Complex numbers

12
Introduction to complex numbers wikimedia

description

Imaginary and complex numbers, real & imaginary part, norm, operations with complex numbers

Transcript of Complex numbers

Page 1: Complex numbers

Introduction to complex numbers

wikimedia

Page 2: Complex numbers

Complex numbers

Introduction to complex numbers 2

Imagine a new number 𝑖 with the property 𝑖2 = βˆ’1

The set π‘Ÿ βˆ™ 𝑖 π‘Ÿ ∈ ℝ is called the set of imaginary numbers 𝕀

ℝ ∩ 𝕀 = 0

ℝ βŠ— 𝕀 = β„‚

β„‚ is the set of complex numbers. It is the cartesian product of ℝ and 𝕀.This means that each element of β„‚ consists 2 numbers: a real number coupled to an imaginary number.

It can be written as a coordinate pair : z = π‘₯, 𝑦 with π‘₯, 𝑦 ∈ ℝ

It is customary to write as a sum: 𝑧 = π‘₯ + 𝑖𝑦 with π‘₯, 𝑦 ∈ ℝ

Page 3: Complex numbers

Real & Imaginary part

Introduction to complex numbers 3

𝑧 = π‘₯ + 𝑖𝑦 is a complex number

With …a real part 𝑅𝑒 𝑧 = π‘₯an imaginary part Im 𝑧 = 𝑦 𝑧1

𝑧2

Example

Real axis

Imaginary axis

Complex plane

𝑅𝑒 𝑧1 = 2 πΌπ‘š 𝑧1 = 2

𝑅𝑒 𝑧2 = 3 πΌπ‘š 𝑧2 = βˆ’4

Page 4: Complex numbers

Multiplication with a real number

Introduction to complex numbers 4

𝑧

𝑧 = π‘₯ + 𝑖𝑦 ∈ β„‚

π‘Ÿ ∈ ℝ

π‘Ÿ βˆ™ 𝑧 = π‘Ÿ βˆ™ π‘₯ + 𝑖𝑦 = π‘Ÿπ‘₯ + π‘–π‘Ÿπ‘¦ 3𝑧

Page 5: Complex numbers

Norm

Introduction to complex numbers 5

𝑧 = π‘₯ + 𝑖𝑦

𝑧1

𝑧2

Example

𝑧 = π‘₯2 + 𝑦2

The norm of a complex nr is a measure of its magnitude.It equals the distance from the origin.

