Complete References Clin Chem 2002 48: 1620-1622 fileCambridge Healthtech Institute's Third Annual...

52
Complete References Clin Chem 2002 48: 1620-1622 I. ANALYTICAL MICROCHIPS (1-33) 1. Bergaud C, Nicu L. Viscosity measurements based on experimental investigations of composite cantilever beam eigenfrequencies in viscous media. Review of Scientific Instruments 2000;71:2487-91. 2. Brooks SA, Dontha N, Davis CB, Stuart JK, O'Neill G, Kuhr WG. Segregation of micrometer-dimension biosensor elements on a variety of substrate surfaces. Analytical Chemistry 2000;72:3253-9. 3. Burggraf N, Krattiger B, de Mello AJ, de Rooij NF, Manz A. Holographic refractive index detector for application in microchip-based separation systems. The Analyst 1998;123:1443-1447. 4. Cheng J, Kricka LJ. Biochip Technology.Philadelphia: Gordon and Breach Scientific Publishers, 2001 5. Chiu Daniel T, Pezzoli E, Wu H, Stroock Abraham D, Whitesides George M. Using three-dimensional microfluidic networks for solving computationally hard problems. Proceedings of the National Academy of Sciences of the United States of America. [ print] 2001;98:2961-2966. 6. Chou C-F, Austin Robert H, Bakajin O, et al. Sorting biomolecules with microdevices. Electrophoresis 2000;21:81- 90. 7. Eijkel JCT, Stoeri H, Manz A. A molecular emission detector on a chip employing a direct current microplasma. Analytical Chemistry 1999;71:2600-2606. 8. Eijkel JCT, Stoeri H, Manz A. An atmospheric pressure dc glow discharge on a micro chip and its application as a molecular emission detector. J. Anal. At. Spectrom. 2000;15:297-300. 9. Jain KK. Cambridge Healthtech Institute's Third Annual Conference on Lab-on-a-Chip and Microarrays. 22-24 January 2001, Zurich, Switzerland. Pharmacogenomics 2001;2:73-7. 10. Jain Kewal K. Biotechnological applications of lab-chips and microarrays. Trends in Biotechnology. [ print] 2000;18:278-280. 11. Jakeway SC, de Mello AJ, Russell EL. Miniaturized total analysis systems for biological analysis. Fresenius Journal of Analytical Chemistry 2000;366:525-39. 12. Jensen KF. The impact of MEMS on the chemical and pharmaceutical industries. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:105-10. 13. Kricka LJ, Ji X, Nozaki O, Wilding P. Imaging of chemiluminescent reactions in mesoscale silicon-glass microstructures. Journal of Bioluminescence and Chemiluminescence 1994;9:135-138. 14. Kricka LJ, Wilding P. Micromachining: A new direction for clinical analyzers. Pure and Applied Chemistry 1996;68:1831-1836. 15. Kricka LJ, Wilding P. Micromechanics and nanotechnology. In: Kost GJ, ed. Clinical Automation, Robotics, and Optimization. New York: Wiley, 1996: 45-77. 16. Kricka LJ, Wilding P. Microminiaturization of laboratory analyzers. LabMedica 1998;May-June:2-15. 17. Kricka LJ. Revolution on a square centimeter. Nature Biotechnology 1998;16:513-514. 18. Kricka LJ. Miniaturization of analytical systems. Clin Chem 1998;44:2008-14. 19. Krishnan M, Namasivayam V, Lin RS, Pal R, Burns MA. Microfabricated reaction and separation systems. Curr. Opin. Biotechnol. 2001;12:92-98.

Transcript of Complete References Clin Chem 2002 48: 1620-1622 fileCambridge Healthtech Institute's Third Annual...

Complete References Clin Chem 2002 48: 1620-1622

I. ANALYTICAL MICROCHIPS

(1-33) 1. Bergaud C, Nicu L. Viscosity measurements based on experimental investigations of composite cantilever beam eigenfrequencies in viscous media. Review of Scientific Instruments 2000;71:2487-91. 2. Brooks SA, Dontha N, Davis CB, Stuart JK, O'Neill G, Kuhr WG. Segregation of micrometer-dimension biosensor elements on a variety of substrate surfaces. Analytical Chemistry 2000;72:3253-9. 3. Burggraf N, Krattiger B, de Mello AJ, de Rooij NF, Manz A. Holographic refractive index detector for application in microchip-based separation systems. The Analyst 1998;123:1443-1447. 4. Cheng J, Kricka LJ. Biochip Technology.Philadelphia: Gordon and Breach Scientific Publishers, 2001 5. Chiu Daniel T, Pezzoli E, Wu H, Stroock Abraham D, Whitesides George M. Using three-dimensional microfluidic networks for solving computationally hard problems. Proceedings of the National Academy of Sciences of the United States of America. [ print] 2001;98:2961-2966. 6. Chou C-F, Austin Robert H, Bakajin O, et al. Sorting biomolecules with microdevices. Electrophoresis 2000;21:81-90. 7. Eijkel JCT, Stoeri H, Manz A. A molecular emission detector on a chip employing a direct current microplasma. Analytical Chemistry 1999;71:2600-2606. 8. Eijkel JCT, Stoeri H, Manz A. An atmospheric pressure dc glow discharge on a micro chip and its application as a molecular emission detector. J. Anal. At. Spectrom. 2000;15:297-300. 9. Jain KK. Cambridge Healthtech Institute's Third Annual Conference on Lab-on-a-Chip and Microarrays. 22-24 January 2001, Zurich, Switzerland. Pharmacogenomics 2001;2:73-7. 10. Jain Kewal K. Biotechnological applications of lab-chips and microarrays. Trends in Biotechnology. [ print] 2000;18:278-280. 11. Jakeway SC, de Mello AJ, Russell EL. Miniaturized total analysis systems for biological analysis. Fresenius Journal of Analytical Chemistry 2000;366:525-39. 12. Jensen KF. The impact of MEMS on the chemical and pharmaceutical industries. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:105-10. 13. Kricka LJ, Ji X, Nozaki O, Wilding P. Imaging of chemiluminescent reactions in mesoscale silicon-glass microstructures. Journal of Bioluminescence and Chemiluminescence 1994;9:135-138. 14. Kricka LJ, Wilding P. Micromachining: A new direction for clinical analyzers. Pure and Applied Chemistry 1996;68:1831-1836. 15. Kricka LJ, Wilding P. Micromechanics and nanotechnology. In: Kost GJ, ed. Clinical Automation, Robotics, and Optimization. New York: Wiley, 1996: 45-77. 16. Kricka LJ, Wilding P. Microminiaturization of laboratory analyzers. LabMedica 1998;May-June:2-15. 17. Kricka LJ. Revolution on a square centimeter. Nature Biotechnology 1998;16:513-514. 18. Kricka LJ. Miniaturization of analytical systems. Clin Chem 1998;44:2008-14. 19. Krishnan M, Namasivayam V, Lin RS, Pal R, Burns MA. Microfabricated reaction and separation systems. Curr. Opin. Biotechnol. 2001;12:92-98.

Complete References Clin Chem 2002 48: 1620-1622

20. Kwok YC, Manz A. Characterisation of Shah convolution Fourier transform detection. Analyst 2001;126:1640-1644. 21. Lee Luke P. Biomedical Polymer-Opto-Electro-Mechanical-Systems (BioPOEMS) for advanced biochips. Abstracts of Papers American Chemical Society. 2001;221:125. 22. Mitchell MC, Spikmans V, Bessoth FG, Manz A, de Mello A. Towards organic synthesis in microfluidic devices: multicomponent reactions for the construction of compound libraries. In: van den Berg A, Olthuis W, Bergveld P, ed. Micro Total Analysis Systems 2000,. Dordrecht: Kluwer Academic Publishers, 2000: 463-465. 23. Murakami Y, Tamiya E. [Department of microbiosensing system using micromachine techniques]. Rinsho Byori 1999;47:1105-12. 24. Pan D, Mathies RA. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy. Biochemistry 2001;40:7929-36. 25. Rossi C, Esteve D, Mingues C. Containment sensors for the determination of L-lactate and glucose. Biosensors & Bioelectronics 1999;14:27-32. 26. Roulet JC, Volkel R, Herzig HP, Verpoorte E, de Rooij NF, Dandliker R. Microlens systems for fluorescence detection in chemical microsystems. Optical Engineering 2001;40:814-21. 27. Rummler Z, Bacher W, Saile V, Schomburg WK. Mass separation using thin PTFE membranes. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3680:1-2. 28. Tantra R, Manz A. Integrated potentiometric detector for use in chip based flow cells. Analytical Chemistry 2000;72:2875-2878. 29. Wilding P, Kricka LJ. Micro-microchips: just how small can we go? Tibtech 1999;17:465-468. 30. Wilkinson M. Microsystems: applications in catheters and endoscopes. Medical Device Technology 2000;11:34-6. 31. Woolley AT. Biomedical microdevices and nanotechnology. Trends in Biotechnology 2001;19:38-39. 32. Xiao-Feng Z, Burt JP, Talary MS, Goater AD, Pethig R. Development of biofactory-on-a-chip technology. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:241-50. 33. Xu Y, Bessoth FG, Eijkel JCT, Manz A. On-line monitoring of Chromium(III) using a fast micromachined mixer / reactor and chemiluminescence detection. Analyst 2000;125: 677-683.

FABRICATION

(1-97) 1. Andersson H, Van der Wijngaart W, Enoksson P, Stemme G. Limiting factors in the production of deep microstructures. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3892:242-52. 2. Andersson H, Jonsson C, Moberg C, Stemme G. Patterned self-assembled beads in silicon channels. Electrophoresis 2001;22:3876-3882. 3. Armani D, Liu C, Aluru N. Silicon as tool material for polymer hot embossing. Technical Digest. IEEE International MEMS 1999;:228-31. 4. Becker H, Ropke W. Fabrication of microarrays on an industrial scale with TopSpot. Mst News, no 2000;4:22-3.

Complete References Clin Chem 2002 48: 1620-1622

5. Beebe DJ, Moore JS, Yu Q, et al. Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. Proceedings of the National Academy of Sciences of the United States of America 2000;97:13488-93. 6. Beluze L, Bertsch A, Renaud P. Microstereolithography: a new process to build complex 3D objects. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3680:1-2. 7. Bhansali S, Han A, Patel M, Oh KW, Ahn CH, Henderson HT. Integratible process for fabrication of fluidic microduct networks on a single wafer. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:110-18. 8. Bhusari D, Reed HA, Wedlake M, Padovani AM, Allen SAB, Kohl PA. Fabrication of air-channel structures for microfluidic, microelectromechanical, and microelectronic applications. Journal of Microelectromechanical Systems 2001;10:400-8. 9. Blom MT, Tas NR, Pandraud G, et al. Advances in MEMS using SFB and DRIE technology. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3876:64-73. 10. Bousse L. Optically programmable assembly of ordered bead arrays: a novel technology for on-chip biochemical analysis. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:36-42. 11. Bousse L, Minalla A, Deshpande M, Greiner KB, Gilbert JR. Micro concentrator with opto-sense micro reactor for biochemical IC chip family. 3D composite structure and experimental verification. Technical Digest. IEEE International MEMS 1999;:376-81. 12. Bousse L, Cohen C, Nikiforov T, et al. Electrokinetically controlled microfluidic analysis systems. Annual Review of Biophysics & Biomolecular Structure 2000;29:155-81. 13. Bousse L. Biochemical IC chip: towards artificial cellular device. Review of Laser Engineering 2000;28:422-7. 14. Buriak JM. Functionalization of silicon surfaces for device applications. Jala Journal of the Association for Laboratory Automation 1999;4:36-9. 15. Caton PF, White RM. MEMS microfilter with acoustic cleaning. Technical Digest. MEMS 2001;:479-82. 16. Chabinyc ML, Chiu DT, McDonald JC, et al. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Analytical Chemistry 2001;73:4491-8. 17. Chau C, Banerjee S, Seul M. From batch to continuous manufacturing of micro-biomedical and micro-analytical devices. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:44-53. 18. Che-Hsin L, Gwo-Bin L, Yen-Heng L, Guan-Liang C. Fabrication of microchannels using polycarbonates as sacrificial materials. Journal of Micromechanics & Microengineering 2001;11:733-7. 19. Chiu DT, Pezzoli E, Wu H, Stroock AD, Whitesides GM. From the Cover: Using three-dimensional microfluidic networks for solving computationally hard problems. Proc Natl Acad Sci U S A 2001;98:2961-6. 20. Cooney C, Towe B. Fabrication of integrated microanalytical chambers and channels for biological assays using flame hydrolysis deposition glass. Elsevier. Microelectronic Engineering 1999;46:1-4. 21. Edwards TL, Mohanty SK, Edwards RK, Thomas CL, Frazier A. Rapid tooling using SU-8 for injection molding microfluidic components. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:82-9. 22. Ehlert A, Dauer S, Buttgenbach S. Rapid prototyping of microfluidic structures with Nd:YAG-laser-ablation. MICRO SYSTEM Technologies 1998;98:439-44.

Complete References Clin Chem 2002 48: 1620-1622

23. Folch A, Ayon A, Hurtado O, Schmidt MA, Toner M. Molding of deep polydimethylsiloxane microstructures for microfluidics and biological applications. J Biomech Eng 1999;121:28-34. 24. Fuqua P, Janson SW, Hansen WW, Helvajian H. Fabrication of true 3D microstructures in glass/ceramic materials by pulsed UV laser volumetric exposure techniques. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3618:213-20. 25. Fuqua PD, Taylor DP, Helvajian H, Hansen WW, Abraham MH. A UV direct-write approach for formation of embedded structures in photostructurable glass-ceramics. Materials Development for Direct Write Technologies. Symposium 2000;624:79-86. 26. Furuki M, Kameoka J, Craighead HG, Isaacson MS. A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. Journal of Micromechanics & Microengineering 2001;11:726-32. 27. Galambos P, Benavides G. Electrical and fluidic packaging of surface micromachined electromicrofluidic devices. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:200-7. 28. Gardeniers H, Schasfoort R, van den Berg A. Microfluidic devices for biomedical applications. Mst News 2000;4:14-15. 29. Gorges-Schleuter M, Jakob W, Suss W. Microfabrication using synchrotron radiation. Reports on Progress in Physics 1998;61:313-51. 30. Grosse A, Grewe M, Fouckhardt H. Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices. Journal of Micromechanics & Microengineering 2001;11:257-62. 31. Guijt RM, Baltussen E, van der Steen G, et al. New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection. Electrophoresis 2001;22:235-41. 32. Gwo-Bin L, Chen IH, Bin-Jo K, Guan-Ruey H, Bao-Herng H. Micromachined pre-focused 1*N flow switches for continuous sample injection. Journal of Micromechanics & Microengineering 2001;11:567-73. 33. Hayes MA, Polson NA, Garcia AA. MEMS: from classic sensors to RF applications. Revue Hf. Electronique, Telecommunications, no 2001;2:27-38. 34. Henning AK, Fitch J, Harris JM, Arkilic EB, Cozad B, Dehan B. Fabrication of a stainless steel microchannel microcombustor using a lamination process. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3514:386-92. 35. Higdon WR. Deep plasma silicon etch for microfluidic applications. Elsevier. Surface & Coatings Technology 1999;116:461-7. 36. Holke AD, Pilchowski J, Henderson HT, et al. Quartz channel fabrication for electrokinetically driven separations. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:164-71. 37. Hostis EL, Michel PE, Fiaccarbinno GC, Strike DJ, de Rooij NF, Koudelka-Hep M. Surface-tension-driven microactuation based on continuous electrowetting. Journal of Microelectromechanical Systems 2000;9:171-80. 38. Ikuta K, Maruo S, Fujisawa T, Yamada A. Palladium based micromembranes for hydrogen separation and hydrogenation/dehydrogenation reactions. Technical Digest. IEEE International MEMS 1999;:382-7. 39. Jackman RJ, Floyd TM, Ghodssi R, Schmidt MA, Jensen KF. Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy. Journal of Micromechanics & Microengineering 2001;11:263-9. 40. Jin-Woo C, Ahn CH, Henderson HT. Design and fabrication of variable focusing lens. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:270-7.

Complete References Clin Chem 2002 48: 1620-1622

41. Jo BH, Van Lerberghe LM, Motsegood KM, Beebe DJ. Micromachining of buried micro channels in silicon. Journal of Microelectromechanical Systems 2000;9:94-103. 42. Jr-Hung T, Liwei L. Micro-to-macro fluidic interconnectors with an integrated polymer sealant. Journal of Micromechanics & Microengineering 2001;11:577-81. 43. Juncker D, Schmid H, Bernard A, et al. Soft and rigid two-level microfluidic networks for patterning surfaces. Journal of Micromechanics & Microengineering 2001;11:532-41. 44. Kilgo MM, III, Williams C, Constantinide D. Economic fabrication of microscale features in thick resists using scanning projection lithography. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3874:305-11. 45. Kim WJ, Rife JC, Horwitz JS, et al. Movable microstructures made by two-photon three-dimensional microfabrication. MHS'99. Proceedings of 1999;:173-8. 46. Kim Y-D, Park Chan B, Clark Douglas S. Stable sol-gel microstructured and microfluidic networks for protein patterning. Biotechnology & Bioengineering. [ print] 2001;73:331-337. 47. Kramer KD, Oh KW, Ahn CH, Bao JJ, Wehmeyer KR. MEMS based micro-fluidic system for chromatographic analysis of liquid samples. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:86-93. 48. Krijnen GJM, Lammerink TSJ, Lambeck PV, Elwenspoek M. The design and fabrication of microfluidic flow sensors. ISCAS'99. Proceedings of the 1999;:136-9. 49. Kruusing A, Leppavuori S, Uusimaki A, Uusimaki M. Rapid prototyping of silicon structures by aid of laser and abrasive-jet machining. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3680:1-2. 50. Kuebler SM, Rumi M, Watanabe T, et al. Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication. Journal of Photopolymer Science & Technology 2001;14:657-68. 51. Kugelmass SM, Lin C, DeWitt SH. Laminated ceramic components for microfluidic applications. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:95-100. 52. Lao AIK, Lee TMH, Hsing IM, Ip NY. Application of fluorine based plasma etching processes in microfluidic device fabrication. Journal of Solid State Devices & Circuits 2000;8:5-9. 53. Love JC, Anderson JR, Whitesides GM. Fabrication of three-dimensional microfluidic systems by soft lithography. MRS Bulletin 2001;26:523-8. 54. Maas D, Karl B, Saile V, Schulz J. Manufacturing of microcomponents in a research institute under DIN EN ISO 9001. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4174:416-26. 55. Madou M, Zhang YS, Xu T, Kellogg GJ, Duffy DC. Fabrication of polymer high aspect ratio structures with hot embossing for microfluidic applications. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:74-9. 56. Manginell RP, Rosato DA, Benson DA, Frye-Mason GC. Sputtered silicon carbide thin films as protective coating for MEMS applications. Surface & Coatings Technology 2000;125:1-3. 57. Martinoia S, Bove M, Tedesco M, Margesin B, Grattarola M. A simple microfluidic system for patterning populations of neurons on silicon micromachined substrates. Journal of Neuroscience Methods 1999;87:35-44.

