COMPETITION)AND)FACILITATION)BETWEEN)SEAGRASSAND ... Final report V2.… ·...

13
COMPETITION AND FACILITATION BETWEEN SEAGRASS AND CALCIFYING ALGAE (HALIMEDA AND PENICILLUS) IN THE CARRIBEAN COASTAL ECOSYSTEM Vera van Berlo, supervised by Rebecca James, Marieke van Katwijk and Tjisse van der Heide ABSTRACT The Caribbean coastal ecosystem could protect shorelines from wave erosion. Key elements are the calcifying algae (Halimeda spp. and Penicillus spp.) that are main producers of carbonate sediment, and are early successional species that help to stabilise the sediment. Calcifying algae occur in mixed communities with seagrasses. Seagrass appears to both facilitate the algae and compete with them. In this experiment, four treatments were established ranging from full density to bare density (full patches of seagrass, thinned patches of seagrass (50%) with calcifying algae, patches with only algae and patches with only algae and seagrass roots), in order to explore how the presence and abundance of seagrass affects the growth and longterm persistence (abundance and recruitment) of these algae. Growth rates were not influenced by seagrass in our field experiments. However, measuring recruitment over time gives evidence that there is a balance between competition and facilitation by seagrasses. On one hand, calcifying algae get outcompeted by a lack of free space; on the other hand a facilitative effect appears that is possibly related to the seagrass providing a shelter for young recruits. An adequate mixed community of seagrass and calcifying algae could provide a climate proof Caribbean coast: seagrass might provide a highpH refuge for calcifying algae, and calcifying algae will help seagrass meadows recover faster from storm disturbance – both protecting the shore from wave erosion. INTRODUCTION The Caribbean marine system is threatened by human population growth, overfishing and pollution. Climatic threats of rising sea levels and temperatures, increased storminess and ocean acidification are further enhancing the dangers the area already faces (Gledhill et al. 2008). These changes will affect the system’s ecosystem structure and functioning, resulting in a loss of marine biodiversity, fisheries and shorelines. Coastal habitats can serve as a climate buffer by attenuating wave height and energy, and thus protecting shorelines from wave erosion. When they cannot keep up with sea level rise, they will become deeper, and disturbance by waves will increase. Calcifying algae are one of the key species in these habitats and are the first colonizers, followed by seagrass (Williams 1990). Previous research has shown that the majority of sediment is from biogenic input, dominated by calcareous green algae (Harney et al. 2003). In the Caribbean, the ability of bays and lagoons to keep up with sealevel rise depends on the presence and activity (sediment accretion) of these carbonate sediments. Calcareous algae also create matrices between corals, which leads to reef accretion and provides a place for nursery and larval settlement (Koch 2013) and they are important contributors to coastal primary production; acting as a carbon sink and providing habitat and a food source for a.o. commercial fish; enhancing biodiversity. In the Caribbean coastal ecosystem, calcifying algae occur closely together with seagrasses in mixed communities, possibly forming a facilitative species interaction. When shallow bays are densely covered by seagrass, the pH of seawater will locally be high during the day due to the removal of CO 2 from the water by photosynthesis. This enhances calcification rates by changing the saturation state of calcium carbonate, which means that locally the negative effects of climate change on calcifying algae could be

Transcript of COMPETITION)AND)FACILITATION)BETWEEN)SEAGRASSAND ... Final report V2.… ·...

