COMPLEX NETWORK MODELLING AND ANALYSIS BY HAFIZ …

24
COMPLEX NETWORK MODELLING AND ANALYSIS OF DENGUE EPIDEMIC IN SELANGOR, MALAYSIA BY HAFIZ ABID MAHMOOD MALIK A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy in Computer Science Kuliyyah of Information and Communication Technology International Islamic University Malaysia OCTOBER 2016

Transcript of COMPLEX NETWORK MODELLING AND ANALYSIS BY HAFIZ …

COMPLEX NETWORK MODELLING AND ANALYSIS

OF DENGUE EPIDEMIC IN SELANGOR, MALAYSIA

BY

HAFIZ ABID MAHMOOD MALIK

A thesis submitted in fulfilment of the requirement for the

degree of Doctor of Philosophy in Computer Science

Kuliyyah of Information and Communication Technology

International Islamic University Malaysia

OCTOBER 2016

ii

ABSTRACT

There are many examples of complex systems in the world from different domains of

life. For instance, the World Wide Web, electric power grids, scientific collaboration

networks, social network of friendships, and network of diseases such as HIV/AIDS.

These systems can be better analyzed by converting them into complex networks.

Mostly, complex networks are dynamic in natures which grow by adding new links

and nodes. Nodes can represent elements of the systems and links depicts the

interacting patterns between these elements. The dengue epidemic is a dynamic and

complex phenomenon which has gained much attention due to its harmful effects that

sometimes become a cause of death of a person. This problem is difficult to

understand by just observing separate components which constitute this network. For

this, modelling the way these units are interconnected with each other can enhance the

understanding towards this epidemic as a whole. In this study, the dengue spreading

phenomenon is addressed from the perspective of complex network and modelled

using the dataset of weekly dengue affected cases in Selangor, Malaysia using scale-

free network theory. Further, the dengue epidemic network is formalized and analyzed

by projecting it from two-mode to one-mode network using three projection methods.

Various network analysis metrics have been utilized in this study (such as: Closeness

centrality, Betweenness centrality, Degree measures, Short path-length, and

Eigenvector centrality). It is believed that this modelling and analysis will

considerably help to comprehend the complex nature of the dengue epidemic network.

This research reveals the focal nodes of the dengue virus, and the most crucial time is

also highlighted when dengue virus is on its peak. Furthermore, we mathematically

modelled the influence of the external and internal factors which become the cause of

the dengue virus diffusion, and some exogenous factors have been shown that

supressed the Aedes aegypti (dengue vector) network. Moreover, results showed that

the dengue epidemic network comprises a scale-free network features which negates

the theory of randomness. So, proper precautionary measures can be taken to prevent

or reduce this disease. All the outcomes are valuable for the health officials and

decision makers who deal with the epidemics.

iii

خلاصة البحث

هناك أمثلة كثيرة من الأنظمة المعقدة في العالم من مختلف مجالات الحياة. على سبيل المثال: الشبكة العالمية للانترنت، وشبكات الطاقة الكهربائية، وشبكات التعاون العلمي، والشبكة الاجتماعية من

م يمكن تحليلها بشكل الصداقات، وشبكة الأمراض مثل فيروس نقص المناعة البشرية / الإيدز. هذه النظأفضل عن طريق تحويلها إلى شبكات معقدة. في الغالب فإن الشبكات المعقدة هي حيوية في الطبيعة التي تنمو فيها وذلك عن طريق إضافة وصلات وعقد جديدة. يمكن للعقد ان تمثل عناصر النظم، بينما

الضنك ظاهرة ديناميكية ومعقدة حيث تصور الروابط أنماط التفاعل بين هذه العناصر. يعتبر وباء حمىاكتسب الكثير من الاهتمام نظرا لآثاره الضارة التي تصبح أحيانا سببا في الوفاة. انهاء مثل هذه المشكلة لا يمكن أن تتم عبر مراقبة طريقة انتشارها. لهذا، فإن معرفة نموذج شبكة انتشار الوباء وترابط وحدات