Complete References Clin Chem 2002 48: 1620-1622

58. Maruo S, Ikuta K, Hayato K. Light-driven MEMS made by high-speed two-photon microstereolithography. Technical Digest. MEMS 2001;:594-7. 59. Mastrangelo CH, Palaniappan S, Man PF, Burns MA, Burke DT. Fabrication and characterization of three-dimensional microfluidic arrays. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:88-94. 60. Matson DW, Martin PM, Bennett WD, Stewart DC, Bonham CC. Resolving chemical/bio-compatibility issues in microfluidic MEMS systems. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:101-9. 61. McDonald JC, Duffy DC, Anderson JR, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000;21:27-40. 62. Morishima K, Arai F, Fukuda T, Matsuura H, Yoshikawa K. Coherent macro porous silicon as a wick structure in an integrated microfluidic two-phase cooling system. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:154-62. 63. Moser I, Jobst G, Svasek P, Varahram M, Urban G. Ultraprecision microelectroforming of metals and metal alloys. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1997;3223:168-75. 64. Nam-Trung N, White RM. Three-dimensional microfabrication using two-photon activated chemistry. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;3937:97-105. 65. Paul O, Westberg D, Hornung M, Ziebart V, Baltes H. Formation of hollow microcylinders from sputtered erbium-doped glass films. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1997;2996:86-92. 66. Quake S. Taguchi optimization for SU-8 photoresist and its applications in microfluidic systems. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3899:440-7. 67. Quake SR, Scherer A. From micro- to nanofabrication with soft materials. Science 2000;290:1536-40. 68. Quanbo Z, Zhenfeng W, Rongming L, et al. SOI on buried cavity patterns using ion-cut layer transfer. 1998;:165-6. 69. Rainey PV, Mitchell SJN, Gamble HS. Flow-rate measurement via conductivity monitoring in microfluidic devices. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:185-93. 70. Rasmussen A, Zaghloul ME. Biochemical IC using micro stereolithography-towards artificial cellular device. Digest of Papers Microprocesses and Nanotechnology 2000;:26-7. 71. Rasmussen A, Gaitan M, Locascio LE, Zaghloul ME. Fabrication techniques to realize CMOS-compatible microfluidic microchannels. Journal of Microelectromechanical Systems 2001;10:286-97. 72. Rife JC, Bell MI. Selective hydrophobic and hydrophilic texturing of surfaces using photolithographic photodeposition of polymers for microfluidic sample control. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:136-43. 73. Rogers JA. Micromachined metallic pipettes and bioanalysis systems. 1997;:5-12. 74. Roulet JC, Volkel R, Herzig HP, Verpoorte E, de Rooij NF, Dandliker R. Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection. Journal of Microelectromechanical Systems 2001;10:482-91. 75. Salimi-Moosavi H, Szarka R, Andersson P, Smith R, Harrison DJ. Silicon membrane nanofilters from sacrificial oxide removal. Journal of Microelectromechanical Systems 1999;8:34-42.

Complete References Clin Chem 2002 48: 1620-1622

76. Schlautmann S, Wensink H, Schasfoort R, Elwenspoek M, van den Berg A. Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensors. Journal of Micromechanics & Microengineering 2001;11:386-9. 77. Sheu TS, Ding PP, Chen PH. Characterizing the process of cast molding microfluidic systems. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:303-11. 78. Shoji S, Akahori K, Tashiro K, Sato H, Honda N. Novel microchannel system for monodispersed microspheres. Inst. Phys. Chem. Res. 2001;36:21-3. 79. Si-Hong A, Yong-Kweon K. Microgasketing and adhesive wicking techniques for fabrication of micro fluidic devices. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:286-91. 80. Srinivasan U, Liepmann D, Howe RT. Microstructure to substrate self-assembly using capillary forces. Journal of Microelectromechanical Systems 2001;10:17-24. 81. Sy-Hann C, Heh-Nan L, Chii-Ron Y. Sputtered coatings for microfluidic applications. AIP for American Vacuum Soc. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films 2000;18:1-2. 82. Talary MS, Burt JPH, Rizvi NH, Rumsby PT, Pethig R. Microfabrication of biofactory-on-a-chip devices using laser ablation technology. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3680:1-2. 83. Thaysen J, Marie R, Boisen A. Cantilever-based bio-chemical sensor integrated in a microliquid handling system. Technical Digest. MEMS 2001;:401-4. 84. van Rijn CJM, Nijdam W, Kuiper S, Veldhuis GJ, van Wolferen H, Elwenspoek M. Design and fabrication of a microfluidic circuitboard. Journal of Micromechanics & Microengineering 1999;9:176-9. 85. Veenstra TT, Lammerink TSJ, Sanders RGP, Elwenspoek M, Van den Berg A. Laser machined components for microanalytical and chemical separation devices. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3519:200-7. 86. Walsh K, Norville J, Yu-Chong T. Micromachining techniques for liquid crystal polymer. Technical Digest. MEMS 2001;:126-30. 87. Wego A, Richter S, Pagel L. Fluidic microsystems based on printed circuit board technology. Journal of Micromechanics & Microengineering 2001;11:528-31. 88. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 2001;3:335-73. 89. Whitesides GM, Stroock AD. Flexible methods for microfluidics. Physics Today 2001;54:42-8. 90. Wong CC, Adkins DR, Frye-Mason GC, et al. Laminated microfluidic structures using a micromolding technique. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:139-46. 91. Xu Z, Tran E, Weichih W, Eun Sok K, Soo Young L. Sacrificial aluminum etching for CMOS microstructures. Proceedings IEEE. The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots 1997;. 92. Xuan-Qi W, Desai A, Yu-Chong T, Licklider L, Lee TD. Fabrication and characterization of a micro turbine/bearing rig. Technical Digest. IEEE International MEMS 1999;:529-33.

Complete References Clin Chem 2002 48: 1620-1622

93. Xuefeng W, Liang-Hsuan L, Chang L. In-line pressure monitoring for microfluidic devices using a deformable diffraction grating. Technical Digest. MEMS 2001;:174-7. 94. You H, Matsuzuka N, Yamaji T, Tabata O. Deep X-ray exposure system with multistage for 3D microfabrication. MHS2000. Proceedings of 2000;:53-8. 95. Youli L, Pfohl T, Joon Heon K, et al. Design and fabrication of CD-like microfluidic platforms for diagnostics: microfluidic functions. Biomedical Microdevices 2001;3:245-54. 96. Zeringue HC, Beebe DJ, Wheeler MB. Active control of dynamic supraparticle structures in microchannels. Langmuir 2001;17:2866-71. 97. Zhang J, Tan KL, Gong HQ. Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS). Polymer Testing 2001;20:693-701.

INTEGRATION

(1-38) 1. Accoto D, Nedelcu OT, Carrozza MC, Dario P. A modular integrated pressure control unit for gases. Technical Digest. IEEE International MEMS 1999;:77-81. 2. Becker H, Dietz W. Novel monolithic and multilevel integration of high-precision 3-D microfluidic components. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:183-91. 3. Becker H, Heim U. Integrating microfabricated fluidic systems and NMR spectroscopy. IEEE Transactions on Biomedical Engineering 2000;47:3-7. 4. Dempsey E, Diamond D, Smyth MR, et al. Design and development of a miniaturised total chemical analysis system for on-line lactate and glucose monitoring in biological samples. Anal. Chim. Acta 1997;346:341-349. 5. Eijkel JCT, Prak A, Cowen S, Craston D, Manz A. A micromachined heated chemical reactor for pre-column derivatisation. J.Chromatogr. A 1998;:265-271. 6. Eijkel JCT, de Mello AJ, Manz A. A miniaturized total chemical analysis system: m-TAS. In: H.Masuhara H, Schryver FC, ed. Organic Mesoscopic Chemistry. Geneva: IUPAC, 1999: 185-219. 7. Erbacher C, Bessoth FG, Busch M, Verpoorte EMJ, Manz A. Towards integrated continuous-flow chemical reactors. Mikrochim. Acta 1999;131:19-24. 8. Eteshola E, Leckband D. Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels. Review of Scientific Instruments 2001;72:1-2. 9. Fettinger JC, Manz A, Lüdi H, Widmer HM. Stacked modules for micro flow systems in chemical analysis: concept and studies using an enlarged mode. Sensors Actuators 1993;B17:19-25. 10. Flgeys D, Aebersold R. Micro total analysis system ( mu TAS). Electronics & Communications in Japan, Part 1999;82:21-9. 11. Freaney R, McShane A, Keaveny TV, et al. Novel instrumentation for real-time monitoring using miniaturised flow systems with integrated biosensors. Annals of Clinical Biochemistry 1997;34:291-302. 12. Keoshkeryan R, Dressler L, Schwesinger N. Microfluidic system for the integration of gas sensors. MICRO SYSTEM Technologies 1998;98:577-82.

Complete References Clin Chem 2002 48: 1620-1622

13. Kopp MU, Crabtree HJ, Manz A. Developments in technology and applications of microsystems. Current Opinion in Chemical Biology 1997;1: 410-419. 14. Kutter JP, Mogensen KB, Friis P, et al. Integration of waveguides for optical detection in microfabricated analytical devices. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:98-105. 15. Liu RH, Chen H, Luehrsen KR, et al. Highly parallel integrated microfluidic biochannel arrays. Technical Digest. MEMS 2001;:439-42. 16. Manz A, Graber N, Widmer HM. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and Actuators 1990;B1:244-248. 17. Manz A, Fettinger JC, Verpoorte EMJ, Haemmerli S, Widmer HM. A stacked modular device for use in miniaturized total chemical analysis systems. In: Krahn R, Reichl H, ed. Micro System Technologies 91. Berlin: VDE-Verlag, 1991: 49-54. 18. Manz A, Fettinger JC, Verpoorte EMJ, Lüdi H, Widmer HM, Harrison DJ. Micromachining of monocrystalline silicon and glass for chemical analysis systems - A look into next century's technology or just a fashionable craze ? Trends Analytical Chemistry 1991;10:144-149. 19. Manz A, Harrison DJ, Verpoorte EMJ, Widmer HM. Planar chips technology for miniaturization of separation systems: A developing perspective in chemical monitoring. Advances in Chromatography 1993;33:1-66. 20. Manz A, Becker H, eds. Micro system technology in chemistry and life sciences. Berlin: Springer, 1998:252. 21. McCaman MT, Murakami P, Pungor E, Jr., Hahnenberger KM, Hancock WS. Analysis of recombinant adenoviruses using an integrated microfluidic chip-based system. Analytical Biochemistry 2001;291:262-8. 22. Miki N, Shimoyama I. A micro-channel heat sink with integrated temperature sensors for phase transition study. Technical Digest. IEEE International MEMS 1999;:159-64. 23. Quiram DJ, Jensen KF, Schmidt MA, et al. Package level integration of silicon microfabricated reactors to form a miniature reactor test system. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:166-9. 24. Rong Y, Minxian W, Guofan J. Integrated micro-optical and microfluidic system for micro total analysis system. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:208-11. 25. Sanders GHW, Manz A. Chip-based microsystems for genomic and proteomic analysis. Trends Analytical Chemistry 2000;19:364-378. 26. Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ. Integration of micropump and microflow sensor. Journal of Functional Materials & Devices 1998;4:101-4. 27. Smith JS. High density, low parasitic direct integration by fluidic self assembly (FSA). International Electron Devices Meeting 2000;:201-4. 28. Tolfree DWL. Micro total analysis system ( mu TAS) chemical analysis. Transactions of the Institute of Electronics, Information and Communication Engineers C I 1998;:385-93. 29. Trumbull JD, Glasgow IK, Beebe DJ, Magin RL. Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer. Biosensors & Bioelectronics 1999;14:405-11. 30. Verpoorte EMJ, Manz A, Lüdi H, Widmer.H.M. A novel optical detector cell for use in miniaturized total chemical analysis systems. Transducers '91, Digest of Technical Papers 1991;: 796-799.

Complete References Clin Chem 2002 48: 1620-1622

31. Verpoorte EMJ, Manz A, Lüdi H, et al. A silicon flow cell for optical detection in miniaturized total chemical analysis systems. Sens. Actuators 1992;B6:66-70. 32. Verpoorte EMJ, Manz A, Widmer HM, van der Schoot BH, de Rooij NF. A three-dimensional micro flow system for a multi-step chemical analysis. In: Transducers '93 Digest of Technical Papers. Tokyo: Institute of Electrical Engineers of Japan, 1993: 939-942. 33. Verpoorte EMJ, van der Schoot BH, S.Jeanneret S, Manz A, Widmer HM, de Rooij NF. Three-dimensional micro flow manifolds for miniaturized chemical analysis systems. J. Micromech. Microeng. 1994;4:246-256. 34. Verpoorte EMJ, van der Schoot BH, Jeanneret S, Manz A, de Rooij NF. Silicon-based chemical microsensors and microsystems. ACS Symposium Series 1994;561:244-254. 35. Wang PC, DeVoe DL, Lee CS. Integration of polymeric membranes with microfluidic networks for bioanalytical applications. Electrophoresis 2001;22:3857-67. 36. Warren ME, Sweatt WC, Wendt JR, et al. Novel, highly sensitive chemical and biological sensors based on integrated MOEM and MEMS technologies. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3878:193-8. 37. Yang Z, Matsumoto S, Goto H, Matsumoto M, Maeda R. Design of integrated microfluidic device for sorting magnetic beads in biological assays. IEEE. IEEE Transactions on Magnetics 2001;37:2621-3. 38. Zhou S, Kilgo MM, III, Williams C. Integration of microfluidics/electrochemical system for trace metal analysis by stripping voltammetry. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:248-56.

PLASTIC MICROCHIPS

(1-34) 1. Anderson JR, Chiu DT, Jackman RJ, et al. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Analytical Chemistry 2000;72:3158-64. 2. Bauer C, Dietrich S. Design rules for polyimide solvent bonding. Sensors & Materials 1999;11:269-78. 3. Becker H, Gartner C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 2000;21:12-26. 4. Becker H, Gaertner C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 2000;21:12-26. 5. Becker H, Roetting O, Roepke W, Heim U. Polymer microfluidics: The technology chain. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:106-11. 6. Blankenstein G. Microfluidic applications of polymer microsystems. Mst News 2000;4:20-1. 7. Chen YH, Chen SH. Analysis of DNA fragments by microchip electrophoresis fabricated on poly(methyl methacrylate) substrates using a wire-imprinting method. Electrophoresis 2000;21:165-70. 8. Chen Y, Chen Z, Zhao Y, et al. Test channels for flow characterization of processed plastic microchannels. Materials Science of Microelectromechanical Systems 2000;605:253-9. 9. Dharmatilleke S, Henderson HT, Bhansali S, Ahn CH. Three-dimensional silicone microfluidic interconnection scheme using sacrificial wax filaments. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:90-7.

Complete References Clin Chem 2002 48: 1620-1622

10. Dickey CK, Elmore BB, Jones F. Enzyme catalyzed biochemical production in a polydimethylsiloxane microreactor. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:56-64. 11. Duffy DC, Schueller OJA, Brittain ST, Whitesides GM. Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow. Journal of Micromechanics & Microengineering 1999;9:211-17. 12. Glasgow IK, Beebe DJ, White VE. Polymer hot embossing with silicon master structures. Sensors & Materials 1999;11:297-304. 13. Golubovic NC, Qinghua K, Henderson HT, Pinto N. Integrated capillary electrophoresis using glass and plastic chips for multiplexed DNA analysis. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:94-103. 14. Gwo-Bin L, Shu-Hui C, Guan-Ruey H, Yen-Heng L, Wang-Chou S. Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:112-21. 15. Hofmann O, Niedermann P, Manz A. Modular approach to fabrication of three-dimensional microchannel systems in PDMS – application to sheath flow microchips. Lab on a Chip 2001;1:108-114. 16. Janshoff A, Kunneke S. Micropatterned solid-supported membranes formed by micromolding in capillaries. European Biophysics Journal 2000;29:549-54. 17. Johnson RD, Badr IH, Barrett G, et al. Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics. Anal Chem 2001;73:3940-6. 18. Kameoka J, Craighead HG, Zhang H, Henion J. A polymeric microfluidic chip for CE/MS determination of small molecules. Analytical Chemistry 2001;73:1935-41. 19. Kwok YC, Jeffery NT, Manz A. Velocity measurement of particles flowing in a microfluidic chip using Shah convolution Fourier transform detection. Analytical Chemistry 2001;73:1748-53. 20. Linder V, Verpoorte E, Thormann W, de Rooij NF, Sigrist H. Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection. Analytical Chemistry 2001;73:4181-9. 21. Lorenzen D. Chemical mapping of hot-embossed and UV-laser-ablated microchannels in poly(methyl methacrylate) using carboxylate specific fluorescent probes. Applied Surface Science 2001;181:1-2. 22. Martin PM, Matson DW, Bennett WD, Hammerstrom DJ. Microfluidic devices for mu -TAS applications fabricated by polymer hot embossing. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:177-82. 23. Martynova L, Locascio LE, Gaitan M, Kramer GW, Christensen RG, MacCrehan WA. Fabrication of plastic microfluid channels by imprinting methods. Analytical Chemistry 1997;69:4783-9. 24. Matzke CM, Arnold DW, Ashby CIH, Kravitz SH, Warren ME, Bailey CG. Fabrication of plastic microfluidic components. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:172-6. 25. McNeely MR, Spute MK, Tusneem NA, Oliphant AR. Fabrication of three-dimensional microfluidic systems by stacking molded polydimethylsiloxane (PDMS) layers. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:222-9. 26. Meinhart CD, Zhang H. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. Journal of Microelectromechanical Systems 2000;9:76-81.

Complete References Clin Chem 2002 48: 1620-1622

27. Monahan J, Gewirth AA, Nuzzo RG. A method for filling complex polymeric microfluidic devices and arrays. Analytical Chemistry 2001;73:3193-7. 28. Niggemann M, Ehrfeld W, Weber L, Gunther R, Sollbohmer O. Miniaturized plastic micro plates for applications in HTS. Microsystem Technologies 1999;6:48-53. 29. Robertson JK, Wise KD. Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. Journal of Micromechanics & Microengineering 2001;11:20-6. 30. Sethu P, Yu H, Grodzinski P, Mastrangelo CH. Fabrication of genetic analysis microsystems using plastic microcasting. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:175-8. 31. Van Drieenhuizen BP. Polymers-an excellent and increasingly used material for microsystems. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3876:172-84. 32. Wu S, Mai J, Tai YC, Ho CM. Re-configurable fluid circuits by PDMS elastomer micromachining. Technical Digest. IEEE International MEMS 1999;:222-7. 33. Yu-Cheng L, Hsiao-Ching H, Chien-Kai T, Shao-Qin H. A poly-methylmethacrylate electrophoresis microchip with sample preconcentrator. Journal of Micromechanics & Microengineering 2001;11:189-94. 34. Zhao M, Boone TD, Qiu XC, Ricco AJ. Distribution and mixing of reagents on multichannel plastic chips. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:183-6.

SIMULATION AND MODELING

(1-42) 1. Aktas O, Aluru NR, Ravaioli U. Application of a parallel DSMC technique to predict flow characteristics in microfluidic filters. Journal of Microelectromechanical Systems 2001;10:538-49. 2. Anduze M, Colin S, Caen R, Camon H, Conedera V, Do Conto T. Mixing characteristics of T-type microfluidic mixers. Journal of Micromechanics & Microengineering 2001;11:126-32. 3. Bau HH, Jihua Z, Mingqiang Y. Automated generation of compact models for fluidic microsystems. Analog Integrated Circuits & Signal Processing 2001;29:1-2. 4. Becker H, Heim U. Optimization of sample injection components in electrokinetic microfluidic systems. Technical Digest. IEEE International MEMS 1999;:309-14. 5. Bohringer KF, Srinivasan U, Howe RT. Modeling of capillary forces and binding sites for fluidic self-assembly. Technical Digest. MEMS 2001;:369-74. 6. Cooper EB, Fritz J, Wiegand G, Wagner P, Manalis SR. Electro-viscous effects on pressure-driven liquid flow in microchannels. Colloids & Surfaces A Physicochemical & Engineering Aspects 2001;195:1-3. 7. Darlo P, Carrozza MC, Benvenuto A, Menciassl A. Modelling of micropumps using unimorph piezoelectric actuator and ball valves. Journal of Micromechanics & Microengineering 2000;10:277-81. 8. Deshpande M, Greiner KB, West J, Gilbert JR, Bousse L, Minalla A. Predictive design of reverse injection mechanism for electrokinetic DNA sample injection. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:128-31. 9. Ducree J, de Heij B, Sandmaier H, Zengerie R. Automated generation of compact models for fluidic microsystems. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4019:30-8.