COMPETITION  AND  FACILITATION  BETWEEN  SEAGRASS  AND  CALCIFYING  ALGAE  (HALIMEDA  AND  PENICILLUS)  IN  THE  CARRIBEAN  COASTAL  ECOSYSTEM      Vera  van  Berlo,  supervised  by  Rebecca  James,  Marieke  van  Katwijk  and  Tjisse  van  der  Heide      ABSTRACT    The  Caribbean  coastal  ecosystem  could  protect  shorelines  from  wave  erosion.  Key  elements  are  the  calcifying  algae  (Halimeda  spp.  and  Penicillus  spp.)  that  are  main  producers  of  carbonate  sediment,  and  are  early  successional  species  that  help  to  stabilise  the  sediment.  Calcifying  algae  occur  in  mixed  communities  with  seagrasses.  Seagrass  appears  to  both  facilitate  the  algae  and  compete  with  them.  In  this  experiment,  four  treatments  were  established  ranging  from  full  density  to  bare  density  (full  patches  of  seagrass,  thinned  patches  of  seagrass  (50%)  with  calcifying  algae,  patches  with  only  algae  and  patches  with  only  algae  and  seagrass  roots),  in  order  to  explore  how  the  presence  and  abundance  of  seagrass  affects  the  growth  and  long-­‐term  persistence  (abundance  and  recruitment)  of  these  algae.  Growth  rates  were  not  influenced  by  seagrass  in  our  field  experiments.  However,  measuring  recruitment  over  time  gives  evidence  that  there  is  a  balance  between  competition  and  facilitation  by  seagrasses.  On  one  hand,  calcifying  algae  get  outcompeted  by  a  lack  of  free  space;  on  the  other  hand  a  facilitative  effect  appears  that  is  possibly  related  to  the  seagrass  providing  a  shelter  for  young  recruits.  An  adequate  mixed  community  of  seagrass  and  calcifying  algae  could  provide  a  climate  proof  Caribbean  coast:  seagrass  might  provide  a  high-­‐pH  refuge  for  calcifying  algae,  and  calcifying  algae  will  help  seagrass  meadows  recover  faster  from  storm  disturbance  –  both  protecting  the  shore  from  wave  erosion.      INTRODUCTION  The  Caribbean  marine  system  is  threatened  by  human  population  growth,  overfishing  and  pollution.  Climatic  threats  of  rising  sea  levels  and  temperatures,  increased  storminess  and  ocean  acidification  are  further  enhancing  the  dangers  the  area  already  faces  (Gledhill  et  al.  2008).    These  changes  will  affect  the  system’s  ecosystem  structure  and  functioning,  resulting  in  a  loss  of  marine  biodiversity,  fisheries  and  shorelines.  Coastal  habitats  can  serve  as  a  climate  buffer  by  attenuating  wave  height  and  energy,  and  thus  protecting  shorelines  from  wave  erosion.  When  they  cannot  keep  up  with  sea  level  rise,  they  will  become  deeper,  and  disturbance  by  waves  will  increase.      Calcifying  algae  are  one  of  the  key  species  in  these  habitats  and  are  the  first  colonizers,  followed  by  seagrass  (Williams  1990).  Previous  research  has  shown  that  the  majority  of  sediment  is  from  biogenic  input,  dominated  by  calcareous  green  algae  (Harney  et  al.  2003).  In  the  Caribbean,  the  ability  of  bays  and  lagoons  to  keep  up  with  sea-­‐level  rise  depends  on  the  presence  and  activity  (sediment  accretion)  of  these  carbonate  sediments.  Calcareous  algae  also  create  matrices  between  corals,  which  leads  to  reef  accretion  and  provides  a  place  for  nursery  and  larval  settlement  (Koch  2013)  and  they  are  important  contributors  to  coastal  primary  production;  acting  as  a  carbon  sink  and  providing  habitat  and  a  food  source  for  a.o.  commercial  fish;  enhancing  biodiversity.    In  the  Caribbean  coastal  ecosystem,  calcifying  algae  occur  closely  together  with  seagrasses  in  mixed  communities,  possibly  forming  a  facilitative  species  interaction.  When  shallow  bays  are  densely  covered  by  seagrass,  the  pH  of  seawater  will  locally  be  high  during  the  day  due  to  the  removal  of  CO2  from  the  water  by  photosynthesis.  This  enhances  calcification  rates  by  changing  the  saturation  state  of  calcium  carbonate,  which  means  that  locally  the  negative  effects  of  climate  change  on  calcifying  algae  could  be  

ameliorated  (Semesi  et  al.  2009a,  Unsworth  et  al.  2012).  A  study  of  Koch  et  al.  (2013)  shows  that  the  photosynthetic  uptake  of  dissolved  inorganic  carbon  (DIC)  leads  to  increased  CO3

