

−1 + i

2 − i

−3 − i

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 9: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Examples (2 of 3)

H-1,1L

H2,-1LH-3,-1L

x

i y

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 10: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Examples (3 of 3)

Example

Find the polar representation of the following complex numbers.

−1 + i = −√

2e−iπ/4

2 − i =√

5ei tan−1(−1/2) ≈√

5e−0.463648i

−3 − i = −√

10ei tan−1(1/3) ≈ −√

10e0.321751i

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 11: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Complex Arithmetic

If z1 = a + bi and z2 = c + di , then

z1 + z2 = (a + c) + (b + d)i

z1 − z2 = (a − c) + (b − d)i

z1z2 = (ac − bd) + (ad + bc)iz1

z2=

(ac + bd) + (bc − ad)ic2 + d2 ,

provided c2 + d2 6= 0.

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 12: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Complex Addition (1 of 3)

(−3 + 4i) + (5 − 2i) = 2 + 2i

z1

z2

H-3,4L

H5,-2L

x

i y

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 13: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Complex Addition (2 of 3)

(−3 + 4i) + (5 − 2i) = 2 + 2i

z1

z2

z1+z2

H-3,4L

H2,2L

H5,-2L

x

i y

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 14: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Complex Addition (3 of 3)

(−3 + 4i) + (5 − 2i) = 2 + 2i

z1

z2

z1+z2

H-3,4L

H2,2L

H5,-2L

z2

z1

x

i y

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 15: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Complex Multiplication

z1z2 = r1eiθ1r2eiθ2 = (r1r2)ei(θ1+θ2)

Θ1

r1Θ2r2r1r2

Θ1+Θ2

x

i y

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 16: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Challenge

Represent z = −1 = −1 + 0i in polar form.

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 17: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Challenge

Represent z = −1 = −1 + 0i in polar form.

Since r =√

(−1)2 + 02 = 1, then

−1 = eiπ.

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 18: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Challenge

Represent z = −1 = −1 + 0i in polar form.

Since r =√

(−1)2 + 02 = 1, then

−1 = eiπ.

Rearranging the equation above yields an equation relating fiveof the most important constants in mathematics.

eiπ + 1 = 0

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 19: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Euler’s Identity

eiθ = cos θ + i sin θ

Θ

r

r ei Θ=rHcosHΘL+ i sinHΘLL

x

i y

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 20: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Commemorative Stamp

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 21: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Complex Exponentiation

Use Euler’s Identity (eiθ = cos θ + i sin θ) to

express z = i in polar form, and

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 22: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Complex Exponentiation

Use Euler’s Identity (eiθ = cos θ + i sin θ) to

express z = i in polar form, and

evaluate i i .

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 23: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Infinite Series

In Calculus II you will learn to express the function ex as theinfinite series :

ex = 1 +x1!

+x2

2!+

x3

3!+ · · ·

where n! = (1)(2)(3) · · · (n).

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 24: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Infinite Series

In Calculus II you will learn to express the function ex as theinfinite series :

ex = 1 +x1!

+x2

2!+

x3

3!+ · · ·

where n! = (1)(2)(3) · · · (n).

This infinite series holds for real and complex values of x .

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 25: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Infinite Series

In Calculus II you will learn to express the function ex as theinfinite series :

ex = 1 +x1!

+x2

2!+

x3

3!+ · · ·

where n! = (1)(2)(3) · · · (n).

This infinite series holds for real and complex values of x .

For example,

−1 = eiπ = 1 +iπ1!

+(iπ)2

2!+

(iπ)3

3!+ · · ·

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 26: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Expressing eiπ as a Series

−1 = 1 +iπ1!

+(iπ)2

2!+

(iπ)3

3!+

(iπ)4

4!+

(iπ)5

5!+ · · ·

= 1 + iπ − π2

2− i

π3

6+

π4

24+ i

π5

120− · · ·

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 27: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Expressing eiπ as a Series

−1 = 1 +iπ1!

+(iπ)2

2!+

(iπ)3

3!+

(iπ)4

4!+

(iπ)5

5!+ · · ·

= 1 + iπ − π2

2− i

π3

6+

π4

24+ i

π5

120− · · ·

Note: the series consists of alternating real and purelyimaginary terms.