Complete References Clin Chem 2002 48: 1620-1622

10. Enchao Y, DeMing W, Sura K, Przekwas A. Acoustic streaming in micromachined flexural plate wave devices: numerical simulation and experimental verification. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control 2000;47:1463-71. 11. Evan Kamholz A, Schilling EA, Yager P. Optical measurement of transverse molecular diffusion in a microchannel. Biophysical Journal 2001;80:1967-72. 12. Giridharan MG, Krishnamoorthy S, Krishnan A. Computational simulation of microfluidics, electrokinetics, and particle transport in biological MEMS devices. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3680:1-2. 13. Grasegger JM. Optimal design of a microfluidic system with piezoactuator for droplets generation. MICRO SYSTEM Technologies 1998;98:551-6. 14. Harley J. Advances in computer-aided design of microfluidics for applications in biotechnology. Abstracts of Papers American Chemical Society. [ print] 2001;221:210. 15. Hegab HE, Liu G. Fluid flow modeling of micro-orifices using micropolar fluid theory. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:271-81. 16. Huff MA, Benard WL. Design optimization using evolutionary algorithms at hand of a micropump. Atp, Automatisierungstechnische Praxis 1998;40:50-5. 17. Jang J, Lee SS. A modified direct simulation Monte Carlo method for low-speed microflows. Journal of Micromechanics & Microengineering 2000;10:21-7. 18. Jie D, Chakrabarty K, Fair RB. Scheduling of microfluidic operations for reconfigurable two-dimensional electrowetting arrays. IEEE Transactions on Computer Aided Design of Integrated Circuits & Systems 2001;20:1463-8. 19. Jun-Bo Y, Chul-Hi H, Euisik Y, Choong-Ki K. Simulation of fluid-structure interaction in micropumps by coupling of two commercial finite element programs. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:194-204. 20. Kamholz AE, Schilling EA, Yager P. Optical measurement of transverse molecular diffusion in a microchannel. Biophysical Journal 2001;80:1967-72. 21. Kamholz AE, Yager P. Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels. Biophysical Journal 2001;80:155-60. 22. Klein A, Gerlach G. First principles based approach to modeling of microfluidic systems. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:205-16. 23. Ledezma GA, Folch A, Bhatia SN, Balis UJ, Yarmush ML, Toner M. Cad tools for lab-on-a-chip systems. IEE Seminar Microengineering, Modelling and Design 1999;2:1-4. 24. Lowe H, Ehrfeld W, Diebel J. Design and modelling for a thermal flow sensor. 1997;:511-14. 25. Maruo S, Ikuta K. Thermal ink jet dynamics: modeling, simulation, and testing. Microelectronics & Reliability 2000;40:525-32. 26. Matzke CM, Ashby CIH, Bridges M, Griego L, Wong C. Modeling transport in gas chromatography columns for the Micro-ChemLab/sup TM. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:120-9.

Complete References Clin Chem 2002 48: 1620-1622

27. Mehta A, Helmicki AJ. Numerical framework for the modeling of electrokinetic flows in microfluidic devices. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:217-27. 28. Molho JI, Herr AE, Mosier BP, et al. A low dispersion turn for miniaturized electrophoresis. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:132-7. 29. Nagel DJ. Design of MEMS and microsystems. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3680:1-2. 30. Rasmussen A, Zaghloul ME. A hierarchical approach to stochastic discrete and continuous performance simulation using composable software components. Microelectronics Journal 2000;31:95-104. 31. Rebenklau L, Wolter KJ, Howitz S. Navier-Stokes simulation of gas flow in micro devices. Journal of Micromechanics & Microengineering 2000;10:372-9. 32. Russell GB, Black WZ, Glezer A, Hartley JG. Computer modeling of flow and heat transfer in a MEMS based air microjet array impingement cooling device. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3906:201-6. 33. Sbalzarini IF, Muller S, Koumoutsakos P. Microchannel optimization using multiobjective evolution strategies. Evolutionary Multi Criterion Optimization. First International Conference, EMO 2001;1993:516-30. 34. Sharipov F. The pumping effect of growing and collapsing bubbles in a tube. Journal of Micromechanics & Microengineering 1999;9:402-13. 35. Shrewsbury PJ, Muller SJ, Liepmann D. Meshless analysis of steady-state electro-osmotic transport. Journal of Microelectromechanical Systems 2000;9:435-49. 36. Sugiura S, Nakajima M, Seki M. Modeling a microfluidic system using Knudsen's empirical equation for flow in the transition regime. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films 2001;19:358-64. 37. Tianhao Z, Feng C, Dewey AM, Fair RB, Chakrabarty K. Performance analysis of microelectrofluidic systems using hierarchical modeling and simulation. IEEE Transactions on Circuits & Systems II Analog & Digital Signal Processing 2001;48:482-91. 38. Vargo SE, Muntz EP. Prediction of mixing of two parallel gas streams in a microchannel using the direct simulation Monte Carlo method. AIP. American Institute of Physics Conference Proceedings, no 2001;585:510-17. 39. Veijola T, Turowski M. Compact damping models for laterally moving microstructures with gas-rarefaction effects. Journal of Microelectromechanical Systems 2001;10:263-73. 40. Wagner F, Hoffmann PW. Taylor dispersion of a solute in a microfluidic channel. Journal of Applied Physics 2001;89:4667-9. 41. Wilkinson M. Microsystems: how to access the technology. Medical Device Technology 2000;11:24, 28, 30. 42. Xu D, Ng TY, Pan LS, Lam KY, Hua L. Numerical simulations of fully developed turbulent liquid flows in micro tubes. Journal of Micromechanics & Microengineering 2001;11:175-80.

THERMAL CONTROL DEVICES

(1-11) 1. Bayt RL, Breuer KS. A silicon heat exchanger with integrated intrinsic-point heater demonstrated in a micropropulsion application. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:56-9.

Complete References Clin Chem 2002 48: 1620-1622

2. Dai J, Xu D, Khoo Boo C, Lam Khin Y. Transient temperature performance of an integrated micro-thermal system. Journal of Micromechanics & Microengineering 2000;10:466-76. 3. Hestroni G, Mosyak A, Segal Z. Nonuniform temperature distribution in electronic devices cooled by flow in parallel microchannels. IEEE Transactions on Components & Packaging Technologies 2001;24:16-23. 4. Kuan C, Jing-Yu C. A Joule-Thompson cooler fabricated from micro tubes of different diameters. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3795:248-58. 5. Linan J, Man W, Zohar Y. Micro jet array heat sink for power electronics. Technical Digest. IEEE International MEMS 1999;:165-70. 6. Ling Z, Banerjee SS, Jae-Mo K, et al. A micro heat exchanger with integrated heaters and thermometers. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:275-80. 7. Pan LS, Liu GR, Khoo BC, Song B. Heat-transfer analysis of microfabricated thermocapillary pumping and reaction devices. Journal of Micromechanics & Microengineering 2000;10:42-55. 8. Qiao R, Aluru NR. Design and fabrication of a cross flow micro heat exchanger. Journal of Microelectromechanical Systems 2000;9:502-8. 9. Shulin Z, Chuan-Hua C, Mikkelsen JC, Jr., Santiago JG. Active cooling of integrated circuits and optoelectronic devices using a micro configured thermoelectric and fluidic system. Itherm 2000;:134-9. 10. Stefanescu S, Mehregany M, Leland J, Yerkes K. Micro heat exchanger by using MEMS impinging jets. Technical Digest. IEEE International MEMS 1999;:171-6. 11. Unger K, Muller D, Lorenzen D, Daiminger F. Controlling diode laser bar temperature by micro channel liquid cooling. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3825:80-91.

II. MICROFLUIDICS

GENERAL

(1-142) 1. Abrantes M, Magone MT, Boyd LF, Schuck P. Adaptation of a surface plasmon resonance biosensor with microfluidics for use with small sample volumes and long contact times. Anal Chem 2001;73:2828-35. 2. Bachman M, Chiang YM, Chu C, Li GP. Effects of rectangular microchannel aspect ratio on laminar friction constant. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:147-58. 3. Baechi D, Buser R, Dual J. From micro- to nanoparticle manipulation. Journal of Nanoparticle Research 2000;2:393-9. 4. Baldock SJ, Goddard NJ, Fielden PR. Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection. Biomedical Microdevices 2001;3:191-200. 5. Barbic M, Mock JJ, Gray AP, Schultz S. Electromagnetic micromotor for microfluidics applications. Applied Physics Letters 2001;79:1399-401. 6. Barker SL, Ross D, Tarlov MJ, Gaitan M, Locascio LE. Control of flow direction in microfluidic devices with polyelectrolyte multilayers. Anal Chem 2000;72:5925-9. 7. Beard DA. Response to "Comment on `Taylor dispersion of a solute in a microfluidic channel' [J. Appl. Phys. 90, 6553 (2001)]". Journal of Applied Physics 2001;90:6555-6.

Complete References Clin Chem 2002 48: 1620-1622

8. Blom MT, Chmela E, Gardeniers JGE, et al. Local anodic bonding of Kovar to Pyrex aimed at high-pressure, solvent-resistant microfluidic connections. Journal of Micromechanics & Microengineering 2001;11:382-5. 9. Bohm S, Olthuis W, Bergveld P. Micro-systems in biomedical applications. Journal of Micromechanics & Microengineering 2000;10:235-44. 10. Bousse L. Electrokinetic microfluidic systems. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3874:2-8. 11. Brahmasandra SN, Johnson BN, Webster JR, Burke DT, Mastrangelo CH, Burns MA. Design of microfluidic sample preconditioning systems for detection of biological agents in environmental samples. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:252-9. 12. Brazzle JD, Mohanty S, Frazier AB. A micro fluidic system of microchannels with on-site sensors by silicon bulk micromachining. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:267-72. 13. Brazzle J, Bartholomeusz D, Davies R, Andrade J, van Wagenen RA, Frazier AB. Active microneedles with integrated functionality. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:199-202. 14. Cabrera CR, Finlayson B, Yager P. Formation of natural pH gradients in a microfluidic device under flow conditions: model and experimental validation. Analytical Chemistry 2001;73:658-66. 15. Cai H, Zhou Z, Li Y, Ye X, Yang Y. Screening of single Escherichia coli by electric field and laser tweezer. 1997;:155-60. 16. Chang-Jin K. Chemo- and biosensor microsystems for clinical applications. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3539:46-50. 17. Chang-Jin K. Microfluidics using the surface tension force in microscale. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:49-55. 18. Chi-Hoon J, Chang-Auck C, Won-Ick J, Youn Tae K. Silicon surface micromachining of a deep vacuum cavity structure and its application to a microflow sensor. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4174:164-71. 19. Chiang YM, Bachman M, Chu C, Li GP. Electrokinetic microfluidic systems. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3879:2-8. 20. Chu ZK-H. A low-pressure encapsulated resonant fluid density sensor with feedback control electronics: Slip flow in an annulus with corrugated walls. Measurement Science & Technology 2000;11:205-11. 21. Chuang-Chia L, Ghodssi R, Ayon AA, et al. Manipulation of a round jet with electromagnetic flap actuators. Technical Digest. IEEE International MEMS 1999;:534-40. 22. Conway P. Microfluidics enabled drug discovery-high throughput synthesis and screening. Abstracts of the Interscience Conference on Antimicrobial Agents & Chemotherapy 1997;371997:388. 23. Cousseau P, Hirschi R, Frehner B, Gamper S, Maillefer D. Improved micro-flow regulator for drug delivery systems. Technical Digest. MEMS 2001;:527-30. 24. Cui L, Morgan H. The flow structure inside a microfabricated inkjet printhead. Journal of Microelectromechanical Systems 2000;9:67-75.

Complete References Clin Chem 2002 48: 1620-1622

25. Cummings EB, Griffiths SK, Nilson RH. Hydrophobic microfluidics. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:210-20. 26. Damean N, Regtien PPL. Electrokinetic microfluidic systems. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3878:2-8. 27. Damean N, Regtien PPL. Investigations into the flow characteristics of hexagonal ducts etched in <100> silicon. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:142-53. 28. Darhuber AA, Troian SM, Reisner WW. Dynamics of capillary spreading along hydrophilic microstripes. Physical Review E. Statistical Physics, Plasmas, Fluids, & Related Interdisciplinary Topics 2001;64:1-8. 29. Delamarche E, Bernard A, Schmid H, Michel B, Biebuyck H. Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 1997;276:779-81. 30. Dodge A, Fluri K, Verpoorte E, de Rooij NF. Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays. Analytical Chemistry 2001;73:3400-9. 31. Dutta P, Beskok A. Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects. Anal Chem 2001;73:1979-86. 32. Eijkel JCT, Kwok YC, Manz A. Wavelet transform for Shah-convolution velocity measurements of single particles and solutes in a microfluidic chip. Lab on a Chip 2001;1:122-126. 33. Elders J, Spiering V, Walsh S. Microsystems technology (MST) and MEMS applications: an overview. MRS Bulletin 2001;26:312-15. 34. Facer GR, Notterman DA, Sohn LL. Dielectric spectroscopy for bioanalysis: From 40 Hz to 26.5 GHz in a microfabricated wave guide. Applied Physics Letters 2001;78:996-8. 35. Galambos P, Zavadil K, Shul R, Willison CG, Miller S. Numerical and experimental study of capillary forces in trapezoid microgrooves. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:295-302. 36. Gourley PL, McDonald AE. Applications for microfluidic components. Wescon 1997;:330-3. 37. Granzow R. The use of surface plasmon resonance, microfluidics and surface chemistry to follow biospecific interactions. Glycobiology 1992;2:461. 38. Gunji M, Jones TB, Washizu M. DEP microactuation of liquids. Technical Digest. MEMS 2001;:385-8. 39. Gwo-Bin L, Chen IH, Bin-Jo K, Guan-Ruey H, Bao-Herng H, Hui-Fang L. In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Applied Physics Letters 2001;79:1021-3. 40. Hagood NW, Roberts DC, Saggere L, et al. Micro-hydraulic transducer technology for actuation and power generation. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;3985:680-8. 41. Halstenberg S, Quinte A, Eggert H, Schon C, Peters RP. A micromachined Xenon flow regulator for space applications. Microelectronic Engineering 2000;53:1-4. 42. Handley J. Gradients from a microfluidic "Christmas tree". Analytical Chemistry 2001;73:187A-188A. 43. Harris KD, Brett MJ, Smy TJ, Backhouse C. Microchannel surface area enhancement using porous thin films. Journal of the Electrochemical Society 2000;147:2002-6.

Complete References Clin Chem 2002 48: 1620-1622

44. Harris C, Despa M, Kelly K. Miniature flowmeter with electronic temperature compensation. Revista Espanola de Electronica 2000;550:66-8. 45. Hediger S, Sayah A, Gijs MAM. MEMS actuators based on smart film materials. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3514:136-46. 46. Helvajian H, Fuqua PD, Hansen WW, Janson SW. Electroosmotic flow control in microchannels produced by scanning excimer laser ablation. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4088:337-40. 47. Helvajian H, Fuqua PD, Hansen WW, Janson S. Shear-induced molecular precession in a hexatic Langmuir monolayer: Laser microprocessing for nanosatellite microthruster applications. Nature 2001;410:348-51. 48. Henning AK. A particle image velocimetry system for microfluidics. Experiments in Fluids 1998;25:316-19. 49. Henning AK, Cozad B, Lawrence E, Arkilic EB, Harris JM. Practical aspects of micromachined gas distribution systems for semiconductor processing. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:251-62. 50. Ho CM. Fluidics-the link between micro and nano sciences and technologies. Technical Digest. MEMS 2001;:375-84. 51. Hosokawa K, Fujii T, Endo I. A micro reaction tool for heterogeneous catalytic gas phase reactions. Technical Digest. IEEE International MEMS 1999;:394-9. 52. Hosokawa K, Maeda R. A shuttered probe with in-line flowmeters for chronic in-vivo drug delivery. Technical Digest. MEMS 2001;:212-15. 53. Hyvarinen J, Soderkvist J. Aeroelasticity-the interplay between fluids and solids. Journal of Micromechanics & Microengineering 2001;11:416-22. 54. Il-Seok S, Lal A, Hubbard B, Olsen T. A multifunctional silicon-based microscale surgical system. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:206-9. 55. Jacquorie M, Kreutz EW, Poprawe R. Microstructuring of glass with excimer laser radiation at different processing gas atmospheres for microreaction technology. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;3888:272-9. 56. Jiangtao P, Quanbo Z, Zhimin T, Xin Q, Litian L, Zhijian L. Coherent, wavelength-tunable ultrasonic acoustic modes stimulated in optical fiber, microcapillaries, and planar microfluidic networks using crossed-picosecond laser pulses. Journal of Applied Physics 1999;86:2959-66. 57. Jo BH, Beebe DJ. Generation of large area microscale manifolds using excimer laser ablation. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:240-7. 58. Johnson K, Vander Wilp W, Karanassios V. Micro-fluidics in environmental monitoring: liquid micro-samples by an in-torch vaporization - micro-plasma device (ITV-MPD). SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2001;4205:347-52. 59. Jones F, Besser RS, Qing D, Fang J, Elmore B, Cui T. Experimental system for the study of gas-solid heterogeneous catalysis in microreactors. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:124-31. 60. Jones TB, Gunji M, Washizu M, Feldman MJ. Dielectrophoretic liquid actuation and nanodroplet formation. Journal of Applied Physics 2001;89:1441-8.

Complete References Clin Chem 2002 48: 1620-1622

61. Kamholz AE, Weigl BH, Finlayson BA, Yager P. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Analytical Chemistry 1999;71:5340-7. 62. Kang TG, Seo KS, Cho YH, Baek OH, Hwang WL, Moon JH. A long-stroke thermopneumatic actuator for application to microflow and pressure regulation. Actuator 1998;98:62-5. 63. Kempe V. From the IC to the microsystem. E&I Elektrotechnik und Informationstechnik 1999;116:509-21. 64. Koch M, Evans AGR, Brunnschweiler A. Microsieves made with laser interference lithography for micro-filtration applications. Journal of Micromechanics & Microengineering 1999;9:170-2. 65. Kozuka T, Tuziuti T, Mitome H, Fukuda T. A micromachined single-crystal silicon flow sensor with a cantilever paddle. 1997;:225-9. 66. Krishnaswamy M, McMullin JN, Keyworth BP, Broughton JN. Semiconductor microlasers with intracavity microfluidics for biomedical applications. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1997;2978:186-96. 67. Kwok YC, Jeffery NT, Manz A. Velocity measurement of particles flowing in a microfluidic chip using Shah convolution Fourier transform detection. Analytical Chemistry 2001;73:1748-1753. 68. Laurell T, Wallman L, Nilsson J. Study on the viscosity of the liquid flowing in microgeometry. Journal of Micromechanics & Microengineering 1999;9:377-84. 69. Ledermann N, Baborowski J, Muralt P, Xantopoulos N, Tellenbach JM. Particle imaging technique for measuring the deformation rate of hydrogel microstructures. Applied Physics Letters 2000;76:3310-12. 70. Lee SYK, Man W, Zohar Y. Gas flow in microchannels with bends. Journal of Micromechanics & Microengineering 2001;11:635-44. 71. Lee J, Moon H, Fowler J, Chang-Jin K, Schoellhammer T. Addressable micro liquid handling by electric control of surface tension. Technical Digest. MEMS 2001;:499-502. 72. Linan J, Man W, Yitshak Z. Forced convection boiling in a microchannel heat sink. Journal of Microelectromechanical Systems 2001;10:80-7. 73. Lipman J. Microfluidics puts big labs on small chips. Edn 1999;44:79-80. 74. Madou MJ, Lu Y, Lai S, Juang Y, Lee LJ, Daunert S. A novel design on a CD disc for 2-point calibration measurement. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:191-4. 75. Matson DW, Martin PM, Tonkovich ALY, Roberts GL. Hybrid micro dosing system. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3514:415-23. 76. Mehta A, Cherian S, Hedden D, Thundat T. Manipulation and controlled amplification of Brownian motion of microcantilever sensors. Applied Physics Letters 2001;78:1637-9. 77. Meinhart CD, Wereley ST, Gray MHB. Volume illumination for two-dimensional particle image velocimetry. Measurement Science & Technology 2000;11:809-14. 78. Mitchell MJ, Aluru NR. Chemical concentrator for rapid vapor detection. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3710:1-2. 79. Mitchell P. Microfluidics--downsizing large-scale biology. Nature Biotechnology 2001;19:717-21.