2-­‐  levels  and  an  increased  pH  (0.5-­‐0.7  units),  creating  an  environment  more  advantageous  for  calcification.  Furthermore,  seagrass  protect  other  organisms,  including  calcifying  algae,  from  storms,  trap  mineral  sediment  and  provide  a  refuge  for  young  (algal)  recruits  by  reducing  hydrodynamic  energy  (Harney  &  Fletcher  2003).  It  can  stabilize  calcareous  sediments  and  prevent  erosion.  However,  under  optimal  conditions  the  seagrasses  are  likely  to  compete  with  rhizophytic  calcifying  algae  that  grow  within  seagrass  meadows  (Barry  et  al.  2013,  Davis  &  Fourqurean,  2001)  for  light,  space  and  nutrients.      To  determine  whether  this  species  interaction  will  affect  the  response  of  calcifying  algae  to  climate  change,  we  have  conducted  manipulative  field  experiments.  The  emphasis  in  this  lies  on  the  density  of  seagrass  meadows  and  the  different  effects  on  Halimeda  and  Penicillus  –  which  are  both  main  calcifying  algal  species  in  the  Caribbean  area  (APPENDIX  1).  The  main  goal  of  this  study  was  to  determine  how  competition  and  facilitation  between  calcifying  algae  and  seagrass  affect  the  growth  of  algae.  For  this,  the  physiological  response  (growth  and  calcification  rates)  and  (2)  the  long-­‐term  persistence  (abundance  and  recruitment)  of  Halimeda  and  Penicillus  in  different  seagrass  densities  were  quantified  in  relationship  to  abiotic  factors.  This  resulted  in  more  insight  in  the  climate  buffering  role  of  calcifying  algae  protecting  the  Caribbean  shorelines.        MATERIALS  AND  METHODS    Experimental  design  In  order  to  test  how  algae  growth  and  recruitment  are  influenced  by  different  seagrass  densities  (Thalassia  testudinum  –  eelgrass  and  Syringodium  filiforme  –  manatee  grass)  in  the  Caribbean  coastal  system,  the  seagrass  density  in  naturally  existing  seagrass  beds  was  changed  by  clipping  shoots  at  sediment  level.  In  total,  four  treatments  were  established  ranging  from  full  density  to  bare  density  (full  patches  of  seagrass  (control),  thinned  patches  of  seagrass  (50%)  with  calcifying  algae,  patches  with  only  algae  (control)  and  patches  with  only  algae  and  seagrass  roots).  For  each  experimental  treatment,  five  plots  of  150  x  150  cm  were  created;  the  borders  were  marked  with  pins  on  each  corner  and  fenced  off  with  string,  and  were  equipped  with  material  to  protect  it  from  boats/kayaks.  Size  of  the  plots  was  selected  due  to  results  of  a  pilot  study  of  Meyers  (2010)  that  indicated  increases  in  canopy  flow  speeds  due  to  reductions  in  seagrass  shoot  density  could  be  detected  within  patches  of  at  least  1  m  x  1  m,  as  well  as  because  of  the  time-­‐consuming  business  of  maintaining  the  adjusted  seagrass  cover  when  the  plot  size  would  become  bigger.    The  treatments  were  assigned  randomly  to  the  plots  and  all  of  them  were  placed  ≥2  m  from  the  edge  of  the  seagrass  bed  and  ≥  1  m  from  each  other.  Thinning  was  applied  as  it  provided  a  robust  way  of  researching  the  impact  of  seagrass  densities;  when  seagrass  plots  are  selected  based  already  on  the  density,  the  environmental  settings  may  not  be  similar.  For  the  full  density  treatment  no  shoots  were  removed,  half  of  the  shoots  were  removed  for  the  50%  treatment  (by  cutting  every  other  shoot)  and  all  of  the  shoots  were  removed  from  the  patches  of  the  bare  treatment  by  cutting  below  the  meristem.  The  already  unvegetated  patches  were  used  for  the  treatment  without  any  seagrass  roots,  as  taking  all  roots  out  would  have  disturbed  the  sediment  too  much.  The  thinning  procedure  was  repeated  every  week,  also  giving  the  opportunity  to  clean  and  check  the  instruments  at  the  same  time.  Patches  with  no  shoot  removal  were  likewise  disturbed  by  simulating  blade  removal.  Every  plot  was  divided  into  5  subplots  of  30  x  30  cm  (20  cm  from  the  edge  of  the  plot  and  one  in  the  middle,  see  APPENDIX  2),  in  which  several  measurements  were  taken  (that  are  described  below).  