أن تعزز الفهم تجاه هذا الوباء ككل. في هذه الدراسة، تم التعامل مع الشبكة مع بعضها البعض يمكن ظاهرة انتشار حمى الضنك ونمذجتها من وجهة نظر شبكة معقدة باستخدام قاعدة بيانات باستخدام

النطاق. وتم أخذ العينات من حالات حمى الضنك الأسبوعية المتكررة في ولاية -نظرية الشبكة خاليةزيا. علاوة على ذلك، تم تكوين شبكة وباء حمى الضنك وتحليلها من خلال اسقاطه من سيلانجورفي مالي

اثنين باستخدام ثلاث طرق إسقاط. تم استخدام مختلف مقاييس تحليل -واحد الى وضع-شبكة وضع، مركزية البين (Closeness centrality)الشبكة في هذه الدراسة )مثل: مركزية التقارب

(Betweenness centrality) ودرجة المقاييس ،(Degree measures) قصر طول المسار ،(Short path-length) والمتجه الذاتي المركزي ،(Eigenvector centrality) يعتقد أن هذه .

النمذجة والتحليل سوف تساعد بشكل كبير في فهم الطبيعة المعقدة لشبكة وباء حمى الضنك. يكشف لفيروس حمى الضنك، وسلط الضوء على الوقت الأكثر أهمية أيضا عندما هذا البحث العقد المحورية

يكون فيروس حمى الضنك في ذروته. علاوة على ذلك، قمنا بصياغة طريقة رياضية لتأثير العوامل الخارجية والداخلية التي أصبحت سببا في انتشار فيروس حمى الضنك، كما أظهرت بعض العوامل

اضافة الى ذلك، أظهرت النتائج أن شبكة وباء حمى الضنك تضم ميزات الخارجية لحمى الضنك. المجاني وهذا ينفي نظرية العشوائية. لذلك، يمكن اتخاذ تدابير وقائية مناسبة لمنع أو الحد -شبكة النطاق

من هذا المرض. أخيراً تعتبر هذه النتائج مفيدة وقيمة للعاملين في مجال الصحة وصناع القرار الذين املون مع الأوبئة.يتع

iv

APROVAL PAGE

The thesis of Hafiz Abid Mahmood Malik has been approved by the following:

_____________________________

Mohamed Ridza Wahiddin

Supervisor

_____________________________

Asadullah Shah

Internal Examiner

_____________________________

Stanislaw Chwirot

External Examiner

_____________________________

Tahir Ahmad

External Examiner

_____________________________

Noor Mohammad Osmani

Chairman

v

DECLARATION

I hereby declare that this thesis is the result of my own investigations, except

where otherwise stated. I also declare that it has not been previously or concurrently

submitted as a whole for any other degrees at IIUM or other institutions.

Hafiz Abid Mahmood Malik

Signature ........................................................... Date .........................................

vi

COPYRIGHT

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF

FAIR USE OF UNPUBLISHED RESEARCH

COMPLEX NETWORK MODELLING AND ANALYSIS OF

DENGUE EPIDEMIC IN SELANGOR, MALAYSIA

I declare that the copyright holder of this thesis is Hafiz Abid Mahmood Malik

Copyright © 2016 Hafiz Abid Mahmood Malik. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system,

or transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording or otherwise without prior written permission of the copyright holder

except as provided below

1. Any material contained in or derived from this unpublished research may

be used by others in their writing with due acknowledgement.

2. IIUM or its library will have the right to make and transmit copies (print

or electronic) for institutional and academic purposes.

3. The IIUM library will have the right to make, store in a retrieved system

and supply copies of this unpublished research if requested by other

universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM

Intellectual Property Right and Commercialization policy.

Affirmed by Hafiz Abid Mahmood Malik

……..…………………….. ………………………..

Signature Date

DEDICATION

vii

I dedicate this thesis to my loving parents, my beloved wife and my lovely daughter

Arisha Abid for their prayers, love, support and patience.

viii

ACKNOWLEDGEMENTS

All praises for ALLAH, Who bestowed me the courage and power of brain to

accomplish this goal.

I would like to thank my brothers and elder sister who always prayed for my

success to achieve this goal.