Complete References Clin Chem 2002 48: 1620-1622

80. Mogensen KB, Friis P, Hubner J, et al. Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems. Optics Letters 2001;26:716-18. 81. Moorthy J, Khoury C, Stremler MA, Moore JS, Beebe DJ. Dependence of TiO/sub 2/ film size and shape for light activated flow control in microchannels. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:65-8. 82. Mueller J, Chakraborty I, Vargo S, et al. Studies on microfluidic systems and related topics. Freund Publishing House. International Journal of Nonlinear Sciences & Numerical Simulation 2000;1:437-44. 83. Muller SD, Sbalzarini IF, Walther JH, Koumoutsakos PD. Evolution strategies for the optimization of microdevices. Proceedings of the 2001;:302-9. 84. Ohigashi R, Tsuchiya K, Mita Y, Fujita H. Micro capillaries array head for direct drawing of fine patterns. Technical Digest. MEMS 2001;:389-92. 85. Okulan N, Henderson HT, Ahn CH. A pulsed mode micromachined flow sensor with temperature drift compensation. IEEE Transactions on Electron Devices 2000;47:340-7. 86. Osterbroek RE, Berenschot JW, Schlautmann S, Lammerink TSJ, van den Berg A, Elwenspoek MC. In-plane oriented fluid control components, fabricated with new etching techniques. Actuator 1998;98:43-6. 87. Ota M, Nakao T, Sakamoto M. Numerical simulation of molecular motion around laser microengine blades. Elsevier. Mathematics & Computers in Simulation 2001;55:1-3. 88. Pang J, Zhan C, Tan Z, Qian X, Liu L, Li Z. Microfluidic MEMS for semiconductor processing. IEEE. IEEE Transactions on Components Packaging & Manufacturing Technology Part B Advanced Packaging 1998;21:329-37. 89. Panneer Selvam R, Khater J, Leland JE, Ponnappan R. Surface roughness measurement on microchannels by atomic force microscopy using a bent tapered fiber probe. Review of Scientific Instruments 2000;71:3953-4. 90. Papageorgiou D, Bledsoe SC, Gulari M, Hetke JF, Anderson DJ, Wise KD. Novel applications of thermally controlled microbubble driving system. Technical Digest. MEMS 2001;:286-9. 91. Paulus A, Williams SJ, Sassi AP, Pin K, Hongdong T, Hooper HH. Parallel sample manipulation using micromachined pipette arrays. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:104-14. 92. Peters D, Laur R. Micro-optical fluidic analysis system for environmental and quality control. MICRO SYSTEM Technologies 1998;98:189-94. 93. Polson NA, Hayes MA. Microfluidics: controlling fluids in small places. Anal Chem 2001;73:312A-319A. 94. Qing Y, Bauer JM, Moore JS, Beebe DJ. MEMS demand new package designs. Electronic Packaging & Production 2001;41:52-4. 95. Quandt E. Performance of MEMS-based gas distribution and control systems for semiconductor processing. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3514:159-70. 96. Reed HA, White CE, Rao V, Allen SAB, Henderson CL, Kohl PA. Robust microfabricated field-effect sensor for monitoring molecular adsorption in liquids. Applied Physics Letters 2001;79:3875-7. 97. Richter K, Orfert M, Howitz S, Thierbach S. Recent developments in micromachined silicon. Electronics & Communication Engineering Journal 1999;11:261-70. 98. Rife JL, Bell MI, Horwitz JS, Kabler MN, Auyeung RCY, Kim WJ. Towards micropropulsion systems on-a-chip: initial results of component feasibility studies. 2000;:149-68.

Complete References Clin Chem 2002 48: 1620-1622

99. Ring-Ling C, Parce JW. Chemical efficiency of reactive microflows with heterogeneous catalysis: A lattice Boltzmann study. European Physical Journal Applied Physics 2001;16:71-84. 100. Ross D, Gaitan M, Locascio LE. Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Analytical Chemistry 2001;73:4117-23. 101. Ruzicka J, Hansen EH. Flow injection analysis: from beaker to microfluidics. Analytical Chemistry 2000;72:212A-217A. 102. Sadler DJ, Liakapoulos TM, Ahn CH. Gas mixture analysis using silicon micro-reactor systems. Journal of Microelectromechanical Systems 2000;9:478-84. 103. Sammarco TS, Burns MA. Manufacture of an optical effector using silicon micro-machining. Journal of Micromechanics & Microengineering 2000;10:56-63. 104. Sang-Wook L, Hyeon-Cheol K, Keon K, Yong-Soo O. A monolithic inkjet print head: DomeJet. Technical Digest. MEMS 2001;:515-18. 105. Sanjoh A, Tsukihara T. Silicon wafer bonding: key to MEMS high-volume manufacturing. Sensors 1998;15:24-30. 106. Santiago JG. Electroosmotic flows in microchannels with finite inertial and pressure forces. Analytical Chemistry 2001;73:2353-65. 107. Schabmueller CG, Evans AGR, Brunnschweiler A, Ensell G, Leslie DL, Lee MA. Miniaturized real-time monitoring system for L-lactate and glucose using microfabricated multi-enzyme sensors. Biosensors & Bioelectronics 2000;15:9-10. 108. Schasfoort RBM, Schlautmann S, Hendrikse J, van den Berg A. Field-effect flow control for microfabricated fluidic networks. Science 1999;286:942-5. 109. Schwesinger N. Modular microcomponents for a flexible chemical process technology. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:65-71. 110. Shen Z, Park H, Chen JM, Tian Y, Lanzillotto AM. Molecular tagging velocimetry for microfluid applications. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:195-8. 111. Shrewsbury PJ, Muller SJ, Liepmann D. Selective surface modification in silicon microfluidic channels for micromanipulation of biological macromolecules. Biomedical Microdevices 2001;3:239-44. 112. Singh AK, Cummings EB, Throckmorton DJ. Fluorescent liposome flow markers for microscale particle-image velocimetry. Analytical Chemistry 2001;73:1057-61. 113. Soerensen O, Drese KS, Ehrfeld W, Hartmann HJ. Sequential injection separation and sensing. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3857:70-3. 114. Su YC, Lin L, Pisano AP. Water-powered, osmotic microactuator. Technical Digest. MEMS 2001;:393-6. 115. Suzuki H, Kasagi N, Suzuki Y, Shima H. Microfluidics and bioanalysis systems: issues and examples. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2000;20:1692-7. 116. Tabib-Azar M, Sutapun B. A novel, highly scalable and very high-torque micromotor for MEMS and MOEMS applications using the mechanical rectification of oscillatory motion. Actuator 1998;98:156-9. 117. Tabourier P, Druon C, Rolando C, Lefebvre P. Technologies and devices for micro chemical systems. Mst News 2000;4:10-12.

Complete References Clin Chem 2002 48: 1620-1622

118. Tai-Ran H. MEMS demand new package designs. Semiconductor International 2001;24:93-4. 119. Tai-Ran H. Surface-directed liquid flow inside microchannels. Science 2001;291:1023-6. 120. Tang WC, Lee AP. Defense applications of MEMS. MRS Bulletin 2001;26:318-19. 121. Tay FEH, Choong WO, Liu H, Xu GL. A new approach to on-site liquid analysis. Sensors & Materials 2000;12:57-68. 122. Taylor MT, Belgrader P, Furman BJ, Pourahmadi F, Kovacs GT, Northrup MA. Lysing bacterial spores by sonication through a flexible interface in a microfluidic system. Analytical Chemistry 2001;73:492-6. 123. Thorsen T, Roberts RW, Arnold FH, Quake SR. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters 2001;86:4163-6. 124. Tokeshi M, Sato K, Kitamori T. Multiport flow-control system for lab-on-a-chip microfluidic devices. Fresenius Journal of Analytical Chemistry 2001;371:106-11. 125. Tolfree DW, O'Neill W, Tunna L, Sutcliffe C. Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied Physics Letters 2000;77:1725-6. 126. Tondra M, Granger M, Fuerst R, et al. Variation of etch profile and surface properties during patterning of silicon substrates. Surface & Coatings Technology 2001;142:797-802. 127. Torkkeli A, Saarilahti J, Haara A, Harma H, Soukka T, Tolonen P. Electrostatic transportation of water droplets on superhydrophobic surfaces. Technical Digest. MEMS 2001;:475-8. 128. Urban GA, Jobst G, Moser I. Microflow devices for miniaturized chemical analysis systems. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3539:51-61. 129. Vandelli N, Wroblewski D, Velonis M, Bifano T. Research on microfluid handling systems. IES Journal 1998;38:7-14. 130. Wapner PG, Hoffman WP. A closed-loop controlled electrochemically actuated micro-dosing system. Journal of Micromechanics & Microengineering 2000;10:498-504. 131. Wen-Hwa C, Chin R, Huen T, Ferrari M. Precise automated control of fluid volumes inside glass capillaries. Journal of Microelectromechanical Systems 1999;8:71-7. 132. Wilding P, Pfahler J, Bau HH, Zemel JW, Kricka LJ. Manipulation and flow of biological fluids in straight channels micromachined in silicon. Clinical Chemistry 1994;40:43-47. 133. Wing Yin L, Wong M, Zohar Y. Flow separation in constriction microchannels. Technical Digest. MEMS 2001;:495-8. 134. Xu B, Ool KT, Wong TN, Liu CY. Non-isothermal gas flow through rectangular microchannels. Journal of Micromechanics & Microengineering 1999;9:394-401. 135. Yager P, Afromowitz MA, Bell D, et al. Planar bio/magnetic bead separator with microfluidic channel. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:260-7. 136. Yang LJ, Kang SW. Silicon nitride membranes for filtration and separation. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:273-83. 137. Yi-Kuen L, Deval J, Tabeling P, Chih-Ming H. Chaotic mixing in electrokinetically and pressure driven micro flows. Technical Digest. MEMS 2001;:483-6.

Complete References Clin Chem 2002 48: 1620-1622

138. Yin Z-Z, Pang J-T, Xu N, et al. Electrokinetic microfluidic systems. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:2-8. 139. Young-So S, Tsao A, Anslyn EV, McDevitt JT, Shear JB, Neikirk DP. Liquid flow through an array-based chemical sensing system. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:212-19. 140. Yu-Cheng L, Wei-Da W. Analysis and testing of a fluidic vortex microdiode. Journal of Micromechanics & Microengineering 2001;11:108-12. 141. Yuk Kwan Lee S, Wong M, Zohar Y. Pressure losses in microchannels with bends. Technical Digest. MEMS 2001;:491-4. 142. Zhang T, Dewey A, Fair R. Design and development of a silicon microfabricated flow-through dispenser for on-line picolitre sample handling. Journal of Micromechanics & Microengineering 1999;9:369-76.

MIXING

(1-14) 1. Bertsch A, Heimgartner S, Cousseau P, Renaud P. 3D micromixers-downscaling large scale industrial static mixers. Technical Digest. MEMS 2001;:507-10. 2. Bessoth FG, de Mello AJ, Manz A. Microstructure for efficient continuous flow mixing. Anal. Comm. 1999;36:213-215. 3. Desmukh AA, Liepmann D, Pisano AP. Continuous micromixer with pulsatile micropumps. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:73-6. 4. Franz AJ, Jensen KF, Schmidt MA. Droplet-based nano/picoliter mixer using hydrophobic microcapillary vent. Technical Digest. IEEE International MEMS 1999;:388-93. 5. He B, Burke BJ, Zhang X, Zhang R, Regnier FE. A picoliter-volume mixer for microfluidic analytical systems. Analytical Chemistry 2001;73:1942-7. 6. Jin-Woo C, Ahn CH. Active microfluidic mixer for mixing of microparticles and liquids. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:154-61. 7. Jin-Woo C, Ahn CA. An active micro mixer using electrohydrodynamic (EHD) convection for microfluidic-based biochemical analysis. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:52-5. 8. Junghoon L, Chang-Jin K. Passive mixing in a three-dimensional serpentine microchannel. Journal of Microelectromechanical Systems 2000;9:190-7. 9. Kakuta M, Bessoth FG, Manz A. Microfabricated devices for fluid mixing and their application for chemical synthesis. Chemical Record 2001;1:395-405. 10. Liu Y, Wipf DO, Henry CS. Conductivity detection for monitoring mixing reactions in microfluidic devices. Analyst 2001;126:1248-51. 11. Ruano JM, Ortega D, Bonar JR, et al. Improved characterization technique for micromixers. Journal of Micromechanics & Microengineering 1999;9:156-8. 12. Schabmueller CGJ, Koch M, Evans AGR, Brunnschweiler A. Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems. Journal of Micromechanics & Microengineering 1999;9:199-202.

Complete References Clin Chem 2002 48: 1620-1622

13. Stremler MA, Olsen MG, Jo BH, Adrian RJ, Aref H, Beebe DJ. Chaotic mixing in microfluidic systems. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:187-90. 14. Yang Z, Goto H, Matsumoto M, Maeda R. Active micromixer for microfluidic systems using lead-zirconate-titanate (PZT)-generated ultrasonic vibration. Electrophoresis 2000;21:116-9.

VALVES

(1-23) 1. Alarie JP, Jacobson SC, Culbertson CT, Ramsey JM. Effects of the electric field distribution on microchip valving performance. Electrophoresis 2000;21:100-6. 2. Baechi D, Dual J, Buser R. A high density microchannel network with integrated valves and photodiodes. Technical Digest. MEMS 2001;:463-6. 3. Chaudhari AM, Woudenberg TM, Albin M, Goodson KE. Development of a MEMS microvalve array for fluid flow control. Journal of Microelectromechanical Systems 1998;7:395-403. 4. Christel LA, Petersen K, McMillan W, Kovacs GTA. Contoured elastic-membrane microvalves for microfluidic network integration biochemical/biological processing application. Journal of Biomechanical Engineering 1999;121:2-6. 5. Feustel A, Krusemark O, Muller J. Piezoelectric membrane pump with integrated ball valves. Actuator 1998;98:39-42. 6. Gravesen P, Branebjerg J, Jensen OS. Active valves and pumps for microfluidics. Journal of Micromechanics & Microengineering 1993;3:216-18. 7. Jiang L, Wong M, Zohar Y. An integrated liquid mixer/valve. Journal of Microelectromechanical Systems 2000;9:295-302. 8. Jun X, Xing Y, Xuan-Qi W, Yu-Chong T. Surface micromachined leakage proof Parylene check valve. Technical Digest. MEMS 2001;:539-42. 9. Matsumoto S, Klein A, Maeda R. A practical thermopneumatic valve. Technical Digest. IEEE International MEMS 1999;:147-52. 10. Papavasilliou AP, Liepmann D, Pisano AP. Electrolysis-bubble actuated gate valve for insulin injection application. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:48-51. 11. Przekwas AJ, Yang HQ, Athavale MM. Computational design of membrane pumps with active/passive valves for microfluidic MEMS. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3680:1-2. 12. Rich CA, Wise KD. Development of bi-directional valve-less micropump for liquid. Technical Digest. IEEE International MEMS 1999;:141-6. 13. Roberts DC, Hagood NW, Su Y, Li H, Carretero JA. Design of a piezoelectrically-driven hydraulic amplification microvalve for high-pressure, high-frequency applications. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;3985:616-28. 14. Sadler DJ, Liakopoulos TM, Cropp J, Ahn CH, Henderson HT. Liquid and gas-liquid phase behavior in thermopneumatically actuated microvalves. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:53-63.

Complete References Clin Chem 2002 48: 1620-1622

15. Schaible J, Messner S, Muller M, Fuchs N, Sandmaier H, Zengerle R. An 8-bit microflow controller using pneumatically-actuated microvalves for semiconductor process gases. Technical Digest. IEEE International MEMS 1999;:130-4. 16. Schwesinger N, Bechtel S. Prototype microvalve using a new magnetic microactuator. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:46-52. 17. Takahashi K, Yoshino K, Hatano S, Nagayama K, Asano T. Responsive biomimetic hydrogel valve for microfluidics. Applied Physics Letters 2001;78:2589-91. 18. Tesar V. Microfluidic valves for flow control at low Reynolds numbers. Journal of Visualization 2001;4:51-60. 19. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000;288:113-6. 20. Whelan J. Microscale valves drive progress in microfluidics. Drug Discov Today 2001;6:1134-1135. 21. Wu CH, Scampavia L, Ruzicka J, Zamost B. Micro sequential injection: fermentation monitoring of ammonia, glycerol, glucose, and free iron using the novel lab-on-valve system. Analyst 2001;126:291-7. 22. Young AM, Bloomstein TM, Palmacci ST. Contoured elastic-membrane microvalves for microfluidic network integration. Journal of Biomechanical Engineering 1999;121:2-6. 23. Yuen PK, Kricka LJ, Wilding P. Semi-disposable microvalves for use with microfabricated devices or microchips. Journal of Micromechanics and Microengineering 2000;:401-409.

PUMPS

(1-15) 1. Accoto D, Carrozza MC, Dario P. Experimental study on thermally actuated micropump. Journal of Functional Materials & Devices 2000;6:65-70. 2. Ajdari A. Pumping liquids using asymmetric electrode arrays. Physical Review E. Statistical Physics, Plasmas, Fluids, & Related Interdisciplinary Topics 2000;61. 3. Brazzle JD, Papautsky I, Frazier AB. Acousto- and electroosmotic microfluidic controllers. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:125-35. 4. Harada T, Sasaki Y, Kouno A. Development of high-power micropump. Transactions of the Institute of Electronics, Information & Communication Engineers C II 1999;:551-6. 5. Harrison DJ, Manz A, Glavina PG. Electroosmotic pumping within a chemical sensor system integrated on silicon. Transducers '91, Digest of Technical Papers 1991;:792-795. 6. Ikuta K, Hasegawa T, Adachi T. SMA micro pumps and switching valves for biochemical IC family. MHS2000. Proceedings of 2000;:169-74. 7. Kashani R, Kang S, Hallinan KP. Electrohydrodynamic pumped hydraulic actuation with application to active vibration control. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3675:180-9. 8. Kashani R, Kang S, Hallinan KP. Micro-scale electrohydrodynamic pumped high performance actuation. Technomic Publishing. Journal of Intelligent Material Systems & Structures 2000;11:343-50.

Complete References Clin Chem 2002 48: 1620-1622

9. Laritz C, Pagel L. An intelligent micro-fluidic system for drug delivery. Proceedings of IEEE International Conference on Industrial Technology 2000;:70-5. 10. Linnemann R, Richter M, Leistner A, Woias P. A full-wafer mounted self-priming and bubble-tolerant piezoelectric silicon micropump. Actuator 1998;98:78-81. 11. Lissorgues G, Sevely L, Francais O, et al. Initial results from the first MEMS fabricated thermal transpiration-driven vacuum pump. AIP. American Institute of Physics Conference Proceedings 2001;585:502-9. 12. Manz A, Harrison DJ, Fettinger JC, Verpoorte EMJ, Lüdi H, Widmer HM. Integrated electroosmotic pumps and flow manifolds for total chemical analysis systems. Transducers '91, Digest of Technical Papers 1991;:939-941. 13. McKnight TE, Culbertson CT, Jacobson SC, Ramsey JM. Electroosmotically induced hydraulic pumping with integrated electrodes on microfluidic devices. Analytical Chemistry 2001;73:4045-9. 14. Xiaohao Z, Zhaoying Z, Xiongying Y, Yong L, Wendong Z. A PZT-driven micropump. MHA'98. Proceedings of the 1998;:269-72. 15. Xu N, Hu W-L, Guo Z-Y. Study on the efficiency of thermal actuated micropump. Journal of Functional Materials & Devices 2001;7:121-4.

III. APPLICATIONS

AMPLIFICATION REACTIONS

(1-53) 1. Belgrader P, Benett W, Hadley D, et al. Rapid pathogen detection using a microchip PCR array instrument. Clin Chem 1998;44:2191-4. 2. Belgrader P, Hansford D, Kovacs GT, et al. A minisonicator to rapidly disrupt bacterial spores for DNA analysis. Anal Chem 1999;71:4232-6. 3. Belgrader P, Okuzumi M, Pourahmadi F, Borkholder DA, Northrup MA. A microfluidic cartridge to prepare spores for PCR analysis. Biosensors & Bioelectronics 2000;14:849-52. 4. Brdicka R. [Bird's eye view of laboratories--report on symposia]. Cas Lek Cesk 1998;137:700-1. 5. Cantafora A, Blotta I, Bruzzese N, Calandra S, Bertolini S. Rapid sizing of microsatellite alleles by gel electrophoresis on microfabricated channels: application to the D19S394 tetranucleotide repeat for cosegregation study of familial hypercholesterolemia. Electrophoresis 2001;22:4012-5. 6. Chen Y-H, Wang W-C, Young K-C, Chang T-T, Chen S-H. Plastic microchip electrophoresis for analysis of PCR products of hepatitis C virus. Clinical Chemistry 1999;45:1938-1943. 7. Cheng J, Shoffner MA, Hvichia GE, Kricka LJ, Wilding P. Thermal cycling and surface passivation of micromachined devices for PCR. Clinical Chemistry 1995;41:1367-1368. 8. Cheng J, Shoffner MA, Hvichia GE, Kricka LJ, Wilding P. Chip PCR. II. Investigation of different PCR amplification systems in microbabricated silicon-glass chips. Nucleic Acids Res 1996;24:380-5. 9. Cheng J, Shoffner MA, Mitchelson KR, Kricka LJ, Wilding P. Analysis of ligase chain reaction (LCR) products amplified in a silicon chip using entangled solution capillary electrophoresis (ESCE). Journal of Chromatography A 1996;732:151-158.