 The  calcifying  algae  of  interest  were  Halimeda  spp.  and  Penicillus  spp.  In  order  to  start  off  the  experiment  with  plots  that  are  as  comparable  as  possible,  we  have  adjusted  the  algae  density  so  that  all  plots  contained  8-­‐12  Halimeda  spp.  and  2  Penicillus  spp.  per  30  x  30  cm.  CPCe  4.1  (CoralPointCount)  was  used  to  analyse  the  composition  of  the  plots  and  the  actual  seagrass  cover  by  assigning  50  simple  random  points  in  a  photo  of  a  30  x  30  cm  quadrat  placed  randomly  within  the  plot.  The  seagrass  cover  is  respectively  97.2  ±  2.5,  51.9  ±  7.4,  0.4  ±  0.8  and  0.0  ±  0.0  %;  the  seagrass  biomass  is  respectively  219  ±  49,  103  ±  16,  0  ±  0.0  and  0.0  ±  0.0  g  m-­‐1  for  the  four  treatments.  We  waited  for  eight  days  for  the  plots  to  recover  before  taking  any  measurements.    The  whole  experiment  was  conducted  between  October  27th,  2015  and  January  30th,  2016  at  the  bay  between  Cul  de  Sac  and  Petite  Clef  island  located  at  the  North-­‐East  coast  of  French  Saint  Martin  (N  18  6  10.2,  W  63  1  14.6)  (FIGURE  1).  The  site  could  be  described  as  semi-­‐sheltered  with  moderate  touristic  activity  (boats,  kayaks,  snorkelers).  The  seagrass  beds  were  characterized  by  mixed  T.  testudinum  and  S.  filiforme  beds  in  ~100  cm  water  depth  that  experienced  at  daily  tidal  range  of  ~10-­‐20  cm.  The  average  shoot  length  before  starting  the  experiment  was  ~18  cm.      

   

FIGURE  1.  Maps  with  location  of  the  research  site.  A  shows  the  island  

of  Saint  Martin  with  Cul-­‐de-­‐Sac  located  at  

the  North-­‐East  coast  of  the  island  (bordered  in  red).  B  shows  the  area  

of  Cul-­‐de-­‐Sac,  Pinel  island  and  Petite  Chef.  C  shows  the  locations  of  

the  plots  in  between  the  dock  and  Petite  Chef.  

The  plots  are  marked  in  red.  