A very special thanks to my supervisor Professor Dr. Mohamed Ridza

Wahiddin for his untiring efforts, support, encouragement and leadership, and for that,

I will be forever grateful.

I wish to express my appreciation and thanks to my friends Dr. Abdul Waheed,

Dr. Ahmad Waqas, Dr. Zeeshan Bhatti, Dr. Nadeem Mahmood and Abdul Rehman

Gilal who were always ready to help me. Many thanks to the members of my thesis

evaluation committee. May ALLAH shower His blessings on all of my well-wishers.

ix

TABLE OF CONTENTS

Abstract .................................................................................................................... ii Abstract in Arabic .................................................................................................... iii Aproval Page ............................................................................................................ iv

Declaration ............................................................................................................... v Copyright ................................................................................................................. vi Dedication ................................................................................................................ vi Acknowledgement ................................................................................................... viii Table of Contents ..................................................................................................... ix

List of Tables ........................................................................................................... xii List of Figures .......................................................................................................... xiii

List of Symbols ........................................................................................................ xvii

List of Abbreviations ............................................................................................... xviii

CHAPTER ONE: INTRODUCTION .................................................................. 1 1.1 Background Of The Study ...................................................................... 1

1.2 Dengue Epidemic.................................................................................... 2 1.3 Dengue Virus Transmission ................................................................... 4

1.4 Problem Background (Dengue Issue In Malaysia) ................................. 5 1.5 Motivation To This Work ....................................................................... 8 1.6 Problem Statement .................................................................................. 10

1.7 Research Scope ....................................................................................... 10 1.8 Research Hypothesis ............................................................................... 11

1.9 Research Aims and Objectives ............................................................... 11

1.10 Research Questions ............................................................................... 11

1.11 Significance Of The Study.................................................................... 12 1.12 Research Methodology and Process ..................................................... 12

1.13 Thesis Contribution .............................................................................. 13 1.14 Simulation Tool Used In The Research ................................................ 14

1.15 Organization Of Thesis ......................................................................... 16 1.16 Chapter Summary ................................................................................. 18

CHAPTER TWO: LITERATURE REVIEW ..................................................... 19 2.1 Theoretical Background.......................................................................... 19

2.1.1 Introduction ................................................................................... 19 2.1.2 Graph Theory ................................................................................ 19 2.1.3 Complex Network Models ............................................................ 20

2.1.4 The Small-World Effect ................................................................ 20 2.1.5 The Random Graph Theory: Paul Erdös and Alfred Renyi .......... 21 2.1.6 WS small-world Model (1998) ..................................................... 22 2.1.7 Scale-Free Network (SFN) - Barabasi and Albert Model

(1999)............................................................................................ 23 2.2 Network Analysis Metrics ...................................................................... 26

2.2.1 Adjacency Matrix .......................................................................... 26 2.2.2 Degree Of Node ............................................................................ 28 2.2.3 Node Centrality ............................................................................. 28

x

2.2.4 Degree Centrality Of Node ........................................................... 29

2.2.5 Distance / Short Path-Length ........................................................ 31 2.2.6 Closeness Centrality ...................................................................... 33

2.2.7 Betweenness Centrality ................................................................. 34 2.2.8 Eigenvector Centrality .................................................................. 35 2.2.9 Density Of Network ...................................................................... 37 2.2.10 Clustering Coefficient ................................................................. 37

2.3 Related Work .......................................................................................... 39

2.3.1 Introduction ................................................................................... 39 2.3.2 The SIR (Susceptible Infected Removed) model .......................... 40 2.3.3 The SIS (Susceptible Infected Susceptible) model ....................... 41

2.4 Chapter Summary ................................................................................... 43

CHAPTER THREE: MODELLING THE DENGUE EPIDEMIC

NETWORK ............................................................................................................ 45 3.1 Introduction............................................................................................. 45 3.2 Network And Its Types ........................................................................... 45

3.2.1 Static And Dynamic Networks ..................................................... 46 3.2.2 Directed And Undirected Networks .............................................. 46

3.2.3 Weighted And Un-Weighted Networks ........................................ 46 3.2.4 Bipartite And Uni-Partite Networks ............................................. 47