Complete References Clin Chem 2002 48: 1620-1622

10. Cheng J, Waters LC, Fortina P, et al. Degenerate oligonucleotide primed-polymerase chain reaction and capillary electrophoretic analysis of human DNA on microchip-based devices. Analytical Biochemistry 1998;256:101-106. 11. Foedinger M, Sunder-Plassmann G, Wagner Oswald F. Trends in molecular diagnostics. Wiener Klinische Wochenschrift 1999;111:315-319. 12. Fortina P, Cheng J, Kricka LJ, et al. DOP-PCR amplification of whole genomic DNA and microchip-based capillary electrophoresis. Methods Mol Biol 2001;163:211-9. 13. Fujita S-I, Senda Y, Nakaguchi S, Hashimoto T. Multiplex PCR using internal transcribed spacer 1 and 2 regions for rapid detection and identification of yeast strains. Journal of Clinical Microbiology 2001;39:3617-3622. 14. Gao DQ, Makroglou G, Liu S, et al. High-throughput di-nucleotide short tandem repeats (STR) genotyping by electrophoresis on microchip. International Genome Sequencing & Analysis Conference 1220;:60-61. 15. Giordano BC, Ferrance J, Swedberg S, Huhmer AFR, Landers JP. Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. Analytical Biochemistry 2001;291:124-132. 16. Giordano BC, Copeland ER, Landers JP. Towards dynamic coating of glass microchip chambers for amplifying DNA via the polymerase chain reaction. Electrophoresis 2001;22:334-40. 17. Henning AK, Firch JS, Harris JM, et al. Transient liquid crystal thermometry of microfabricated PCR vessel arrays. Journal of Microelectromechanical Systems 1998;7:345-55. 18. Hofgartner WT, Huhmer AF, Landers JP, Kant JA. Rapid diagnosis of herpes simplex encephalitis using microchip electrophoresis of PCR products. Clin Chem 1999;45:2120-8. 19. Hong JW, Fujii T, Seki M, Yamamoto T, Endo I. Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip. Electrophoresis 2001;22:328-33. 20. Huhmer AF, Landers JP. Noncontact infrared-mediated thermocycling for effective polymerase chain reaction amplification of DNA in nanoliter volumes. Anal Chem 2000;72:5507-12. 21. Ibrahim MS, Lofts RS, Jahrling PB, et al. Real-time microchip PCR for detecting single-base differences in viral and human DNA. Anal Chem 1998;70:2013-7. 22. Jiang G, Harrison DJ. mRNA isolation in a microfluidic device for eventual integration of cDNA library construction. Analyst 2000;125:2176-9. 23. Jing G, Zhang J, Zhu X, et al. Temperature control system for biochemical reactions in microchip-based devices. Tsinghua Science & Technology 2001;6:269-72. 24. Jovanovich S, Hadd A, Liu S, et al. Nanoscale preparation of DNA samples for a microchip-based DNA analysis system. International Genome Sequencing & Analysis Conference. [ print] 1220;:70. 25. Jovanovich Stevan B, Salas O, Hadd A, et al. Nanoscale preparation of DNA samples for a microchip-based DNA analysis system. Abstracts of Papers American Chemical Society. [ print] 2001;222. 26. Khandurina J, McKnight TE, Jacobson SC, Waters LC, Foote RS, Ramsey JM. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Analytical Chemistry 2000;72:2995-3000. 27. Kopp MU, Mello AJ, Manz A. Chemical amplification: continuous-flow PCR on a chip. Science 1998;280:1046-8. 28. Lagally ET, Medintz I, Mathies RA. Single-molecule DNA amplification and analysis in an integrated microfluidic device. Analytical Chemistry 2001;73:565-70.

Complete References Clin Chem 2002 48: 1620-1622

29. Medintz I, Wong WW, Berti L, et al. High-performance multiplex SNP analysis of three hemochromatosis-related mutations with capillary array electrophoresis microplates. Genome Res 2001;11:413-21. 30. Mikhailovich VM, Lapa SA, Gryadunov DA, et al. Detection of rifampicin-resistant Mycobacterium tuberculosis strains by hybridization and polymerase chain reaction on a specialized TB-microchip. Bull Exp Biol Med 2001;131:94-8. 31. Mitchelson Keith R, Cheng J, Kricka Larry J. The use of capillary electrophoresis for point-mutation screening. Trends in Biotechnology 1997;15:448-458. 32. Munro NJ, Snow K, Kant JA, Landers JP. Molecular diagnostics on microfabricated electrophoretic devices: from slab gel- to capillary- to microchip-based assays for T- and B-cell lymphoproliferative disorders. Clin Chem 1999;45:1906-17. 33. Munro NJ, Huhmer AF, Landers JP. Robust polymeric microchannel coatings for microchip-based analysis of neat PCR products. Anal Chem 2001;73:1784-94. 34. Nemoda Z, Ronai Z, Szekely A, et al. High-throughput genotyping of repeat polymorphism in the regulatory region of serotonin transporter gene by gel microchip electrophoresis. Electrophoresis 2001;22:4008-4011. 35. Proudnikov D, Timofeev E, Mirzabekov A. Immobilization of DNA in polyacrylamide gel for the manufacture of DNA and DNA-oligonucleotide microchips. Anal Biochem 1998;259:34-41. 36. Ross PL, Davis PA, Belgrader P. Analysis of DNA fragments from conventional and microfabricated PCR devices using delayed extraction MALDI-TOF mass spectrometry. Anal Chem 1998;70:2067-73. 37. Shoffner MA, Cheng J, Hvichia GE, Kricka LJ, Wilding P. Chip PCR (I). Surface passivation of micromachined devices for PCR. Nucleic Acids Research 1996;24:375-379. 38. Soper SA, Ford SM, Xu Y, et al. Nanoliter-scale sample preparation methods directly coupled to polymethylmethacrylate-based microchips and gel-filled capillaries for the analysis of oligonucleotides. J Chromatogr A 1999;853:107-20. 39. Strizhkov BN, Drobyshev AL, Mikhailovich VM, Mirzabekov AD. PCR amplification on a microarray of gel-immobilized oligonucleotides: detection of bacterial toxin- and drug-resistant genes and their mutations. Biotechniques 2000;29:844-8, 850-2, 854 passim. 40. Sung WC, Lee GB, Tzeng CC, Chen SH. Plastic microchip electrophoresis for genetic screening: the analysis of polymerase chain reactions products of fragile X (CGG)n alleles. Electrophoresis 2001;22:1188-93. 41. Tan H, Zhang N, Yeung ES. On-line coupling DNA amplification reactions with capillary array electrophoresis through fully automated microfluidics. Abstracts of Papers American Chemical Society 1998;215:37. 42. Tillib SV, Strizhkov BN, Mirzabekov AD. Integration of multiple PCR amplifications and DNA mutation analyses by using oligonucleotide microchip. Anal Biochem 2001;292:155-60. 43. Tillib SV, Mirzabekov AD. Advances in the analysis of DNA sequence variations using oligonucleotide microchip technology. Curr Opin Biotechnol 2001;12:53-8. 44. Turowski M, Chen Z, Przekwas A. Design, fabrication, and packaging of closed chamber PCR-chips for DNA amplification. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4019:362-9. 45. Vissing H, Nielsen AT, Noerholm M, et al. High throughput multiplex genotyping using chimeric LNA (Locked Nucleic Acids)/DNA oligos immobilized on a polymer microchip. American Journal of Human Genetics 2001;69:470. 46. Waters LC, Jacobson SC, Kroutchinina N, Khandurina J, Foote RS, Ramsey JM. Multiple sample PCR amplification and electrophoretic analysis on a microchip. Anal Chem 1998;70:5172-6.

Complete References Clin Chem 2002 48: 1620-1622

47. Waters LC, Jacobson SC, Kroutchinina N, Khandurina J, Foote RS, Ramsey JM. Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal Chem 1998;70:158-62. 48. Woolley AT, Lao K, Glazer AN, Mathies RA. Capillary electrophoresis chips with integrated electrochemical detection. Anal Chem 1998;70:684-8. 49. Xie W, Yang R, Xu J, Zhang L, Xing W, Cheng J. Microchip-based capillary electrophoresis systems. Methods Mol Biol 2001;162:67-83. 50. Yasuda K, Okano K, Ishiwata S. Focal extraction of surface-bound DNA from a microchip using photo-thermal denaturation. Biotechniques 2000;28:1006-11. 51. Yershov G, Barsky V, Belgovskiy A, et al. DNA analysis and diagnostics on oligonucleotide microchips. Proc Natl Acad Sci U S A 1996;93:4913-8. 52. Zasedateleva OA, Krylov AS, Sharonov AY, Mirzabekov AD. Double biological microchip: Use for investigation of biochemical reactions. Sensornye Sistemy. [ print] 2001;15:85-92. 53. Zhang N, Tan H, Yeung ES. Automated and integrated system for high-throughput DNA genotyping directly from blood. Analytical Chemistry 1999;71:1138-45.

CHROMATOGRAPHY

(1-15) 1. Blom MT, Tas NR, Pandraud G, et al. Failure mechanisms of pressurized microchannels: model and experiments. Journal of Microelectromechanical Systems 2001;10:158-64. 2. Bousse L. Integrated micro-optical fluorescence detection system for microfluidic electrochromatography. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3878:185-92. 3. Deshpande M, Ghaddar C, Gilbert JR, et al. Electrical conductivity particle detector for use in biological and chemical micro-analysis systems. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:230-41. 4. Eijkel JCT, Stoeri H, Manz A. A dc microplasma on a chip employed as an optical emission detector for gas chromatography. Analytical Chemistry 2000;72:2547-2552. 5. Gawron AJ, Martin RS, Lunte SM. Microchip electrophoretic separation systems for biomedical and pharmaceutical analysis. European Journal of Pharmaceutical Sciences 2001;14:1-12. 6. Henning AK. Biological transport in a microfabricated device: active immunochromatography with motorized antibodies. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:66-75. 7. Manginell RP, Frye-Mason GC, Kottenstette RJ, Lewis PR, Channy Wong C. Microfabricated planar preconcentrator. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:179-82. 8. Manz A, Miyahara Y, Miura J, Y.Watanabe Y, Miyagi H, Sato K. Design of an open-tubular column liquid chromatograph using silicon chip technology. Sens. Actuators 1990; B1:249-255. 9. O'Neill AP, O'Brien P, Alderman J, et al. On-chip definition of picolitre sample injection plugs for miniaturised liquid chromatography. J Chromatogr A 2001;924:259-63. 10. Ocvirk G, Verpoorte EMJ, Manz A, Grasserbauer M, Widmer HM. High performance liquid chromatography partly integrated onto a silicon chip. Anal. Methods Instrum. 1995;2:74-82.

Complete References Clin Chem 2002 48: 1620-1622

11. Regnier FE, He B, Lin S, Busse J. Chromatography and electrophoresis on chips: critical elements of future integrated, microfluidic analytical systems for life science. Ophthalmic Genetics 1999;17:101-6. 12. Rocklin RD, Ramsey RS, Ramsey JM. A microfabricated fluidic device for performing two-dimensional liquid-phase separations. Anal Chem 2000;72:5244-9. 13. von Heeren F, Verpoorte EMJ, Manz A, Thormann W. Rapid micellar electrokinetic chromatography separations on planar microstructures. Analytical Chemistry 1996;68,:2044-2053. 14. Wiranto G, Soegandi TMS, Muljono M, Widodo S, Hermida IDP. The design of a miniature injector for microengineered GC system. ICSE 2000;:85-9. 15. Yu C, Svec F, Frechet Jean MJ. Towards stationary phases for chromatography on a microchip: Molded porous polymer monoliths prepared in capillaries by photoinitiated in situ polymerization as separation media for electrochromatography. Electrophoresis 2000;21:120-127.

DNA ANALYSIS

(1-28) 1. Baba Y. [Ultrafast analysis of DNA by microchip and nanochip technology]. Tanpakushitsu Kakusan Koso 2000;45:76-85. 2. Becker H, Heim U, Rotting O. Microchips for DNA sequencing. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:82-7. 3. Buchholz BA, Doherty EA, Albarghouthi MN, Bogdan FM, Zahn JM, Barron AE. Microchannel DNA sequencing matrices with a thermally controlled "viscosity switch". Analytical Chemistry 2001;73:157-64. 4. Cheng J, Fortina P, Surrey S, Kricka LJ. Microchip-based devices for molecular diagnosis of genetic diseases. Molecular Diagnosis 1996;:1-18. 5. Cheng J, Fortina P, Surrey S, Kricka LJ, Wilding P. Microchip-based devices for molecular diagnosis of genetic diseases. Mol Diagn 1996;1:183-200. 6. Cheng J, Kricka LJ, Sheldon EL, Wilding P. Sample preparation in microstructured devices. Topics in Current Chemistry 1997;194:215-231. 7. Chou HP, Spence C, Scherer A, Quake S. A microfabricated device for sizing and sorting DNA molecules. Proceedings of the National Academy of Sciences of the United States of America 1999;96:11-13. 8. Craighead HG, Han J, Turner SW. Separation of DNA in microfluidic systems. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:26-8. 9. Eggers M, Ehrlich D. A review of microfabricated devices for gene-based diagnostics. Hematol Pathol 1995;9:1-15. 10. Esch MB, Locascio LE, Tarlov MJ, Durst RA. Detection of viable Cryptosporidium parvum using DNA-modified liposomes in a microfluidic chip. Analytical Chemistry 2001;73:2952-8. 11. Fan ZH, Mangru S, Granzow R, et al. Dynamic DNA hybridization on a chip using paramagnetic beads. Analytical Chemistry 1999;71:4851-9. 12. Forster AH, Krihak M, Swanson PD, Young TC, Ackley DE. A laminated, flex structure for electronic transport and hybridization of DNA. Biosensors & Bioelectronics 2001;16:187-94. 13. Frazier AB, Gale BK, Papautsky I. Cell-free mRNA translation in a microbiochemical reactor. 1997;:91-5.

Complete References Clin Chem 2002 48: 1620-1622

14. Gale BK, Caldwell KD, Frazier AB. On-chip DNA band detection in microfabricated separation systems. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1998;3515:242-51. 15. Gilles PN, Wu DJ, Foster CB, Dillon PJ, Chanock SJ. Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips. Nat Biotechnol 1999;17:365-70. 16. Han J, Craighead HG. From microfluidics to nanofluidics: DNA separation using nanofluidic entropic trap array device. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:42-8. 17. Hou-Pu C, Unger MA, Scherer A, Quake SR. Integrated elastomer fluidic lab-on-a-chip-surface patterning and DNA diagnostics. Technical Digest. Solid State Sensor and Actuator Workshop 2000;:111-14. 18. Koutny L, Schmalzing D, Salas-Solano O, et al. Eight hundred-base sequencing in a microfabricated electrophoretic device. Analytical Chemistry 2000;72:3388-91. 19. LeClair T, Harper A, Graham S, Ackley D. Flip chip interconnection of DNA chip devices. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3582:732-6. 20. McGlennen RC. Miniaturization technologies for molecular diagnostics. Clin Chem 2001;47:393-402. 21. Meldrum K. Microfluidics-based products for nucleic acid analysis. American Laboratory 1999;31:20-22. 22. Minalla AR, Bousse L. Characterization of microchip separations. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:134-41. 23. Mizukami Y, Rajniak D, Nishimura M. ACAPELLA-1K: a biomechatronic fluid handling system for genome analysis that processes 1000 samples in 8 hours. IEEE/ASME Transactions on Mechatronics 2000;5:212-20. 24. Mueller O, Hahnenberger K, Dittmann M, et al. A microfluidic system for high-speed reproducible DNA sizing and quantitation. Electrophoresis 2000;21:128-34. 25. Rusu C, van't Oever R, de Boer MJ, et al. Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers. Journal of Microelectromechanical Systems 2001;10:238-46. 26. Schmalzing D, Koutny L, Adourian A, Belgrader P, Matsudaira P, Ehrlich D. DNA typing in thirty seconds with a microfabricated device. Proceedings of the National Academy of Sciences of the United States of America 1997;94:10273-8. 27. Sundberg SA, Chow A, Nikiforov T, Wada HG. Microchip-based systems for target validation and HTS. Drug Discov Today 2000;5:92-103. 28. Zhang J, Jing G, Xu J, Cheng J, Zhou Y. Effect of flow on complex biological macromolecules in microfluidic devices. Biomedical Microdevices 2001;3:225-38.

ELECTROPHORESIS

(1-80) 1. Altria KD. Overview of capillary electrophoresis and capillary electrochromatography. J Chromatogr A 1999;856:443-63. 2. Amos L. Cell motility. Movements made visible by microchip technology. Nature 1987;330:211-2. 3. Andersson PE, Li PCH, Smith R, Szarka RJ, Harrison DJ. Biological cell assays on an electrokinetic microchip. Tranducers 1997;:1311-14.

Complete References Clin Chem 2002 48: 1620-1622

4. Arora A, De Mello Andrew J, Manz A. Sub-microliter electrochemiluminescence detector: A model for small volume analysis systems. Analytical Communications 1997;34:393-395. 5. Arora A, Eijkel JCT, Morf WE, Manz A. A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device. Anal. Chem. 2001;73:3282-3288. 6. Arundell M, Whalley PD, Manz A. Indirect fluorescence detection of phenolic compounds by capillary electrophoresis on a glass device. Fresenius J. Anal. Chem. 2000;367:686-691. 7. Attiya S, Jemere AB, Tang T, et al. Design of an interface to allow microfluidic electrophoresis chips to drink from the fire hose of the external environment. Electrophoresis 2001;22:318-27. 8. Becker H, Lowack K, Manz A. Planar quartz chips with submicron channels for two-dimensional capillary electrophoresis applications. J. Micromech. Microeng. 1998;8:24-28. 9. Berrill MG, McKenzie JS, Clark C. Design and fabrication of travelling wave dielectrophoresis structures. Journal of Micromechanics & Microengineering 2000;10:72-9. 10. Bousse L, Mouradian S, Minalla A, Yee H, Williams K, Dubrow R. Protein sizing on a microchip. Anal Chem 2001;73:1207-12. 11. Bruin GJ. Recent developments in electrokinetically driven analysis on microfabricated devices. Electrophoresis 2000;21:3931-51. 12. Cabrera CR, Yager P. Continuous concentration of bacteria in a microfluidic flow cell using electrokinetic techniques. Electrophoresis 2001;22:355-62. 13. Chiem NH, Harrison DJ. Monoclonal antibody binding affinity determined by microchip-based capillary electrophoresis. Electrophoresis 1998;19:3040-4. 14. Colyer CL, Mangru SD, Harrison DJ. Microchip-based capillary electrophoresis of human serum proteins. J Chromatogr A 1997;781:271-6. 15. Colyer CL, Tang T, Chiem N, Harrison DJ. Clinical potential of microchip capillary electrophoresis systems. Electrophoresis 1997;18:1733-41. 16. Colyer Christa L, Tang T, Chiem N, Harrison DJ. Clinical potential of microchip capillary electrophoresis systems. Electrophoresis 1997;18:1733-1741. 17. Crabtree HJ, Kopp MU, Manz A. Shah function convolution Fourier Transform detection: A concept applied to capillary electrophoresis and laser-induced fluorescence. Analytical Chemistry 1999;71: 2130-2138. 18. Crabtree HJ, Cheong EC, Tilroe DA, Backhouse CJ. Microchip injection and separation anomalies due to pressure effects. Anal Chem 2001;73:4079-86. 19. Cui L, Holmes D, Morgan H. The dielectrophoretic levitation and separation of latex beads in microchips. Electrophoresis 2001;22:3893-3901. 20. Dolnik V, Liu S, Jovanovich S. Capillary electrophoresis on microchip. Electrophoresis 2000;21:41-54. 21. Duke TAJ, Austin RH. Microfabricated sieve for the continuous sorting of macromolecules. Phys. Rev. Lett. 1998;80:1552-1555. 22. Effenhauser CS, Manz A, Widmer HM. Glass chips for high speed capillary electrophoresis separations with sub-micron plate heights. Analytical Chemistry 1993;65:2637-2642.