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 28: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Expressing the Series for eiπ as a Graph

−1 = 1 + iπ − π2

2− i

π3

6+

π4

24+ i

π5

120− · · ·

-4 -3 -2 -1 1x

-2

-1

1

2

3

i y

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 29: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Quadratic Map

Suppose f (z) = z2 + c where z and c can be complexnumbers.Similar to the Newton’s Method formula we may iterate thequadratic function f (z).Starting with z0 we define

zn = f (zn−1) = z2n−1 + c

for n = 1, 2, . . ..

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 30: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Quadratic Map

Suppose f (z) = z2 + c where z and c can be complexnumbers.Similar to the Newton’s Method formula we may iterate thequadratic function f (z).Starting with z0 we define

zn = f (zn−1) = z2n−1 + c

for n = 1, 2, . . ..

For example, if z0 = 0 and c = 12 i then

z1 =12

i

z2 = −14

+12

i

z3 = − 316

+14

i

...

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 31: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Quadratic Map (Graph)

-0.25 -0.20 -0.15 -0.10 -0.05x

0.1

0.2

0.3

0.4

0.5

i y

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 32: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

General Exponentiation

Suppose x and y are two real numbers and suppose y > x > 0.

Question: which is larger xy or yx ?

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 33: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

General Exponentiation

Suppose x and y are two real numbers and suppose y > x > 0.

Question: which is larger xy or yx ?

Remember one of our principles of mathematical inquiry, trysome examples in order to gain insight into a complicatedquestion.

Let x = 2 and try y = 3, y = 4, and y = 5.

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 34: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Equality (1 of 3)

Since for some choices of 0 < x < y ,

xy > yx

while for othersxy < yx

we may be curious about when xy = yx .

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 35: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Equality (2 of 3)

xy = yx

ln(xy ) = ln(yx )

y ln x = x ln y

Since y > x > 0 then y = kx where k > 1. Substitute this intothe last equation above and solve for x and y in terms of k .

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 36: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Equality (3 of 3)

For k > 1,

x = k1/(k−1)

y = kk/(k−1).

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7

2.8

3.0

3.2

3.4

3.6

3.8

4.0

x

y

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 37: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Limits as k → 1+

Use l’Hôpital’s Rule to find

limk→1+

x = limk→1+

k1/(k−1)

limk→1+

y = limk→1+

kk/(k−1).

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 38: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Limits as k → 1+

Use l’Hôpital’s Rule to find

limk→1+

x = limk→1+

k1/(k−1)

limk→1+

y = limk→1+

kk/(k−1).

limk→1+

k1/(k−1) = e

limk→1+

kk/(k−1) = e

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 39: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Summary

x=yxy=yx

He,eL

HemptyL y<x

yx>xy

xy>yx

0 1 2 3 4 5 6

0

1

2

3

4

5

6

x

y

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 40: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Students and Complex Numbers

Student c Student cBacchi −11

8 + i j8 Bongiovanni −5

4 + i j8

Cilladi −98 + i j

8 Cox −1 + i j8

Crider −78 + i j

8 de Kok −34 + i j

8Hansford −5

8 + i j8 Hild −1

2 + i j8

Junkin −38 + i j

8 Keglovits −14 + i j

8Kibler −1

8 + i j8 Konowal 1

8 + i j8

Leber 14 + i j

8 Longo 38 + i j

8Mecutchen 1

2 + i j8 Miller, B 5

8 + i j8

Miller, S 34 + i j

8 Nguyen 78 + i j

8Reed 1 + i j

8 Smeltz 98 + i j

8Starner 5

4 + i j8 Visek 11

8 + i j8

Williard 32 + i j

8 Zipko 138 + i j

8

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 41: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Results

Name:

c =

Results:

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

J. Robert Buchanan Complex Numbers and Euler’s Identity

Page 42: Complex Numbers and Euler’s Identitybanach.millersville.edu/~bob/math171/Complex/main.pdfComplex Numbers and Euler’s Identity MATH 171 Freshman Seminar for Mathematics Majors J.

Homework

Referring to the polygonal spiral approaching −1 on slide28, find the total length of the spiral.

For the complex number c you have been assigned andstarting with z0 = 0 iterate the quadratic map f (z) = z2 + cten times (or less if r =

√a2 + b2 > 2) for j = 1, 2, . . . , 24.

If all the iterates of the quadratic map have a magnitude ofless than 2 record a result of 1, else record a result of 0.

J. Robert Buchanan Complex Numbers and Euler’s Identity