3.3 Attribute Analysis Of The Dataset ......................................................... 48 3.4 Two-Mode Network ............................................................................... 50 3.5 Modelling The Dengue Epidemic As Two-Mode Network ................... 51

3.6 Types Of Projection For Two-Mode Weighted Network ....................... 54 3.7 Chapter Summary ................................................................................... 57

CHAPTER FOUR: NETWORK ANALYSIS OF THE DENGUE

EPIDEMIC ............................................................................................................. 58 4.1 Introduction............................................................................................. 58 4.2 One-Mode Degree, Two-Mode Degree And Strength Of Nodes ........... 58

4.3 Closeness Centrality In the Dengue Network ......................................... 65

4.4 Betweenness Centrality .......................................................................... 69 4.5 Eigenvector Centrality ............................................................................ 72 4.6 Distance / Short path-length ................................................................... 74 4.7 Clustering Coefficient ............................................................................. 76 4.8 Network Projection From Node Perspective .......................................... 78

4.9 Density Of The Network ........................................................................ 80 4.10 Scale-Free Features Of The Dengue Epidemic Network ..................... 83 4.11 Chapter Summary ................................................................................. 92

CHAPTER FIVE: ROBUSTNESS OF THE DENGUE COMPLEX

NETWORK UNDER TARGETED VERSUS RANDOM ATTACK ............... 94 5.1 Introduction............................................................................................. 94

5.2 Node Removal ........................................................................................ 95 5.3 Random Versus Targeted Attacks .......................................................... 96 5.4 Robustness Of Network Under Links Removal ..................................... 97 5.5 Result Analysis On Targeted versus Random Removal ......................... 98 5.6 Central Node Identification And Its Removal Impact ............................ 104

xi

5.7 Representation Of Nodes On Real Map ................................................. 107

5.8 Chapter Summary ................................................................................... 111

CHAPTER SIX: INFLUENCE OF INTERNAL AND EXTERNAL

FACTORS IN THE DENGUE EPIDEMIC NETWORK .................................. 113 6.1 Introduction............................................................................................. 113 6.2 Possible Causes Of the Dengue Virus Diffusion .................................... 113

6.2.1 Scenario 1 ...................................................................................... 113

6.2.2 Scenario 2 ...................................................................................... 116 6.3 Modelling The Infection Influence ......................................................... 117

6.3.1 Modelling The Internal Exposures ................................................ 119 6.3.2 Modelling The External Exposures............................................... 120 6.3.3 Modelling The Exposure Curve .................................................... 122

6.4 Results And Discussions ........................................................................ 123

6.5 Chapter Summary ................................................................................... 127

CHAPTER SEVEN: CONCLUSION AND FUTURE WORK ......................... 129 7.1 Introduction............................................................................................. 129

7.1.1 Innovative Aspect Of The Study ................................................... 129

7.2 Summary Of Findings ............................................................................ 130 7.2.1 Highlights And Brief Discussion On Network Analysis .............. 130

7.2.2 Highlights And Brief Discussion On Robustness Analysis .......... 134 7.2.3 Highlights And Brief Discussion On Internal and External

Influence Analysis ........................................................................ 136

7.3 Answer To The Research Questions Of The Study ................................ 137 7.3.1 Appropriate Network Analysis Metrics And Projection

Method .......................................................................................... 137 7.3.2 Scale-Free Network Topology ...................................................... 138

7.3.3 Influence Of External Factors In The Dengue Epidemic

Network ........................................................................................ 138 7.3.4 Immunization Effect On The Focal Hubs ..................................... 139

7.4 Practical Implications Of The Research ................................................. 139

7.5 Conclusion .............................................................................................. 139 7.6 Limitations Of The Study ....................................................................... 140

7.6.1 Dataset ........................................................................................... 140 7.6.2 R-Project Tool ............................................................................... 141 7.6.3 Mathematical Model ..................................................................... 141

7.6.4 Clustering Coefficient ................................................................... 141 7.7 Future Work ............................................................................................ 141

REFERENCES ...................................................................................................... 143

APPENDIX A ......................................................................................................... 150 APPENDIX B ......................................................................................................... 167