Complete References Clin Chem 2002 48: 1620-1622

23. Effenhauser CS, Paulus A, Manz A, Widmer HM. High speed separation of 'anti-sense' oligonucleotides on a micromachined capillary electrophoresis device. Analytical Chemistry 1994; 66:2949-2953. 24. Effenhauser CS, Manz A, Widmer HM. Manipulation of sample fractions on a capillary electrophoresis chip. Analytical Chemistry 1995;67:2284-2287. 25. Fang ZL, Fang Q. Development of a low-cost microfluidic capillary-electrophoresis system coupled with flow-injection and sequential-injection sample introduction (review). Fresenius Journal of Analytical Chemistry 2001;370:978-83. 26. Fu C-G, Fang Z-L. Combination of flow injection with capillary electrophoresis. Part 7. Microchip capillary electrophoresis system with flow injection sample introduction and amperometric detection. Analytica Chimica Acta 2000;422:71-79. 27. Gawron AJ, Martin RS, Lunte SM. Fabrication and evaluation of a carbon-based dual-electrode detector for poly(dimethylsiloxane) electrophoresis chips. Electrophoresis 2001;22:242-8. 28. Guijt RM, Baltussen E, van der Steen G, et al. Capillary electrophoresis with on-chip four-electrode capacitively coupled conductivity detection for application in bioanalysis. Electrophoresis 2001;22:2537-41. 29. Harrison DJ, Manz A, Fan Z, Lüdi H, Widmer HM. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Analytical Chemistry 1992;64:1926-1932. 30. Harrison DJ, Glavina PG, Manz A. Towards miniaturized electrophoresis and chemical analysis systems on silicon - an alternative to chemical sensors. Sensors and Actuators 1993;B10:107-116. 31. Harrison DJ, Flury K, Seiler K, Fan Z, Effenhauser CS, Manz A. Micromachining a miniaturized capillary electrophoresis based chemical analysis system on a chip. Science 1993;261:895-897. 32. Hilmi A, Luong JH. Electrochemical detectors prepared by electroless deposition for microfabricated electrophoresis chips. Anal Chem 2000;72:4677-82. 33. Hilmi A, Luong J, H. T. Micromachined electrophoresis chips with electrochemical detectors for analysis of explosive compounds in soil and groundwater. Environmental Science & Technology 2000;34:3046-3050. 34. Issaq HJ. A decade of capillary electrophoresis. Electrophoresis 2000;21:1921-39. 35. Jian Z, Gong TH. Micromachining technologies for capillary electrophoresis utilizing Pyrex glass etching and bonding. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4174:356-62. 36. Jiang G, Attiya S, Ocvirk G, Lee WE, Harrison DJ. Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis. Biosens Bioelectron 2000;14:861-9. 37. Jin LJ, Giordano BC, Landers JP. Dynamic labeling during capillary or microchip electrophoresis for laser-induced fluorescence detection of protein-SDS complexes without pre- or postcolumn labeling. Anal Chem 2001;73:4994-9. 38. Jin LJ, Ferrance J, Landers JP. Miniaturized electrophoresis: an evolving role in laboratory medicine. Biotechniques 2001;31:1332-5, 1338-1340, 1342, passim. 39. Jones TB. Liquid dielectrophoresis on the microscale. Journal of Electrostatics 2001;51:290-9. 40. Kamidate T, Kaide T, Tani H, Makino E, Shibata T. Effect of mixing modes on chemiluminescent detection of epinephrine with lucigenin by an FIA system fabricated on a microchip. Anal Sci 2001;17:951-5. 41. Kauffmann E, Darnton Nicolas C, Austin Robert H, Gerwert K. Microsecond time-resolved FTIR-spectroscopy with a continuous-flow mixer on a microchip. European Biophysics Journal. [ print] 2000;29:271.

Complete References Clin Chem 2002 48: 1620-1622

42. Kennedy Robert T. Bioanalytical applications of fast capillary electrophoresis. Analytica Chimica Acta 1999;400:163-180. 43. Kerby M, Chien R-L. A fluorogenic assay using pressure-driven flow on a microchip. Electrophoresis. [ print] 2001;22:3916-3923. 44. Klemic Kathryn G, Buck E, Klemic James F, Reed Mark A, Sigworth Fred J. Quartz "microchip" partitions for improved planar lipid bilayer recording of single channel currents. Biophysical Journal 2000;78. 45. Kwok YC, Manz A. Shah convolution differentiation Fourier transform for rear analysis in microchip capillary electrophoresis. J Chromatogr A 2001;924:177-86. 46. Lacher NA, Garrison KE, Martin RS, Lunte SM. Microchip capillary electrophoresis/electrochemistry. Electrophoresis 2001;22:2526-36. 47. Lichtenberg J, Verpoorte E, de Rooij NF. Sample preconcentration by field amplification stacking for microchip-based capillary electrophoresis. Electrophoresis 2001;22:258-71. 48. Liu Z, Niwa O, Kurita R, Horiuchi T. Miniaturized thin-layer radial flow cell with interdigitated ring-shaped microarray electrode used as amperometric detector for capillary electrophoresis. J Chromatogr A 2000;891:149-56. 49. Liu Y, Ganser D, Schneider A, Liu R, Grodzinski P, Kroutchinina N. Microfabricated polycarbonate CE devices for DNA analysis. Anal Chem 2001;73:4196-201. 50. Lundborg G, Drott J, Wallman L, Reimer M, Kanje M. Regeneration of axons from central neurons into microchips at the level of the spinal cord. Neuroreport 1998;9:861-4. 51. Manz A, Harrison DJ, Verpoorte EMJ, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip. J. Chromatogr. 1992;593:253-258. 52. Manz A, Bousse L, Chow A, Burd-Metha T, Kopf-Sill A, Parce JW. Synchronized cyclic capillary electrophoresis using channels arranged in a triangle and low voltages. Fresenius J. Anal. Chem. 2001;371:195-201. 53. Martin RS, Gawron AJ, Fogarty BA, Regan FB, Dempsey E, Lunte SM. Carbon paste-based electrochemical detectors for microchip capillary electrophoresis/electrochemistry. Analyst 2001;126:277-80. 54. Mitchelson KR, Cheng J, Kricka LJ. The use of capillary electrophoresis for point-mutation screening. Trends Biotechnol 1997;15:448-58. 55. Mitchelson KR. The application of capillary electrophoresis for DNA polymorphism analysis. Methods Mol Biol 2001;162:3-26. 56. N.J. P, Yuen PK, Sakazume T, Fortina P, Kricka LJ, Wilding P. Evaluation of DNA fragment sizing and quantification by the Agilent 2100 Bioanalyzer. Clinical Chemistry 2000;46:1851-1853. 57. Nachamkin I, N.J. P, Li M, et al. Agilent 2100 Bioanalyzer for restriction fragment length polymorphism analysis of the Campylobacter jeuni flagellin gene. Journal of Clinical Microbiology 2001;39. 58. Nagy G, Xu Clarke X, Cosofret Vasile V, et al. Amperometric measuring cell for the determination of putrescine oxidase activity. Talanta 1998;47:367-376. 59. Oguri S. Electromigration methods for amino acids, biogenic amines and aromatic amines. J Chromatogr B Biomed Sci Appl 2000;747:1-19. 60. Pantoja R, Sigg D, Blunck R, Bezanilla F, Heath James R. Bilayer reconstitution of voltage-dependent ion channels using a microfabricated silicon chip. Biophysical Journal. [ print] 2001;81:2389-2394.

Complete References Clin Chem 2002 48: 1620-1622

61. Raymond DE, Manz A, Widmer HM. Continuous sample pretreatment using a free-flow electrophoresis device integrated onto a silicon chip. Analytical Chemistry 1994;66:2858-2865. 62. Raymond DE, Manz A, Widmer HM. Continuous separation of high molecular weight compounds using a microlitre volume free-flow electrophoresis microstructure. Analytical Chemistry 1996;68:2515-2522. 63. Salimi-Moosavi H, Jiang Y, Lester L, McKinnon G, Harrison DJ. A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices. Electrophoresis 2000;21:1291-9. 64. Seiler K, Harrison DJ, Manz A. Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation and separation efficiency. Analytical Chemistry 1993;65:1481-1488. 65. Starkey DE, Han A, Bao JJ, et al. Fluorogenic assay for beta-glucuronidase using microchip-based capillary electrophoresis. J Chromatogr B Biomed Sci Appl 2001;762:33-41. 66. Suzuki S, Shimotsu N, Honda S, Arai A, Nakanishi H. Rapid analysis of amino sugars by microchip electrophoresis with laser-induced fluorescence detection. Electrophoresis 2001;22:4023-31. 67. Tian H, Brody Lawrence C, Fan S, Huang Z, Landers James P. Capillary and microchip electrophoresis for rapid detection of known mutations by combining allele-specific DNA amplification with heteroduplex analysis. Clinical Chemistry. [ print] 2000;47:173-185. 68. Tian H, Brody Lawrence C, Landers James P. Rapid detection of deletion, insertion, and substitution mutations via heteroduplex analysis using capillary- and microchip-based electrophoresis. Genome Research. [ print] 2000;10:1403-1413. 69. Tian H, Jaquins-Gerstl A, Munro N, Trucco M, Brody Lawrence C, Landers James P. Single-strand conformation polymorphism analysis by capillary and microchip electrophoresis: A fast, simple method for detection of common mutations in BRCA1 and BRCA2. Genomics 2000;63:25-34. 70. Tian H, Huhmer AF, Landers JP. Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format. Anal Biochem 2000;283:175-91. 71. Tian H, Brody LC, Fan S, Huang Z, Landers JP. Capillary and microchip electrophoresis for rapid detection of known mutations by combining allele-specific DNA amplification with heteroduplex analysis. Clin Chem 2001;47:173-85. 72. von Heeren F, Verpoorte EMJ, Manz A, Thormann W. Characterization of electrophoretic sample injection and separation in a gel-filled cyclic planar microstructure. Journal of Microcolumn Separations 1996;8:373-381. 73. Wakida S, Chiba A, Matsuda T, et al. High-throughput characterization for organic pollutants in environmental waters using a capillary electrophoresis chip. Electrophoresis 2001;22:3505-8. 74. Wang J, Chatrathi Madhu P, Tian B, Polsky R. Capillary electrophoresis chips with thick-film amperometric detectors: Separation and detection of hydrazine compounds. Electroanalysis 2000;12:691-694. 75. Wilding P, Kricka Larry J, Cheng J, Hvichia G, Shoffner Mann A, Fortina P. Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Analytical Biochemistry 1998;257:95-100. 76. Xu C, Wang Y, Cao M, Lu Z. Dielectrophoresis of human red cells in microchips. Electrophoresis 1999;20:1829-1831. 77. Yang Q, Hidajat K, Li SF. Trends in capillary electrophoresis: 1997. J Chromatogr Sci 1997;35:358-73. 78. Yu-Cheng L, Ming-Yuan H. Electroporation microchips for in vitro gene transfection. Journal of Micromechanics & Microengineering 2001;11:542-7.

Complete References Clin Chem 2002 48: 1620-1622

79. Yuen PK, Kricka LJ, Fortina P, Panaro NJ, Sakazume T, Wilding P. Microchip module for blood sample preparation and nucleic acid amplification reactions. Genome Res 2001;11:405-12. 80. Zhang CX, Manz A. Narrow sample channel injectors for capillary electrophoresis on microchips. Anal Chem 2001;73:2656-62.

IMMUNOASSAY

(1-34) 1. Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A. Protein microchips: Use for immunoassay and enzymatic reactions. Analytical Biochemistry 2000;278:123-131. 2. Askari M, Alarie JP, Moreno-Bondi M, Vo-Dinh T. Application of an antibody biochip for p53 detection and cancer diagnosis. Biotechnol Prog 2001;17:543-52. 3. Bernard A, Michel B, Delamarche E. Micromosaic immunoassays. Analytical Chemistry 2001;73:8-12. 4. Cheng SB, Skinner CD, Taylor J, et al. Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay. Analytical Chemistry 2001;73:1472-9. 5. Chiem N, Harrison DJ. Microchip-based capillary electrophoresis for immunoassays: analysis of monoclonal antibodies and theophylline. Anal Chem 1997;69:373-8. 6. Chiem Nghia H, Harrison DJ. Microchip systems for immunoassay: An integrated immunoreactor with electrophoretic separation for serum theophylline determination. Clinical Chemistry 1998;44:591-598. 7. Cohen CB, Chin-Dixon E, Jeong S, Nikiforov TT. A microchip-based enzyme assay for protein kinase A. Anal Biochem 1999;273:89-97. 8. Ewalt KL, Haigis RW, Rooney R, Ackley D, Krihak M. Detection of biological toxins on an active electronic microchip. Anal Biochem 2001;289:162-72. 9. Guifeng J, Attiya S, Ocvirk G, Lee WE, Harrison DJ. Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis. Biosensors & Bioelectronics 2000;14:10-11. 10. Hatch A, Kamholz AE, Hawkins KR, et al. A rapid diffusion immunoassay in a T-sensor. Nature Biotechnology 2001;19:461-5. 11. Housby JN, Sohail M. When is a chip not a chip? Trends in Biotechnology. [ print] 2000;18:439-440. 12. Hurst GB, Buchanan MV, Foote LJ, Kennel SJ. Analysis for TNF-alpha using solid-phase affinity capture with radiolabel and MALDI-MS detection. Analytical Chemistry 1999;71:4727-33. 13. Jin-Woo C, Oh KW, Thomas JH, et al. An integrated microfluidic biochemical detection system with magnetic bead-based sampling and analysis capabilities. Technical Digest. MEMS 2001;:447-50. 14. Karlsson R, Michaelsson A, Mattsson L. Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. Journal of Immunological Methods 1991;145:229-40. 15. Koutny LB, Schmalzing D, Taylor TA, Fuchs M. Microchip electrophoretic immunoassay for serum cortisol. Anal Chem 1996;68:18-22. 16. Kricka LJ, Wilding P. Microfabricated devices: prospects for immunological assays. Journal of Clinical Ligand Assay 1996;19:86-92.

Complete References Clin Chem 2002 48: 1620-1622

17. Kricka LJ, Wilding P. Microfabricated immmunoassay devices. In: Price CP, Newman DJ, ed. Principles and Practice of Immunoassay. London: Macmillan Press, 1997: 605-624. 18. Kricka LJ, Wilding P. Miniaturization of immunoassays. Proceedings UK NEQAS Meeting 1998;3:166-171. 19. Kricka LJ. Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century. Clin Chim Acta 2001;307:219-23. 20. Mangru SD, Harrison DJ. Chemiluminescence detection in integrated post-separation reactors for microchip-based capillary electrophoresis and affinity electrophoresis. Electrophoresis 1998;19:2301-7. 21. Menz W, Guber A. Microstructure technologies and their potential in medical applications. Minim Invasive Neurosurg 1994;37:21-7. 22. Mere L, Bennett T, Coassin P, et al. Miniaturized FRET assays and microfluidics: key components for ultra-high-throughput screening. Drug Discov Today 1999;4:363-369. 23. Nakajima M. Integration chemistry for bio-chip: integration of immunoassay and bio-chemical lab on a chip. Inst. Phys. Chem. Res. 2001;36:24-5. 24. Papautsky I, Gale BK, Mohanty S, Ameel TA, Frazier AB. Microfluidic approaches to immunoassays. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 1999;3877:169-72. 25. Rossier Joel S, Schwarz A, Reymond F, Ferrigno R, Bianchi F, Girault Hubert H. Microchannel networks for electrophoretic separations. Electrophoresis 1999;20:727-731. 26. Sato K, Tokeshi M, Odake T, et al. Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip. Anal Chem 2000;72:1144-7. 27. Sato K, Tokeshi M, Kimura H, Kitamori T. Integration of immunoassay system into a microchip. Japanese Journal of Electrophoresis 2000;44:73-77. 28. Sato K, Tokeshi M, Kimura H, Kitamori T. Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoassay in a microchip for cancer diagnosis. Anal Chem 2001;73:1213-8. 29. Schmalzing D, Koutny Lance B, Taylor Todd A, Nashabeh W, Fuchs M. Immunoassay for thyroxine (T4) in serum using capillary electrophoresis and micromachined devices. Journal of Chromatography B 1997;697:175-180. 30. Schmalzing D, Buonocore S, Piggee C. Capillary electrophoresis-based immunoassays. Electrophoresis 2000;21:3919-30. 31. Stokes DL, Griffin GD, Vo-Dinh T. Detection of E. coli using a microfluidics-based antibody biochip detection system. Fresenius J Anal Chem 2001;369:295-301. 32. von Heeren F, Verpoorte E, Manz A, Thormann W. Micellar electrokinetic chromatography separations and analyses of biological samples on a cyclic planar microstructure. Anal Chem 1996;68:2044-53. 33. Wang J, Ibanez A, Chatrathi MP, Escarpa A. Electrochemical enzyme immunoassays on microchip platforms. Anal Chem 2001;73:5323-7. 34. Yang T, Jung S, Mao H, Cremer PS. Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays. Analytical Chemistry 2001;73:165-9.

MASS SPECTROMETRY

Complete References Clin Chem 2002 48: 1620-1622

(1-23) 1. Chun K, Hashiguchi G, Toshiyoshi H, et al. Polymer-based electrospray chips for mass spectrometry. Technical Digest. IEEE International MEMS 1999;:523-8. 2. Ekstrom S, Onnerfjord P, Nilsson J, Bengtsson M, Laurell T, Marko-Varga G. Integrated microanalytical technology enabling rapid and automated protein identification. Anal Chem 2000;72:286-93. 3. Figeys D, Gygi SP, McKinnon G, Aebersold R. An integrated microfluidics-tandem mass spectrometry system for automated protein analysis. Anal Chem 1998;70:3728-34. 4. Figeys D, Aebersold R. High sensitivity analysis of proteins and peptides by capillary electrophoresis-tandem mass spectrometry: recent developments in technology and applications. Electrophoresis 1998;19:885-92. 5. Figeys D, Aebersold R. Nanoflow solvent gradient delivery from a microfabricated device for protein identifications by electrospray ionization mass spectrometry. Analytical Chemistry 1998;70:3721-7. 6. Gao J, Xu J, Locascio LE, Lee CS. Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification. Analytical Chemistry 2001;73:2648-55. 7. Jiang Y, Wang PC, Locascio LE, Lee CS. Integrated plastic microfluidic devices with ESI-MS for drug screening and residue analysis. Analytical Chemistry 2001;73:2048-53. 8. Kim JS, Knapp DR. Microfabricated PDMS multichannel emitter for electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry 2001;12:463-9. 9. Kim J-S, Knapp Daniel R. Miniaturized multichannel electrospray ionization emitters on poly(dimethylsiloxane) microfluidic devices. Electrophoresis. [ print] 2001;22:3993-3999. 10. Laurell T, Nilsson J, Marko-Varga G. Silicon microstructures for high-speed and high-sensitivity protein identifications. J Chromatogr B Biomed Sci Appl 2001;752:217-32. 11. Lee KH. Proteomics: a technology-driven and technology-limited discovery science. Ophthalmic Genetics 2001;19:217-22. 12. Liu J, Tseng K, Garcia B, et al. Electrophoresis separation in open microchannels. A method for coupling electrophoresis with MALDI-MS. Anal Chem 2001;73:2147-51. 13. Matson DW, Martin PM, Bennett WD. Desorption-ionization mass spectrometry on porous silicon. Nature 1999;399:243-6. 14. Miliotis T, Marko-Varga G, Nilsson J, Laurell T. Development of silicon microstructures and thin-film MALDI target plates for automated proteomics sample identifications. Elsevier. Journal of Neuroscience Methods 2001;109:41-6. 15. Mitchell MC, Spikmans V, de Mello AJ. Microchip-based synthesis and analysis: control of multicomponent reaction products and intermediates. Analyst 2001;126:24-7. 16. Stomakhin AA, Vasiliskov VA, Timofeev E, Schulga D, Cotter RJ, Mirzabekov AD. DNA sequence analysis by hybridization with oligonucleotide microchips: MALDI mass spectrometry identification of 5mers contiguously stacked to microchip oligonucleotides. Nucleic Acids Res 2000;28:1193-8. 17. Timchalk C, Poet TS, Lin Y, Weitz KK, Zhao R, Thrall KD. Development of an integrated microanalytical system for analysis of lead in saliva and linkage to a physiologically based pharmacokinetic model describing lead saliva secretion. Aihaj 2001;62:295-302.