A  

C  

B  

 Recruitment  and  growth  The  amount  of  Halimeda  spp.  and  Penicillus  spp.  (and  possibly  other  calcifying  algae)  in  the  middle  of  each  subplot  (15  x  15  cm)  was  counted  at  the  beginning  of  the  experiment  in  order  to  monitor  recruitment.  These  measurements  were  re-­‐taken  on  a  two-­‐weekly  basis.  The  results  were  expressed  in  net  loss  or  increase,  so  that  the  change  in  algal  abundance  (sum  algae/#  occupied  quadrants)  and  total  algal  biomass  could  be  determined  in  time.  The  algae  shoots  in  the  recruitment  plots  were  used  for  determining  size  class  abundance  and  average  dry  weight  at  the  end  of  the  experiment.  All  algae  were  removed  from  the  center  subplot,  dried  to  a  constant  weight  in  a  60°C  drying  oven.  After  which  the  Halimeda  spp.  shoots  were  classified  as  small  (<10  segments),  medium  (10-­‐50  segments)  or  big  (>50  segments),  and  the  dry  material  was  weighed  to  determine  dry-­‐weight  biomass  per  individual  (for  Penicillus)  and  #  segments  (for  Halimeda  spp.)    Similar  sized  individuals  of  H.  incrassata  (three  finger  leaf  alga)  and  P.  capitatus  (shaving  brush  alga)  were  selected  and  transplanted  into  the  plots  to  measure  growth  rates  (thalli  of  6  –  10  cm).  All  algae  were  collected  from  the  same  position  in  Cul-­‐de-­‐Sac  bay,  and  were  cleaned  of  all  visible  epiphytes  and  labelled.  One  of  each  species  was  replanted  in  each  subplot  and  secured  to  the  sediment  with  a  metal  pin  and  string.  Before  replanting  photos  were  taken  of  H.  incrassata,  and  with  ImageJ,  the  number  of  segments  was  counted  and  root  length  was  determined.  After  five  weeks,  the  relative  net  growth  (#  segments  after/#  segments  before  *  100),  the  percentage  of  new  segments,  the  percentage  of  lost  segments  and  the  relative  net  root  growth  (length  after/length  before  *  100)  was  determined.  The  relative  growth  rates  of  P.  capitatus  were  assessed  by  measuring  root,  stalk  and  brush  length  before  and  after  the  experiment.  Every  week,  these  algae  were  checked  for  their  presence  and  replaced  if  necessary.  The  CaCO3-­‐content  of  the  algae  was  determined  by  placing  the  segments  in  10  HCl  for  1  hour,  after  which  they  were  put  in  fresh  water  for  several  hours  to  remove  the  acid.  After  rinsing  they  were  placed  in  a  drying  oven  at  60°C  until  a  constant  weight  was  reached,  placed  in  a  desiccator  and  reweighed.  The  calcified  content  was  calculated  by  deriving  the  difference  of  the  dry-­‐weight  of  the  calcified  and  the  somatic  samples.    After  discovering  the  calcifying  algae  were  not  tolerant  to  being  replanted,  another  growth  experiment  was  conducted.  In  every  plot  one  (6  –  10  cm  tall)  individual  of  H.  monile  was  dyed  with  a  1%  alizarin  red  stain.  5  ml  of  the  dye  solution  was  injected  in  a  1  L  plastic  bag  that  covered  the  algae  and  was  anchored  to  the  sediment  with  pins.  After  24h  the  bags  were  removed  and  17  days  later  the  algae  were  removed,  bleached,  and  the  percentage  net  growth  rates  were  determined  by  counting  the  number  of  dyed  and  the  undyed  segments.      Abiotic  factors  In  both  a  vegetated  and  an  unvegetated  area,  two  water  samples  (one  50  ml  and  one  10  ml)  were  taken  2  cm  from  the  bottom  on  a  monthly  basis.  The  DIC  (10  ml)  samples  were  poisoned  with  10  μl  HgCL2  and  run  through  an  Apollo  SciTech  DIC  analyzer  that  comprises  an  acidification  and  purging  unit  in  combination  with  a  LICOR-­‐7000  infrared  detector.  DIC  concentrations  are  calculated  with  Dickson’s  reference  samples.  The  50  ml  samples  were  poisoned  with  20  μl  HgCL2,  after  which  total  alkalinity  was  determined  using  the  Metrohm  alkalinity  titrator.  With  CO2SYS  (Pierrot  et  al.  2006),  the  concentrations  of  other  chemical  seawater  inorganic  carbon  system  parameters  were  calculated  and  can  be  found  in  TABLE  1.  On  January  21st,  2016,  another  10  ml  nutrient  sample  was  collected  the  same  way,  was  filtered  and  stored  in  a  freezer  until  being  analysed  with  the  nutrient  analyser  (TRAACS)  for  ammonium  nitrite/nitrate,  phosphate  and  silicate,  of  which  the  results  are  shown  in  TABLE  2.    