APPENDIX C ......................................................................................................... 171

xii

LIST OF TABLES

Table ‎2.1 Different methods of defining triplet values 38

Table ‎3.1 Dengue cases in Selangor (2013-2014) 48

Table ‎4.1 The distance between nodes using weighted Newman method 75

Table ‎4.2 The distance between nodes using Sum method 75

Table ‎4.3 Clustering coefficient of dengue cases in Selangor 77

Table ‎4.4 Power-law exponent of few real-world networks 83

Table ‎5.1 Centrality scores when different values of ∝ are used. 98

Table ‎5.2 Fifteen percent random removal effect of links 99

Table ‎5.3 Targeted link removal effect 100

Table ‎5.4 Targeted 5% versus random removal of links up to 65% 103

Table ‎5.5 Score of four centrality measures 106

xiii

LIST OF FIGURES

Figure ‎1.1 Dengue affected areas in the world 3

Figure ‎1.2 Aedes aegypti 3

Figure ‎1.3 Transmission of Dengue virus 5

Figure ‎1.4 Number of cases and incidence rate of dengue fever in Malaysia

(2008-2012). Source: Ministry of Health, Malaysia (2014) 6

Figure ‎1.5 Number of infected cases in different weeks during 2012-2014. 6

Figure ‎1.6 Dengue comparison from 1995-2015 7

Figure ‎1.7 Dengue incidence rate state-wise in Malaysia 8

Figure ‎1.8 Research Process 13

Figure ‎1.9 Screen shot of R-Project IDE 15

Figure ‎1.10 Screen shot of IGOR Pro 16

Figure ‎2.1 Bridge problem 20

Figure ‎2.2 Evolution of a Random Graph 21

Figure ‎2.3 Rewiring of links 22

Figure ‎2.4 Random Distribution vs Power-law Distribution 24

Figure ‎2.5 Birth of Scale-free Network 25

Figure ‎2.6 Scale-free Network 26

Figure ‎2.7 An example of undirected network 27

Figure ‎2.8 Node centrality 28

Figure ‎2.9 Degree centrality 29

Figure ‎2.10 Weighted degree centrality 30

Figure ‎2.11 Closeness centrality 33

Figure ‎2.12 Betweenness centrality 34

Figure ‎2.13 Eigenvector centrality (EvC) 36

Figure ‎3.1 A simple network 45

xiv

Figure ‎3.2 Examples of various types of networks 47

Figure ‎3.3 State-wise map of Malaysia 49

Figure ‎3.4 An example of Two-mode network 51

Figure ‎3.5 Projection of Two-mode network into One-mode network 52

Figure ‎3.6 Two-mode network of dengue cases and weeks 53

Figure ‎3.7 The projected one-mode network of the two-mode dengue network

from localities perspective shown in Figure ‎3.6 53

Figure ‎3.8 The two-mode network of dengue with weighted links 56

Figure ‎3.9 The projected network of dengue where localities are primary nodes

after applying the Sum method 56

Figure ‎4.1 Result of two-mode degree 59

Figure ‎4.2 Results of one-mode degree by using three projection methods 60

Figure ‎4.3 Degree of nodes using weighted Newman method 61

Figure ‎4.4 Strength of nodes of Gombak network using weighted Newman

method 62

Figure ‎4.5 Strength of nodes of Selangor network using weighted Newman

method 63

Figure ‎4.6 Strength of nodes of Gombak network using Sum method 65

Figure ‎4.7 Closeness centrality of Gombak network using weighted Newman

method 66

Figure ‎4.8 Closeness centrality of Selangor network using weighted Newman

method 67

Figure ‎4.9 Closeness centrality using Sum method 68

Figure ‎4.10 Betweenness centrality of Gombak network using weighted

Newman method 70

Figure ‎4.11 Betweenness centrality of Gombak network using Sum method 71

Figure ‎4.12 Betweenness centrality of Selangor network using weighted

Newman method 72

Figure ‎4.13 Eigenvector centrality 73

Figure ‎4.14 Power-law form of EVC 74

xv

Figure ‎4.15 Comparison among different methods of clustering coefficients 78

Figure ‎4.16 Graphical representation of the dengue network in Gombak 79

Figure ‎4.17 Graphical representation of the dengue network in Selangor 80

Figure ‎4.18 Density of the network 81

Figure ‎4.19 Density of nodes 82

Figure ‎4.20 Density of clusters 82

Figure ‎4.21 The distribution of dengue cases on log-log scale with power-law

exponent‎γ‎=‎-1.9 84

Figure ‎4.22 Node strength of Newman projection 85

Figure ‎4.23 Node strength of Sum projection 86

Figure ‎4.24 Weight of links 87

Figure ‎4.25 Dengue cases in Gombak, Selangor. 88

Figure ‎4.26 Dengue cases in Hulu Langat, Selangor. 90

Figure ‎4.27 Dengue cases in Petaling, Selangor 91

Figure ‎4.28 Week-wise comparison among six districts 92

Figure ‎5.1 (a) A toy network. (b) Few nodes are removed from the network.

(c) The remaining clusters in the network. 96

Figure ‎5.2 Targeted vs random removal of links (Betweenness centrality) 101

Figure ‎5.3 Targeted vs random removal of links (Closeness centrality measure) 102