𝑧1 = 22 + 22 = 2 2

𝑧2 = 32 + 42 = 5

5

Page 6: Complex numbers

Addition

Introduction to complex numbers 6

𝑧1 = π‘₯1 + 𝑖𝑦1 𝑧2 = π‘₯2 + 𝑖𝑦2

𝑧1 + 𝑧2 = π‘₯1 + 𝑖𝑦1 + π‘₯2 + 𝑖𝑦2

𝑧1 + 𝑧2 = π‘₯1 + π‘₯2 + 𝑖 𝑦1 + 𝑦2 𝑧1

𝑧2

𝑧1 + 𝑧2

Compare head-to-tail method

in physics

Page 7: Complex numbers

Subtraction

Introduction to complex numbers 7

𝑧1 = π‘₯1 + 𝑖𝑦1 𝑧2 = π‘₯2 + 𝑖𝑦2

𝑧1

𝑧2

𝑧1 βˆ’ 𝑧2 = π‘₯1 βˆ’ π‘₯2 + 𝑖 𝑦1 βˆ’ 𝑦2

𝑧1 βˆ’ 𝑧2 = π‘₯1 + 𝑖𝑦1 βˆ’ π‘₯2 + 𝑖𝑦2 𝑧1 βˆ’ 𝑧2

𝑧2 βˆ’ 𝑧1

Compare difference

vector in physics

Page 8: Complex numbers

Multiplication

Introduction to complex numbers 8

𝑧1 = π‘₯1 + 𝑖𝑦1 𝑧2 = π‘₯2 + 𝑖𝑦2

𝑧1 βˆ™ 𝑧2 = π‘₯1 + 𝑖𝑦1 βˆ™ π‘₯2 + 𝑖𝑦2

𝑧1 βˆ™ 𝑧2 = π‘₯1π‘₯2 + 𝑖π‘₯1𝑦2 + 𝑖𝑦1π‘₯2 + 𝑖2𝑦1𝑦2 𝑧1

𝑧2

𝑧1 βˆ™ 𝑧2

𝑧1 βˆ™ 𝑧2 = π‘₯1π‘₯2 + 𝑖π‘₯1𝑦2 + 𝑖𝑦1π‘₯2 βˆ’ 𝑦1𝑦2

𝑧1 βˆ™ 𝑧2 = π‘₯1π‘₯2 βˆ’ 𝑦1𝑦2 + 𝑖 π‘₯1𝑦2 + π‘₯2𝑦1

2 + 2𝑖 βˆ™ 1 βˆ’ 2𝑖 = 2 βˆ™ 1 βˆ’ 2 βˆ™ βˆ’2 + 𝑖 2 βˆ™ βˆ’2 + 1 βˆ™ 2 = 6 βˆ’ 2𝑖

Example

Page 9: Complex numbers

Complex conjugate

Introduction to complex numbers 9

𝑧 = π‘₯ + 𝑖𝑦

𝑧1

𝑧2βˆ—

Example

The conjugate of a complex nr has a reversed imaginary part.

π‘§βˆ— = π‘₯ βˆ’ 𝑖𝑦

𝑧1βˆ—

𝑧2

βˆ’2 + 2𝑖 βˆ— = βˆ’2 βˆ’ 2𝑖

3 βˆ’ 4𝑖 βˆ— = 3 + 4𝑖

Note:

1: π‘§βˆ— βˆ— = 𝑧2: if π‘§βˆ— = 𝑧 then 𝑧 ∈ ℝ

Page 10: Complex numbers

Complex conjugate & Norm

Introduction to complex numbers 10

𝑧 = π‘₯ + π‘–π‘¦π‘§βˆ—

π‘§βˆ— = π‘₯ βˆ’ 𝑖𝑦

𝑧

𝑧 βˆ™ π‘§βˆ— = π‘₯ + 𝑖𝑦 βˆ™ π‘₯ βˆ’ 𝑖𝑦

𝑧 βˆ™ π‘§βˆ— = π‘₯2 βˆ’ 𝑖π‘₯𝑦 + 𝑖𝑦π‘₯ + 𝑖𝑦 βˆ’π‘–π‘¦

𝑧 βˆ™ π‘§βˆ— = π‘₯2 + 𝑖 βˆ’π‘– 𝑦2

𝑧 βˆ™ π‘§βˆ— = π‘₯2 + 𝑦2

𝑧 βˆ™ π‘§βˆ— = 𝑧 2

Page 11: Complex numbers

Division

Introduction to complex numbers 11

𝑧1 = π‘₯1 + 𝑖𝑦1 𝑧2 = π‘₯2 + 𝑖𝑦2

𝑧1

𝑧2

𝑧1

𝑧2

𝑧1𝑧2

=𝑧1𝑧2

βˆ™π‘§2βˆ—

𝑧2βˆ— =

𝑧1 βˆ™ 𝑧2βˆ—

𝑧22

Example

3 + 2𝑖

1 βˆ’ 𝑖=

3 + 2𝑖 βˆ™ 1 + 𝑖

1 βˆ’ 𝑖 2=

3 βˆ’ 2 + 𝑖 3 + 2

2=

1

2+ 2

1

2𝑖

1 βˆ’ 𝑖

3 + 2𝑖=

1 βˆ’ 𝑖 βˆ™ 3 βˆ’ 2𝑖

3 + 2𝑖 2=

3 βˆ’ 2 + 𝑖 3 + 2

13=

1

13+

5

13𝑖

𝑧2

𝑧1

Page 12: Complex numbers

END

Introduction to complex numbers 12

DisclaimerThis document is meant to be apprehended through professional teacher mediation (β€˜live in class’) together with a mathematics text book, preferably on IB level.