TABLE  1.  Measured  and  calculated  physical  and  chemical  seawater  inorganic  carbon  system  parameters  in  unvegetated  (U)  and  vegetated  (V)  areas  measured  at  a  pressure  of  0.8  dbar.  Salinity  (S  in  PSU),  temperature  (T  in  ⁰C),  total  alkalinity  (TA  in  mmol  kg  -­‐1SW)  and  pH  were  measured.  These  parameters  were  used  to  calculate  the  seawater  carbon  chemistry  with  the  program  CO2SYS  (Pierrot  et  al.  2006)  with  the  use  of  K1,  K2  constants  from  Merbach  et  al.  (1973)  refit  by  Dickson  and  Millero  (1987).  Total  CO2  (TCO2),  HCO3

-­‐,  CO32-­‐  and  CO2  in  mmol  kg  -­‐1SW,  

partial  pressure  of  CO2  (pCO2)  in  ppmv,  pH  in  NBS  scale  (mol  kg-­‐1  SW).  Ω  =  CaCO3  saturation  state  of  the  seawater;  aragonite  (arag)  and  calcite  (cal).     S   T   TA     TCO2   pH   pCO2     HCO3  

-­‐   CO32-­‐     CO2     ΩCal   ΩArag  

V   35.4   28.5   2394   1871   8.28   197   1506   360   5.1   8.7   5.8  UV   35.4   28.5   2375   1869   8.26   207   1515   348   5.4   8.4   5.6    TABLE  2.  Measured  nutrient  levels  in  µmol  L-­‐1  in  unvegetated  (U)  and  vegetated  (V)  areas.    Date Area   NH4   NO2   NO3   NOX   PO4  

11-23-15 V   16.97  ±  11.42   0.02  ±  0   0.19  ±  0.11   0.21  +  0.11   0.16  ±  0.13  

U   8.92  ±  1.80   0.005  ±  0.007   0.10  ±  0.10   0.11  ±  0.11   0.07  ±  0.04  

1-15-16 V   8.40  ±  3.34   0.02  ±  0.01   0.53  ±  0.11   0.55  ±  0.13   0.06  ±  0.02  

U   8.01  ±  6.07   0.03  ±  0.01   0.49  ±  0.49   0.51  ±  0.02   0.04  ±  0.01    Every  two  weeks  –  at  dawn  and  midday  –  pH  and  salinity  measurements  were  taken  in  each  plot  within  the  seagrass  canopy  using  an  Orion  pH  meter  and  electrode  and  conductivity  meter  in  order  to  obtain  the  maximum  diel  pH  changes.      Within  the  middle  of  each  treatment,  automatic  HOBO  temperature-­‐  and  light  loggers  were  secured  to  the  sediment  with  metal  pins  within  the  canopy  and  moved  weekly  between  the  treatment’s  five  plots.  Data  was  downloaded  every  week  and  Hoboware  was  used  to  display  the  results.  The  daily  light  maximum  and  average  and  the  daily  maximum,  minimum  and  average  temperature  were  used  for  the  analysis.    To  provide  quantitative  measures  of  erosion  and/or  sedimentation  in  the  seagrass  habitats,  erosion  pins  made  of  steel  pins,  were  placed  in  the  center  of  each  subplot  at  a  known  depth.  The  depth  of  the  pins  was  retrieved  monthly  and  converted  to  the  sediment  change  in  mm  per  day.    Plaster  blocks  of  4  x  3  x  2  cm  were  created  for  measuring  mass  transfer  rates  on  a  monthly  basis  in  each  subplot.  One  part  of  tap  water  is  mixed  with  two  parts  of  gypsum  putting  them  –  after  shaking  the  bubbles  out  for  1.5  minutes  and  together  with  a  metal  pin  –  in  a  mould.  They  are  dried  to  a  constant  weight  and  deployed  onto  the  erosion  pins  10  cm  above  the  ground,  perpendicular  to  the  water  motion  for  24  hours.  Once  retrieved,  the  blocks  are  dried  and  re-­‐weighed,  and  the  decrease  in  weight  per  day  is  determined,  giving  a  measure  of  the  movement  of  solutes  through  the  water  column.    Data  analysis  Differences  in  recruitment,  growth,  size  classes,  biomass,  CaCO3,  nutrients,  DIC,  alkalinity,  salinity,  pH,  light,  temperature,  erosion  and  mass  transfer  between  treatments  (and,  if  relevant,  dates)  were  tested  by  using  ANOVA,  when  assumptions  of  normality  and  equality  of  variances  were  met.  If  it  showed  a  significant  difference,  pairwise  comparisons  were  applied.  Each  plot  was  treated  as  a  replicate,  and  within  these  replicates,  the  five  subplot  samples  per  experiment  were  averaged  for  analysis.  The  middle  plot  (see  APPENDIX  2)  was  used  separately  for  all  analysis  as  well,  because  it  was  expected  to  be  influenced  the  most  by  its  treatment  because  of  its  position.    