Figure ‎5.4 A network with five nodes and four links 105

Figure ‎5.5 Real map of Gombak with 58 dengue affected localities. 108

Figure ‎5.6 Targeted 8% nodes (localities). 109

Figure ‎5.7 Targeted 8% nodes are recovered/removed/treated. 110

Figure ‎5.8 Remaining 66% network 111

Figure ‎6.1 Influence of Internal diffusion (Scenario 1: Case 1) 114

Figure ‎6.2 Influence of External diffusion (Scenario 1: Case 2) 115

Figure ‎6.3 Influence of External suppression (Scenario 2) 117

xvi

Figure ‎6.4 Comparison between case 1 and case 2 (Scenario 1) 124

Figure ‎6.5 Destruction of network due to external factor (Scenario 2) 126

Figure ‎6.6 Dengue cases in Selangor 127

Figure ‎8.1 Incidence and Case Fatality Rate of reported dengue cases Malaysia

(2000 – 2012) 171

Figure ‎8.2 Distribution of Dengue Cases by Types, Area and Gender

(Malaysia,2012) 171

Figure ‎8.3 Top 10 Communicable Diseases (Malaysia, 2010 & 2011) 172

Figure ‎8.4 Circulating dengue serotypes 1990-2012 172

Figure ‎8.5 Distribution of Dengue Cases by Age Group (2012) 173

xvii

LIST OF SYMBOLS

𝛼 Tuning Parameter

𝛾 Power-law Scaling exponent

𝜔 Triplet value

𝑑 Distance

𝑑𝑊 Weighted distance

𝜏𝑖 Number of two-paths centered on node i

𝜏𝑖, ∆ Number of 2-paths that are closed by a triangle

𝜏∗ Number of four paths

𝜏∗∆ Number of 4-paths that are closed by being part of at least one 6-cycle

Np Primary nodes

Ns Secondary nodes

𝐶𝐵(𝑖) Betweenness centrality of node i

𝐶𝐵𝑊𝛼 Weighted betweenness centrality of node i

𝐶𝐷(𝑖) Degree centrality of node i

𝐶𝐷𝑊𝛼 Weighted degree centrality of node i

𝐶𝐶(𝑖) Closeness centrality of node i

𝐶𝐶𝑊𝛼 Weighted closeness centrality of node i

𝐺𝐶 Global clustering coefficient

𝐶(𝑖) Local clustering coefficient of node i

𝜏∗ 𝜔 Value of four paths

𝜏∗∆𝜔 The value of 4-paths that are closed by being part of at least one 6-

cycle

Ci Local cluster in the dengue epidemic network

Cj Global cluster in the dengue epidemic network

𝜆𝑖𝑛𝑡 Internal hazard function

Λ𝑖𝑛𝑡(𝑖) (𝑡) Internal exposure

𝜆𝑒𝑥𝑡(𝑡) Event profile

η(x) Exposure curve

xviii

LIST OF ABBREVIATIONS

HIV Human Immunodeficiency Virus

AIDS Acquired Immunodeficiency Syndrome / Acquired Immune Deficiency

Syndrome

DF Dengue Fever

DHF Dengue Hemorrhagic Fever

DENV Dengue Virus

DENV-1 Dengue virus serotype-1

DENV-2 Dengue virus serotype-2

DENV-3 Dengue virus serotype-3

DENV-4 Dengue virus serotype-4

MOH Ministry Of Health

ER Erdos and Renyi

WS Watts and Strogtz

BA Albert-László Barabási and Réka Albert

SFN Scale-free network

EVC Eigenvector centrality

GL Gombak Locality

HLL Hulu Langat Locality

HSL Hulu Selangor Locality

PL Petaling Locality

AM Arithmetic Mean

GM Geometric Mean

1

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

Complex networks play a significant role in the research of epidemic diseases and in

their modelling (Moheeput, Goorah, & Ramchurn, 2013). There are many examples of

complex systems in the world, either natural or artificial. These systems can be

represented through complex networks. The network can be represented through

nodes/vertices and links/edges, where nodes show elementary units in the systems and