Complete References Clin Chem 2002 48: 1620-1622

18. Wang C, Oleschuk R, Ouchen F, Li J, Thibault P, Harrison DJ. Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface. Rapid Communications in Mass Spectrometry 2000;14:1377-83. 19. Wei J, Buriak JM, Siuzdak G. Desorption-ionization mass spectrometry on porous silicon. Nature 1999;399:243-6. 20. Wen J, Lin Y, Xiang F, Matson DW, Udseth HR, Smith RD. Microfabricated isoelectric focusing device for direct electrospray ionization-mass spectrometry. Electrophoresis 2000;21:191-7. 21. Xue Q, Foret F, Dunayevskiy YM, Zavracky PM, McGruer NE, Karger BL. Multichannel microchip electrospray mass spectrometry. Anal Chem 1997;69:426-30. 22. Xue Q, Dunayevskiy YM, Foret F, Karger BL. Integrated multichannel microchip electrospray ionization mass spectrometry: analysis of peptides from on-chip tryptic digestion of melittin. Rapid Commun Mass Spectrom 1997;11:1253-6. 23. Young AM, Bloomstein TM, Palmacci ST. Microfabricated modules for sample handling, sample concentration and flow mixing: application to protein analysis by tandem mass spectrometry. Journal of Biomechanical Engineering 1999;121:7-12.

PROTEIN ANALYSIS

(1-7) 1. Figeys D, Pinto D. Proteomics on a chip: promising developments. Electrophoresis 2001;22:208-16. 2. Ikuta K, Takahashi A, Maruo S. In-chip cell-free protein synthesis from DNA by using biochemical IC chips. Technical Digest. MEMS 2001;:455-8. 3. Macounova K, Cabrera CR, Yager P. Concentration and separation of proteins in microfluidic channels on the basis of transverse IEF. Analytical Chemistry 2001;73:1627-33. 4. Pinto DM, Ning Y, Figeys D. An enhanced microfluidic chip coupled to an electrospray Qstar mass spectrometer for protein identification. Electrophoresis 2000;21:181-90. 5. Rajan N, Zorman CA, Mehregany M, DeAnna R, Harvey RJ. Spatiotemporal protein crystal growth studies using microfluidic silicon devices. Elsevier. Journal of Crystal Growth 1999;196:2-4. 6. Yamamoto T, Fujii T, Nojima T, Hong JW, Endo I. Cell-free protein synthesis in PDMS-glass hybrid microreactor. SPIE Int. Soc. Opt. Eng. Proceedings of Spie the International Society for Optical Engineering 2000;4177:72-9. 7. Zou J, Ye XY, Zhou ZY, Yang Y. Chemical IC chip for dynamical control of protein synthesis. MHA'98. Proceedings of the 1998;:249-54.

VI. PATENTS ON MICROCHIPS (1-260) 1. Aberth W. Surface-induced dissociation for mass spectrometry. United States Patent 1989;4,851,669. 2. Ackley DE, LeClair TL, Swanson PD. Multicomponent devices for molecular biological analysis and diagnostics. United States Patent 2000;6,068,818. 3. Ackley DE, Swanson PD, Graham SO, Mather EL, LeClair TL, Butler WF. Advanced active electronic devices for molecular biological analysis and diagnostics. United States Patent 2000;6,099,803.

Complete References Clin Chem 2002 48: 1620-1622

4. Ackley DE, Sheldon EL, Krihak MK. Stacked, reconfigurable system for electrophoretic transport of charged materials. United States Patent 2001;6,309,602. 5. Ackley DE, Sheldon EL, Krihak MK. System including functionally separated regions in electrophoretic system. United States Patent 2001;6,319,472. 6. Ackley DE, Swanson PD, Graham SO, Mather EL. Advanced active electronic devices including collection electrodes for molecular biological analysis and diagnostics. United States Patent 2001;6,225,059. 7. Ackley DE, Jackson TR, Sheldon III EL. Laminated assembly for active bioelectronic devices. United States Patent 2001;6,287,517. 8. Ackley DE, LeClair TL, Swanson PD. Methods for fabricating multi-component devices for molecular biological analysis and diagnostics. United States Patent 2001;6,254,827. 9. Ackley DE, Graham SO. Advanced active circuits and devices for molecular biological analysis and diagnostics. United States Patent 2001;6,331,274. 10. Ackley DE, Butler WF, Swanson PD. Devices for molecular biological analysis and diagnostics including waveguides. United States Patent 2001;6,315,953. 11. Amigo MGA. Surface modified electrophoretic chambers. United States Patent 1999;5,935,401. 12. Amigo MGA, McCormick RM. Surface modified electrophoretic chambers. United States Patent 2000;6,056,860. 13. Anderson RC, Lipshutz RJ, Rava RP, Fodor SPA. Integrated nucleic acid diagnostic device. United States Patent 1999;5,922,591. 14. Anderson RC, Lipshutz RJ, Rava RP, Fodor SPA. Integrated nucleic acid diagnostic device. United States Patent 2001;6,197,595. 15. Anderson RC, Lipshutz RJ, Rava RP, Fodor SPA. Miniaturized genetic analysis systems and methods. United States Patent 2001;6,168,948. 16. Anderson RC, Lipshutz RJ, Rava RP, Fodor SPA. Method of manipulating a gas bubble in a microfluidic device. United States Patent 2001;6,326,211. 17. Apffel JA, Chakel JA, S. HW, Lichtenwalter K. Integrated planar liquid handling system for maldi-TOF MS. United States Patent 1998;5,705,813. 18. Arnold DW, Schoeniger JS, Cardinale GF. Microfluidic channel fabrication method. United States Patent 2001;6,210,986. 19. Austin RH, Cox EC, Chou C-F. Electrodynamically focused thermal cycling device. United States Patent 2001;6,203,683. 20. Backhouse CJ. Fluidic devices. United States Patent 2001;6,318,970. 21. Bader JS, Rothberg JM, Deem MW, et al. Separation of charged particles by a spatially and temporally varying electric field. United States Patent 2001;6,193,866. 22. Balch JW, Carrano AV, Davidson JC, Koo JC. Hybrid slab-microchannel gel electrophoresis system. United States Patent 1998;5,746,901. 23. Beattie KL. Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions. United States Patent 1998;5,843,767.

Complete References Clin Chem 2002 48: 1620-1622

24. Becker FF, Gascoyne P, Wang X, Vykoukal JV, De Gasperis G. Method and apparatus for programmable fluidic processing. United States Patent 2001;6,294,063. 25. Beebe DJ, Glasgow IK, Wheeler MB. Microfluidic embryo and/or oocyte handling device and method. United States Patent 2001;6,193,647. 26. Benett WJ, Beach RJ, Ciarlo DR. Monolithic microchannel heatsink. United States Patent 1996;5,548,605. 27. Benett WJ, Krulevitch PA. Microfluidic interconnects. United States Patent 2001;6,209,928. 28. Benvegnu D, McCormick RM. Method for sample injection in microchannel device. United States Patent 1999;5,900,130. 29. Bjornson TO, McCormick RM, Soane DS. Capillary electroflow apparatus and method. United States Patent 2000;6,103,199. 30. Brewer LR, Kimbrough J, Balch J, Davidson JC. System and method for optically locating microchannel positions. United States Patent 2001;6,225,635. 31. Caren MP. Microfluidic pumping. United States Patent 2001;6,296,452. 32. Carrino JJ, Gerrue LO, Diver JM. Multiplex amplification and separation of nucleic acid sequences using ligation-dependant strand displacement amplification and bioelectronic chip technology. United States Patent 2001;6,238,868. 33. Cheng J, Sheldon III EL, Wu L, O'Connell JP. Channel-less separation of bioparticles on a bioelectronic chip by dielectrophoresis. United States Patent 2000;6,071,394. 34. Cheng J, Sheldon III EL, Wu L, O'Connell JP. Channel-less separation of bioparticles on a bioelectronic chip by dielectrophoresis. United States Patent 2001;6,280,590. 35. Chong JM, MacDonald NC. Suspended moving channels and channel actuators for microfluidic applications and method for making. United States Patent 2001;6,180,536. 36. Chow CYH, Parce JW. Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces. United States Patent 1998;5,800,690. 37. Chow CYH, Parce JW, McReynolds RJ, Kennedy CB, Bousse LJ. Controller/detector interfaces for microfluidic systems. United States Patent 1999;5,989,402. 38. Chow CYH, Kopf-Sill AR, Parce JW. Electrical current for controlling fluid parameters in microchannels. United States Patent 1999;5,965,410. 39. Chow CYH, Parce JW. Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces. United States Patent 1999;5,965,001. 40. Chow CYH. Analytical system and method. United States Patent 1999;5,955,028. 41. Chow CYH. Analytical system and method. United States Patent 2000;6,071,478. 42. Chow. Electrical current for controlling fluid parameters in microchannels. United States Patent 2001;6,174,675. 43. Chow CYH. Multi-layer microfluidic devices. United States Patent 2001;6,167,910. 44. Cozzette SN, Davis G, Itak J, et al. Method of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor. United States Patent 1991;5,063,081.

Complete References Clin Chem 2002 48: 1620-1622

45. Cozzette SN, Davis G, Holleritter LA, et al. Method for analytically utilizing microfabricated sensors during wet-up. United States Patent 1992;5,112,455. 46. Cozzette SN, Davis G, Itak J, et al. Wholly microfabricated biosensors and process for the manufacture and use thereof. United States Patent 1993;5,200,051. 47. Cozzette SN, Davis G, Lauks IR, et al. Process for the manufacture of wholly microfabricated biosensors. United States Patent 1995;5,466,575. 48. Cozzette SN, Davis G, Lauks IR, et al. Process for the manufacture of wholly microfabricated biosensors. United States Patent 1996; 5,554,339. 49. Cozzette SN, Davis G, Lauks IR, et al. Process for the manufacture of wholly microfabricated biosensors. United States Patent 1998;5,837,454. 50. Cozzette SN, Davis G, Itak J, et al. Process for the manufacture of wholly microfabricated biosensors. United States Patent 1998;5,837,446. 51. Cozzette SN, Davis G, Lauks IR, et al. Methods for microdispensing patterened layers. United States Patent 2001;6,306,594. 52. Davidson JC, Balch JW. Extended length microchannels for high density high throughput electrophoresis systems. United States Patent 2000;6,153,076. 53. DeBoer CD, Fassler W, pickering JE. Microfluidic image display. United States Patent 2000;6,037,955. 54. Desai A, Yang X, Tai Y-C, Marzluff E, Bockenkamp D, Mayo S. Microfluidic sub-millisecond mixers. United States Patent 1999;5,921,678. 55. Dubrow RS, Kennedy CB, Bouse LJ. Microfluidic devices incorporating improved channel geometries. United States Patent 1999; 5,976,336. 56. Dubrow RS. Methods and systems for performing electrophoretic molecular separations. United States Patent 1999;5,948,227. 57. Dubrow RS, Kennedy CB, Bouse LJ. Microfluidic devices incorporating improved channel geometries. United States Patent 2000;6,068,752. 58. Dubrow RS. Methods and compositions for performing molecular separations. United States Patent 2000;6,042,710. 59. Dubrow RS, Kennedy CB, Bouse LJ. Microfluidic devices incorporating improved channel geometries. United States Patent 2001;6,235,175. 60. Dubrow RS, Kennedy CB, Nagle R. Microfluidic devices and systems incorporating cover layers. United States Patent 2001;6,251,343. 61. Edman CF, Nerenberg MI, Westin LP, Carrino JJ. Multiplex amplification and separation of nucleic acid sequences on a bioelectronic microchip using asymmetric structures. United States Patent 2001;6,309,833. 62. Edman CF, Nerenberg MI. Electronically mediated nucleic acid amplification in NASBA. United States Patent 2001;6,326,173. 63. Ekstrom B, Jacobson G, Ohman O, Sjodin H. Microfluidic structure and process for its manufacture. United States Patent 1994;5,376,252.

Complete References Clin Chem 2002 48: 1620-1622

64. Fare TL, Fan ZH, Heaney PJ. Flow control in microfluidics devices by controlled bubble formation. United States Patent 1999;5,992,820. 65. Faris SM, Jain K, Humphries GM. Microchannel plate technology. United States Patent 1993;5,265,327. 66. Fassler W, Pickering JE, Kin K. Microfluidic writing pen. United States Patent 1999;5,911,533. 67. Field LA, Donald DK, Barth PW, Servaites J, Hoen ST, Harley JA. Gas extraction device for extracting gas from a microfluidics system. United States Patent 2001;6,299,673. 68. Foote RS. Large scale DNA microsequencing device. United States Patent 1997;5,661,028. 69. Foote RS. Large scale DNA microsequencing device. United States Patent 1999;5,944,971. 70. Frankel R, Forsyth JM. Apparatus and method for the detection and assay of organic molecules. United States Patent 1997;5,637,458. 71. Frazier AB. Methods for preparing devices having metallic hollow microchannels on planar substrate surfaces. United States Patent 1999;5,876,582. 72. Frazier AB, Caldwell KD, Gale BK. Micromachined electrical field-flow fractionation system. United States Patent 2000;6,136,171. 73. Freeman DM, Swedberg SA. Integrated miniaturized device for processing and NMR detection of liquid phase samples. United States Patent 2001;6,194,900. 74. Furcht LT, McGlennen RC, Polla DL. Integrated microchip genetic testing system. United States Patent 2000;6,054,277. 75. Furcht LT, McGlennen RC, Polla DL. Integrated microchip genetic testing system. United States Patent 2001;6,303,288. 76. Furlani EP, Ghosh SK, Chatterjee DK. Method of controlling fluid flow in a microfluidic process. United States Patent 2001;6,262,519. 77. Gandhi K, Dubrow RS, Bousse LJ. Methods of fabricating polymeric structures incorporating microscale fluidic elements. United States Patent 2000;6,123,798. 78. Garner HR. Digital optical chemistry micromirror imager. United States Patent 2001;6,295,153. 79. Gold L, Drolet D, Zichi D, Jayasena S, Creighton S, Gill S. Nucleic acid ligand diagnostic Biochip. United States Patent 2001;6,242,246. 80. Griffiths SK, Nilson RH. Method and apparatus for reducing sample dispersion in turns and junctions of microchannel systems. United States Patent 2001;6,270,641. 81. Guigan J. Miniature laboratory for performing biological analyses by chemical reaction on a sample of blood. United States Patent 1991;5,077,013. 82. Gulati S. Method and apparatus for analyzing hybridized biochip patterns using resonance interactions employing quantum expressor functions. United States Patent 2000;6,136,541. 83. Hahn S, Fagnani R. Method of making biochips and the biochips resulting therefrom. United States Patent 2001;6,174,683.

Complete References Clin Chem 2002 48: 1620-1622

84. Hamilton RE, Kennedy PG. Microchannel cooling using aviation fuels for airborne electronics. United States Patent 1997;5,692,558. 85. Hamilton RE, Kennedy PG, Vale CR. Non-mechanical magnetic pump for liquid cooling. United States Patent 1998;5,763,951. 86. Hamilton RE, Fagan TJ, Kennedy PG, Woodward WS. Closed loop liquid cooling for semiconductor RF amplifier modules. United States Patent 1999;5,901,037. 87. Hancock WS, Chakel JA, Apffel JA, Lichtenwalter K. Integrated nucleic acid analysis system for MALDI-TOF MS. United States Patent 1998;5,716,825. 88. Havens JR, Krihak MK, Greef CH, Raymond DE, Heller MJ. Inorganic permeation layer for micro-electric device. United States Patent 2001;6,306,348. 89. Hayes DJ, Wallace DB, Frederickson CJ. Making apparatus for conducting biochemical analyses. United States Patent 1998;5,849,208. 90. Hayes DJ, Wallace DB, Frederickson CJ. Flexible apparatus with ablation formed chamber(s) for conducting bio-chemical analyses. United States Patent 2002;6,334,980. 91. Heller MJ, Tu E. Active programmable electronic devices for molecular biological analysis and diagnostics. United States Patent 1997;5,605,662. 92. Heller MJ, Tu E, Butler WF. Molecular biological diagnostic systems including electrodes. United States Patent 1997;5,632,957. 93. Heller MJ, O'Connell JP, Juncosa RD, Sosnowski RG, Jackson TR. Methods for hybridization analysis utilizing electrically controlled hybridization. United States Patent 1998;5,849,486. 94. Heller MJ, Tu E. Methods for electronic synthesis of polymers. United States Patent 1999;5,929,208. 95. Heller MJ. Methods for electronic stringency control for molecular biological analysis and diagnostics. United States Patent 2000;6,017,696. 96. Heller MJ. Method for reducing the linear dimension necessary for high resolution electrophoretic separation. United States Patent 2000;6,013,166. 97. Heller MJ, Sosnowski RG. Method for fingerprinting utilizing an electronically addressable array. United States Patent 2001;6,245,508. 98. Heller MJ, Tu E, Evans GA, Sosnowski RG. Methods for transport in molecular biological analysis and diagnostics. United States Patent 2001;6,238,624. 99. Humphries GMK, Miller DL, Libby JM, Schwartz HL. Cell assay device used in a microphysiometer. United States Patent 1992;5,104,804. 100. Humphries GMK. Cell assay device. United States Patent 1996;5,536,662. 101. Ikeda M, Uchihara H. Micro analytical method, sampling plate used in same, method of detecting organic compound by use of said micro analytical method, apparatus for same and method of dividing for micro-liquid flow. United States Patent 1994;5,334,837. 102. Jacobson SC, Ramsey JM. Microfabricated device and method for multiplexed electrokinetic focusing of fluid streams and a transport cytometry method using same. United States Patent 2000;6,120,666.

Complete References Clin Chem 2002 48: 1620-1622

103. Jacobson SC, Ramsey JM. Microfluidic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs. United States Patent 2000;6,062,261. 104. Jacobson SC, Ramsey JM. Microfluidic circuit designs for performing fluidic manipulations that reduce the number of pumping sources and fluid reservoirs. United States Patent 2001;6,213,151. 105. John HR, Winger TM, Krotz J, Dan S, Onofrey TJ. Permeation layer attachment chemistry and method. United States Patent 2001;6,303,082. 106. Juncosa RD, Butler WF, Wu L, Cormack RH. Scanning optical detection system. United States Patent 2001;6,309,601. 107. Karger BL, Foret F, Zavracky PM, McGruer EN, Xue Q, Dunayevskiy YM. Microscale fluid handling system. United States Patent 1999;5,872,010. 108. Kaye PH, Tracey M. Biorheological measurement. United States Patent 1994;5,327,777. 109. Kayyem JF, Blackburn G, O'Connor SD. Systems for electrophoretic transport and detection of analytes. United States Patent 2001;6,290,839. 110. Kayyem JF, O'Connor SD, Gozin M, Yu C, Meade TJ. Methods of detecting nucleic acids using electrodes. United States Patent 2001;6,221,583. 111. Kellogg G, Kieffer-Higgins SG, Carvalho BL, et al. Devices and methods for using centripetal acceleration to drive fluid movement on a microfluidics system. United States Patent 2000;6,063,589. 112. Kellogg G, Kieffer-Higgins SG, Carvalho BL, et al. Device and method for using centripetal acceleration to device fluid movement on a microfluidics system. United States Patent 2001;6,302,134. 113. Kennedy CB. Microfluidic devices and systems. United States Patent 1999;5,876,675. 114. Kennedy CB. Microfluidic devices and systems. United States Patent 2000;6,048,498. 115. Kennedy CB. Multiplexed microfluidic devices and systems. United States Patent 2000;6,086,740. 116. Kennedy C. Fabrication of microfluidic circuits by printing techniques. United States Patent 2000;6,074,725. 117. Kercso JE, Sundberg SA, Wolk JA, Toth AW, Chow CYH, Parce JW. High throughput microfluidic systems and methods. United States Patent 2000;6,132,685. 118. Knapp M, Parce JW, Bousse LJ, Kopf-Sill AR. Closed-loop biochemical analyzers. United States Patent 2001;6,235,471. 119. Kopf-Sill AR, Parce JW. Microfluidic systems incorporating varied channel dimensions. United States Patent 1998;5,842,787. 120. Kopf-Sill AR. Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems. United States Patent 1999;6,001,231. 121. Kopf-Sill AR, Parce JW. Microfluidic systems incorporating varied channel dimensions. United States Patent 1999;5,957,579. 122. Kopf-Sill AR, Chow AW. Optimized high-throughput analytical system. United States Patent 2000;6,150,119. 123. Kopf-Sill AR, Parce JW. Microfluidic systems incorporating varied channel dimensions. United States Patent 2001;6,186,660.