links express connectivity or interaction patterns between these nodes (Nicosia,

Criado, Romance, Russo, & Latora, 2012). During the last decade, many complex

systems have been modelled and analyzed by using graph theory and complex

networks (Nicosia et al., 2012). For example, the social contacts includes, the social

networks of friendship, a covert network of terrorists, sexual contact network, and

scientific collaboration network are all complex networks (Barthélemy, Barrat, Pastor-

Satorras, & Vespignani, 2004; Boguna, Pastor-Satorras, & Vespignani, 2003; M. E.

Newman, 2001; Padrón, Nogales, & Traveset, 2011). In the category of technological

networks; the Internet, the World Wide Web, router network and electric power grid

have been analyzed as complex networks (Avdeeva & Herczeg, 2008; A W Mahesar,

Shah, & Wahiddin, 2014; Pastor-Satorras, Vázquez, & Vespignani, 2001). Similarly,

in biology and medicine, the network of diseases such as HIV/AIDS, smallpox,

malaria, and dengue can also be represented as complex network to analyse the

spreading phenomenon (Allen & Ackleh, 2005; Kim, Lee, & Levy, 2013; Malik,

Mahesar, Abid, & Wahiddin, 2014). Also, researchers have agreed that many of the

real-world systems, when modelled and analyzed as complex networks, have similar

2

structural properties (Barabasi & Bonabeau, 2003). Therefore, currently many

research trends in these networks continue to model and analyse many real-world

systems by converting them into complex networks in order to further increase their

understanding. Further, research and study of these networks have played important

role for immunization in the networks against epidemic and network tolerance to

attacks (Barthélemy, Barrat, Pastor-Satorras, & Vespignani, 2005; Pastor-Satorras et

al., 2001). In this study, the dengue epidemic phenomenon has been formalized from

the perspective of complex network. The dataset of weekly dengue epidemic cases in

Selangor has been obtained from the Ministry of Health Malaysia, and modelled for

the topological analysis using a two-mode network method.

Three projection methods have been utilized to transform the two-mode

network into a one-mode network. Further, by applying different network analysis

metrics, this research reveals the main hubs which have the highest impact of dengue

virus. Moreover, the influence of internal and external factors has been observed and

analyzed.

1.2 DENGUE EPIDEMIC

The dengue epidemic has mostly been reported in the tropical and sub-tropical regions

of the world. In the last decade, however, its outbreak has been reported in many other

countries, including those in Europe. According to an estimate, around 2.5 billion of

the world population is in danger of contracting Dengue Fever (DF) and Dengue

Hemorrhagic Fever (DHF) (Padjadjaran, 2001). In 2012, World Health Organization

(WHO) reported that there might be 50 to100 million dengue infections worldwide

every year. It is estimated that approximately 3.6 billion people are living in dengue

affected parts of the world (Figure ‎1.1) (Eduardo & Pessanha, 2012).

3

Figure ‎1.1 Dengue affected areas in the world

Source: World Health Organization map production (2012)

Dengue virus is a mosquito-borne disease. Aedes aegypti and Aedes albopictus

are the main super spreader vectors of this virus, that is transmitted to humans through

their bite (Eduardo & Pessanha, 2012). This is a small dark mosquito that can be

identified by the white bands on its legs and a silver-white pattern of scales on its

body (Figure ‎1.2) This urban mosquito normally bites during day-time in two peaks of

biting activities, two hours after sunrise and a few hours before sunset (Expert Panel

on Asylum Seekers., 2012)

Figure ‎1.2 Aedes aegypti

Source: http://marketmonitor.com.ph/bacterium/

4

1.3 DENGUE VIRUS TRANSMISSION

As said in section 1.2, dengue virus is transmitted to human by the Aedes aegypti bite.

It has been observed that only female Aedes aegypti are the source of dengue virus,

meaning that only female mosquito of this species are able to spread this disease

(Coutinho, Burattini, Lopez, & Massad, 2006; Derouich, Boutayeb, & Twizell, 2003).

The life expectancy of the female Aedes aegypti is between 12 to 56 days, averaging

at 34 days (Amaku et al., 2014; Side & Noorani, 2013). A female Aedes aegypti mates

with a male mosquito in order to grow its generation through laying eggs (a natural

way) but its virus might be transferred by the infected people such as, if Aedes aegypti

bites any human, and that human becomes infected with the dengue virus (DENV).

Later, if any other mosquito (not the species of Aedes aegypti) bites the infected

human, they may also get the dengue infection and becomes a source of DENV

(Figure ‎1.3) (Eduardo & Pessanha, 2012). Further, the dengue symptoms appear

during 4 to 14 days of the mosquito bite. Four serotypes of dengue virus known as

DENV-1, DENV-2, DENV-3 and DENV-4 have been diagnosed (Eduardo &

Pessanha, 2012; Schapira et al., 2012; Ximenes & Massad, 2013). All these dengue

serotypes can be detected from the infected‎person’s‎blood‎samples.‎Any‎person‎who‎

is infected by any one of these serotypes will never be infected again by the same

serotype (Coutinho et al., 2006; Derouich et al., 2003; Massad et al., 2008).

5

Figure ‎1.3 Transmission of Dengue virus

1.4 PROBLEM BACKGROUND (DENGUE ISSUE IN MALAYSIA)

According to the report, on 21 November 2015 there were 107,079 dengue cases with

293 deaths reported in Malaysia (Herriman, 2015). This was a clear increase

compared to the report, where MOH recorded over 43,000 cases with 92 deaths

(WHO, 2015). In year 2014, during the 42nd

week from October 12 to October 18 a

total of 2,160 cases of dengue fever were reported. This was an increase of 338 cases

(19%) in comparison to the previous week (41st) that had 1,822 cases. An increase in

the dengue cases has also been recorded in ten states in Malaysia over the previous

week (41st) namely; Selangor, Melaka, Kuala Lumpur & Putrajaya, Terengganu,

Penang, Perak, Kelantan, Negeri Sembilan, Pahang and Johor. The cumulative cases

of the dengue fever that were reported nationwide from 05 January to 18 October

2014 were 82,738. An increase of 212% (56,211 cases) was reported compared to the

same period in 2013 (MOH, 2014). In the 41st week, four deaths from complications

due to DF were reported, two in Perak and one in Terengganu and Kuala Lumpur,

respectively. The increasing number of dengue cases indicates that this disease is an

6

epidemic and there is a desperate need to address this issue in the country. Figure ‎1.4

shows the number of cases and incidence rate of dengue fever in Malaysia (2008-

2012).

Figure ‎1.4 Number of cases and incidence rate of dengue fever in Malaysia (2008-

2012). Source: Ministry of Health, Malaysia (2014)

According to the Ministry of Health Malaysia, the DF and DHF cases have

been increasing exponentially after 2012 as shown in Figure ‎1.5

Figure ‎1.5 Number of infected cases in different weeks during 2012-2014.

Source: National Centre for laboratory and Epidemiology, Ministry of Health

Malaysia, January 2012 up to 17 May 2014 (Hemisphere & Islands, 2014).

1

2