Complete References Clin Chem 2002 48: 1620-1622

124. Kopf-Sill AR. Inefficient fast PCR. United States Patent 2001;6,303,343. 125. Kopf-Sill AR. Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems. United States Patent 2001;6,221,226. 126. Kovacs GTA. Micromachined fluidic coupler. United States Patent 1999;5,890,745. 127. Kovacs GTA. Multiplexed active biologic array. United States Patent 1999;5,965,452. 128. Kovacs GTA. Multiplexed active biologic array. United States Patent 2001;6,258,606. 129. Kricka LJ, Wilding P. Mesoscale sperm handling devices. United States Patent 1994;5,296,375. 130. Kricka LJ, Wilding P. Mesoscale sperm handling devices. United States Patent 1995;5,427,946. 131. Kricka LJ, Wilding P. Mesoscale devices and methods for analysis of motile cells. United States Patent 1998;5,744,366. 132. Krulevitch PA, Lee AP, Northrup MA, Benett WJ. Microfabricated instrument for tissue biopsy and analysis. United States Patent 6,319,474. 133. Krulevitch PA, Lee AP, Northrup MA, Benett WJ. Microfabricated instrument for tissue biopsy and analysis. United States Patent 1999; 5,985,217. 134. Kumar R. Padlock probe detection. United States Patent 1999;5,912,124. 135. Landers JP, Huang Z, Huhmer A. Method and apparatus for electronically controlled scanning of micro-area devices. United States Patent 2001;6,246,046. 136. Lee AP, Northrup MA, Ahre PE, Dupuy PC. Polymer micromold and fabrication process. United States Patent 1997;5,658,515. 137. Lee AP, Krulevitch PA, Northrup MA, Trevino JC. Microvalve. United States Patent 1998;5,819,749. 138. Lee AP, Northrup MA, Ciarlo DR, Krulevitch PA, Benett WJ. Release mechanism utilizing shape memory polymer material. United States Patent 2000;6,102,933. 139. Lievan BA. Microchip optical transport technology for use in a personal flow cytometer. United States Patent 2000;6,097,485. 140. Lindberg P, Roeraade J, Stjernstrom M, Viovy JL. Integrated microfluidic element. United States Patent 2001;6,322,753. 141. Lipshutz RJ, Rava RP, Anderson RC, Fodor SPA. Integrated nucleic acid diagnostic device. United States Patent 1999;5,856,174. 142. Lipshutz RJ, Rava RP, Anderson RC, Fodor SPA. Integrated nucleic acid diagnostic device. United States Patent 2000;6,043,080. 143. Loewy Z, Kumar R. Microfluidic method for nucleic acid amplification. United States Patent 1999;5,939,291. 144. Lum P, Greenstein M. Microfluidic structure assembly with mating microfeatures. United States Patent 1999;5,932,315.

Complete References Clin Chem 2002 48: 1620-1622

145. Mandecki W. Screening of soluble chemical compounds for their pharmacological properties utilizing transponders. United States Patent 1999;5,981,166. 146. Mandecki W. Multiplex assay for nucleic acids employing transponders. United States Patent 2000;6,051,377. 147. Mandecki W. Method of determining the sequence of nucleic acids employing solid-phase particles carrying transponders. 2000;6,046,003. 148. Mastrangelo CH, Man PF, Webster JR. Polymer-based micromachining for microfluidic devices. United States Patent 2000;6,136,212. 149. Mathies RA, Woolley AT. Miniature reaction chamber and devices incorporating same. United States Patent 2000;6,132,580. 150. Mathies RA, Glazer A, Woolley AT, Lao K. Electrochemical detector integrated on microfabricated capilliary electrophoresis chips. United States Patent 2000;6,045,676. 151. Mathies RA, Woolley AT. Miniature reaction chamber and devices incorporating same. United States Patent 2001;6,284,525. 152. Mcbride SE, M. MIR. Method and apparatus for distributing fluid in a microfluidic device. United States Patent 2001;6,268,219. 153. McReynolds RJ. Method of manufacturing microfluidic devices. United States Patent 1999;5,882,465. 154. McReynolds RJ. Methods of manufacturing microfabricated substrates. United States Patent 2001;6,182,733. 155. Mehta TB, Kopf-Sill AR. Microfluidic matrix localization apparatus and methods. United States Patent 2001;6,306,590. 156. Mian A, Kieffer-Higgins SG, Corey GD. Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system. United States Patent 2001;6,319,469. 157. Mirzabekov AD, Lysov YP, Dubley SA. Miniaturized reaction vessel system, method for performing site-specific biochemical reactions and affinity fractionation for use in DNA sequencing. United States Patent 2000;6,143,499. 158. Mitsuhashi M, Ogura M, Watanabe K, Agata Y. Detection of degradation of RNA using microchannel electrophoresis. United States Patent 2001;6,251,247. 159. Moles DR. Microfluidic analyzer module. United States Patent 1999;5,932,799. 160. Moles DR. Fluid flow module. United States Patent 2000;6,073,482. 161. Moon JE, Davis TJ, Galvin GJ. Integrated monolithic microfabricated electrospray and liquid chromatography system and method. United States Patent 2001;6,245,227. 162. Moroney III RM, Kumar R, Fishman DM. Capacitive denaturation of nucleic acid. United States Patent 1999;5,993,611. 163. Mundinger DC, Scifres DR. Waste heat removal system. United States Patent 1995;5,453,641. 164. Nagle R, Kennedy CB. Microfluidic devices and systems incorporating integrated optical elements. United States Patent 2000;6,100,541. 165. Nagle R, Dubrow RS. Integrated devices and systems for performing temperature controlled reactions and analyses. United States Patent 2001;6,171,850.

Complete References Clin Chem 2002 48: 1620-1622

166. Nagle R, Kennedy CB. Microfluidic devices and systems incorporating integrated optical elements. United States Patent 2001;6,316,781. 167. Nagle R, Dubrow RS. Methods and integrated devices and systems for performing temperature controlled reactions and analyses. United States Patent 2002;6,337,212. 168. Nakajima M, Kikuchi Y, Kawakatsu T, Komori H, Yonemoto T. Cross-flow microchannel apparatus and method of producing or separating emulsions making use thereof. United States Patent 2001;6,258,858. 169. Nelson RJ, Hooper HH, Hauser AK, Sassi AP. Integrated microfluidic devices. United States Patent 1999;6,007,690. 170. Nelson RJ, Hooper HH, Hauser AK, Singh S, Williams SJ, Sassi AP. Microfluidic method for nucleic acid purification and processing. United States Patent 2000;6,074,827. 171. Neukermans AP. Microfluidic valve and integrated microfluidic system. United States Patent 2000;6,068,751. 172. Nikiforov TT, Jeong S. Methods and systems for enhanced fluid transport. United States Patent 1999;5,964,995. 173. Nikiforov TT. Apparatus and methods for sequencing nucleic acids in microfluidic systems. United States Patent 1999;5,958,694. 174. Nikiforov TT, Jeong S. Methods and systems for enhanced fluid transport. United States Patent 2000;6,129,826. 175. Nikiforov TT. Apparatus and methods for sequencing nucleic acids in microfluidic systems. United States Patent 2000;6,107,044. 176. Nikiforov TT. Assay methods and system. United States Patent 2001;6,287,774. 177. Nikiforov TT. Apparatus and methods for sequencing nucleic acids in microfluidic systems. United States Patent 2001;6,316,201. 178. Northrup MA, Mariella Jr. RP, Carrano AV, Balch JW. Silicon-based sleeve devices for chemical reactions. United States Patent 1996;5,589,136. 179. Northrup MA, White RM. Microfabricated reactor. United States Patent 1997; 5,674,742. 180. Northrup MA, Yu CM, Raley NF. Porous silicon structures with high surface area/specific pore size. United States Patent 1999;5,882,496. 181. Northrup MA, Yu CM, Raley NF. Process for forming a porous silicon member in a crystalline silicon member. United States Patent 1999;6,004,450. 182. Oh CS. Microfluidic electrophoresis device. United States Patent 1999;5,904,824. 183. Ohman O. Method of producing a sealing means in a microfluidic structure and a microfluidic structure comprising such sealing means. United States Patent 1995;5,443,890. 184. Okano K, Kambara H. Separation of polynucleotides using supports having a plurality of electrode-containing cells. United States Patent 1995;5,434,049. 185. Okano K, Kambara H. Device for separating polynucleotides having a plurality of electrode-containing cells and movable collecting capillary. United States Patent 1997;5,607,646. 186. Parce JW. Fourier detection of species migrating in a microchannel. United States Patent 1997;5,699,157.

Complete References Clin Chem 2002 48: 1620-1622

187. Parce JW. Fourier detection of species migrating in a microchannel. United States Patent 1998;5,852,495. 188. Parce JW, Knapp MR. Electropipettor and compensation means for electrophoretic bias. United States Patent 1998;5,779,868. 189. Parce JW, Knapp MR, Bousse L. High throughput screening assay systems in microscale fluidic devices. United States Patent 1999;5,942,443. 190. Parce JW, Knapp MR. Electropipettor and compensation means for electrophoretic bias. United States Patent 1999;5,972,187. 191. Parce JW, Knapp MR, Chow CYH, Bousse L. Controlled fluid transport in microfabricated polymeric substrates. United States Patent 1999;5,885,470. 192. Parce JW, Kopf-Sill AR. Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems. United States Patent 1999;6,004,515. 193. Parce JW, Kopf-Sill AR, Bousse LJ. High throughput screening assay systems in microscale fluidic devices. United States Patent 2000;6,046,056. 194. Parce JW, Kopf-Sill AR. Apparatus for in situ concentration and/or dilution of materials in microfluidic systems. United States Patent 2000;6,149,870. 195. Parce JW, Knapp MR, Chow CYH, Bousse L. Controlled fluid transport microfabricated polymeric substrates. United States Patent 2000;6,156,181. 196. Parce JW, Knapp MR. Microfluidic sampling system and methods. United States Patent 2000;6,042,709. 197. Parce JW. Micropump. United States Patent 2000;6,012,902. 198. Parce JW, Knapp MR. Electropipettor and compensation means for electrophoretic bias. United States Patent 2000;6,080,295. 199. Parce JW, Kopf-Sill AR, Bousse LJ. High throughput screening assay systems in microscale fluidic devices. United States Patent 2001;6,306,659. 200. Parce JW. Micropump. United States Patent 2001;6,171,067. 201. Parce JW, Knapp MR. Electropipettor and compensation means for electrophoretic bias. United States Patent 2001;6,287,520. 202. Parce JW, Knapp MR, Chow CYH, Bousse L. Controlled fluid transport in microfabricated polymeric substrates. United States Patent 2001;6,238,538. 203. Parce JW. Fourier detection of species migrating in a microchannel. United States Patent 2001;6,233,048. 204. Parce JW. Microfluidic devices for electrophoretic analysis of materials. United States Patent 2002;6,337,740. 205. Paul PH, Arnold DW, Neyer DW. Sample injector for high pressure liquid chromatography. United States Patent 2001;6,290,909. 206. Perov A, Belgovskiy AI, Mirzabekov AD. Biochip scanner device. United States Patent 2001;6,329,661. 207. Petersen KE, McMillan WA, Kovacs GTA, Young SJ. Reaction vessel for heat-exchanging chemical processes. United States Patent 1999;5,958,349.

Complete References Clin Chem 2002 48: 1620-1622

208. Ramsey JM. Apparatus and method for performing microfluidic manipulations for chemical analysis. United States Patent 1999;6,001,229. 209. Ramsey JM. Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis. United States Patent 1999;5,858,195. 210. Ramsey JM. Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis. United States Patent 2000;6,033,546. 211. Regnier F, He B. In situ micromachined mixer for microfluidic analytical systems. United States Patent 2001;6,170,981. 212. Schembri CT, Overman LB, Hotz CZ. Apparatus for conducting chemical or biochemical reactions on a solid surface within an enclosed chamber. United States Patent 2001;6,258,593. 213. Simpson JW, Rothberg JM, Went GT. Apparatus and method for the generation, separation, detection, and recognition of biopolymer fragments. United States Patent 1999;5,993,634. 214. Simpson PC, Mathies RA, Woolley AT. Microfabricated capillary array electrophoresis device and method. United States Patent 2000;6,143,152. 215. Simpson JW, Rothberg JM, Went GT. Apparatus and method for the generation, separation, detection, and recognition of biopolymer fragments. United States Patent 2001;6,236,945. 216. Smolko D, Sheldon E, Swanson P, et al. Apparatus and method for removing small molecules and ions from low volume biological samples. United States Patent 2001;6,284,117. 217. Soane DS, Soane ZM. Acrylic microchannels and their use in electrophoretic application. United States Patent 1999;5,858,188. 218. Soane DS, Soane ZM. Method and device for moving molecules by the application of a plurality of electrical fields. United States Patent 2000;6,093,296. 219. Soane DS, Soane ZM, Hooper HH, Amigo MGA. Acrylic microchannels and their use in electrophoretic applications. United States Patent 2000;6,054,034. 220. Soane DS, Soane ZM, Hooper HH, Amigo MGA. Methods for fabricating enclosed microchannel structures. United States Patent 2001;6,176,962. 221. Soper SA, Davies JD, Vladimirsky YT. Microsystem for rapid DNA sequencing. United States Patent 1998;5,846,727. 222. Sosnowski RG, Butler WF, Tu E, Nerenberg MI, Heller MJ, Edman CF. Methods and procedures for molecular biological analysis and diagnostics. United States Patent 2000;6,051,380. 223. Staskus MP, Haden JM. Cooler for removing heat from a heated region. United States Patent 1998;5,835,345. 224. Sundberg SA, Parce JW, Chow CYH. Microfabricated structures for facilitating fluid introduction into microfluidic devices. United States Patent 2000;6,086,825. 225. Swierkowski SP, Davidson JC. Vacuum fusion bonding of glass plates. United States Patent 2000;6,131,410. 226. Swierkowski SP. T-load microchannel array and fabrication method. United States Patent 2000;6,110,332. 227. Swierkowski SP. Vacuum fusion bonded glass plates having microstructures thereon. United States Patent 2001;6,301,931.

Complete References Clin Chem 2002 48: 1620-1622

228. Swierkowski SP, Davidson JC, Balch JW. Vacuum fusion bonding of glass plates. United States Patent 2001;6,289,695. 229. Tai Y-C, Desai A, Lee T, Davis M. MEMS electrospray nozzle for mass spectroscopy. United States Patent 1999;5,994,696. 230. Taylor DL. Miniaturized cell array methods and apparatus for cell-based screening. United States Patent 2000;6,103,479. 231. Thorp HH, Loomis CR, Napier ME. Polymer-electrodes for detecting nucleic acid hybridization and method of use thereof. United States Patent 1999;5,968,745. 232. Ullman EF, Stauber GB. Capillary assays involving separation of free and bound species. United States Patent 2000;6,103,537. 233. Victor Jr RL, Stokes JH. Microfluidic connector. United States Patent 2001;6,319,476. 234. Vo-Dinh T, Wintenberg A, Ericson MN. Integrated circuit biochip microsystem containing lens. United States Patent 2001;6,197,503. 235. Wainright AK, Visser I, Singh S. Methods and compositions for conducting processes in microfluidic devices. United States Patent 2001;6,306,273. 236. Watson Jr. RM, Chaudhry HR, Lee JS. Biochip detection system. United States Patent 2001;6,271,042. 237. Wilding P, Kricka LJ, Zemel JN. Fluid handling in mesoscale analytical devices. United States Patent 1994;5,304,487. 238. Wilding P, Kricka LJ. Mesoscale polynucleotide amplification devices. United States Patent 1996;5,587,128. 239. Wilding P, Kricka LJ. Mesoscale polynucleotide amplification device and method. United States Patent 1996;5,498,392. 240. Wilding P, Kricka LJ. Analysis based on flow restriction. United States Patent 1996;5,486,335. 241. Wilding P, Kricka LJ, Zemel JN. Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems. United States Patent 1997;5,637,469. 242. Wilding P, Kricka LJ, Zemel JN. Fluid handling methods for use in mesoscale analytical devices. United States Patent 1997;5,635,358. 243. Wilding P, Kricka LJ. Mesoscale sample preparation device and systems for determination and processing of analytes. United States Patent 1998;5,726,026. 244. Wilding P, Kricka LJ. Mesoscale polynucleotide amplification device and method. United States Patent 1999;5,955,029. 245. Wilding P, Kricka LJ. Mesoscale sample preparation device and systems for determination and processing of analytes. United States Patent 1999;5,928,880. 246. Wilding P, Kricka LJ, Zemel JN. Apparatus for the detection of an analyte utilizing mesoscale flow systems. United States Patent 1999;5,866,345. 247. Wise KD, Chen J. Microchannel system for fluid delivery. United States Patent 1999;5,989,445. 248. Wolk JA. Method of making a capillary for electrokinetic transport of materials. United States Patent 2000;6,148,508.

Complete References Clin Chem 2002 48: 1620-1622

249. Wolk JA, McReynolds RJ, Parce JW. Alignment of multicomponent microfabricated structures. United States Patent 2001;6,322,683. 250. Wrighton MS. Microelectrochemical devices based on inorganic redox active material and method for sensing. United States Patent 1990;4,936,956. 251. Yang H, Sundberg SA. Surface coating for microfluidic devices that incorporate a biopolymer resistant moiety. United States Patent 2001;6,326,083. 252. Yao N-K, Wan Y-M, Chen C, Hung L-Y, Wang S-H, Chang S-W. Apparatus and method for driving a microflow. United States Patent 2001;6,192,939. 253. Zanzucchi PJ, Cherukuri S, McBride SE. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis. United States Patent 1996;5,585,069. 254. Zanzucchi PJ, Cherukuri S, McBride SE. Etching to form cross-over, non-intersecting channel networks for use in partitioned microelectronic and fluidic device arrays for clinical diagnostics and chemical synthesis. United States Patent 1997;5,681,484. 255. Zanzucchi PJ, Cherukuri S, McBride SE, Judd AK. Method of synthesis of plurality of compounds in parallel using a partitioned solid support. United States Patent 1997;5,643,738. 256. Zanzucchi PJ, Cherukuri S, McBride SE, Judd AK. Partitioned microelectronic device array. United States Patent 1997;5,593,838. 257. Zanzucchi PJ, Cherukuri S, McBride SE. Partitioned microelectronic device array. United States Patent 1998;5,755,942. 258. Zanzucchi PJ, Cherukuri S, McBride SE, Judd AK. Partitioned microelectronic device array. United States Patent 1999;5,863,708. 259. Zanzucchi PJ, Cherukuri S, McBride SE. Immunological assay conducted in a microlaboratory array. United States Patent 1999;5,858,804. 260. Zinck JJ, Baukus JP. Multichannel plate assembly for gas source molecular beam epitaxy. United States Patent 1993;5,188,671.