RESULTS    Recruitment  Before  applying  the  treatments,  the  amount  of  algae  within  each  15x15  cm  plot  was  similar  (ranging  from  3.48  –  4.16,  see  FIGURE  2).  After  3  weeks,  an  increase  in  algae  is  shown  in  the  0%  roots  treatment  (6.12),  mainly  caused  by  an  increase  of  Halimeda  spp.  and  to  a  lesser  amount  by  Penicillus  spp.  This  significant  net  increase  continues  over  time:  after  3  months  the  plots  with  this  treatment  contain  about  2.5  times  as  many  algae.  A  less  gradual  change  over  time  is  shown  in  the  50%  treatment.  The  first  two  months  the  amount  of  algae  is  stable,  whereas  the  numbers  go  from  approximately  4  to  more  than  10  within  the  last  month.  The  amount  of  algae  within  the  100%  treatment  increases  just  slightly  over  time  (with  a  maximum  of  4.80),  just  as  the  0%  no  roots  treatment  (with  a  maximum  of  6.00).  A  two-­‐way  ANOVA  of  the  total  recruits  shows  a  P-­‐value  of  4.25  *  10-­‐20  for  different  dates  and  1.73  *  10-­‐5  for  different  treatments  (see  APPENDIX  3,  TABLE  4,  5  and  6).  The  highest  average  number  of  Halimeda  individuals  enumerated  was  10.4  at  the  29th  of  January  in  the  50%  treatment.  With  an  average  of  2.0  at  the  same  date  in  the  0%  roots  plots,  the  highest  amount  of  Penicillus  spp.  was  reached.  Udotea  spp.  seems  to  disappear  after  December.  As  Penicillus  spp.  and  Udotea  spp.  were  not  normally  distributed,  ANOVA  could  not  be  executed.    

 FIGURE  2.  Mean  number  of  Halimeda  spp.  (green),  Penicillus  spp.  (blue)  and  Udotea  spp.  (yellow)  individuals  in  subplots  with  different  treatments  (100%,  50%,  0%  seagrass  cover  with  or  without  roots)  of  15x15  cm  measured  at  different  dates.    

0  

2  

4  

6  

8  

10  

12  

100%

 50%  

0%  ro

ots  

0%  no  roots  

100%

 50%  

0%  ro

ots  

0%  no  roots  

100%

 50%  

0%  ro

ots  

0%  no  roots  

100%

 50%  

0%  ro

ots  

0%  no  roots  

100%

 50%  

0%  ro

ots  

0%  no  roots  

100%

 50%  

0%  ro

ots  

0%  no  roots  

10-­‐29-­‐15   11-­‐19-­‐15   12-­‐17-­‐15   12-­‐29-­‐15   1-­‐16-­‐16   1-­‐29-­‐16  

Mean  am

ount  of  algae  per  15x15  cm  

Date  and  treatment  

Halimeda  spp.   Penicillus  spp.   Udotea  spp.  

When  H.  incrassata  is  divided  into  three  size  classes  (FIGURE  3),  it  can  be  seen  that  only  one  individual  with  more  than  50  segments  is  found  in  the  50%  treatment.  The  100%  plots  did  not  comprise  any  H.  incrassata.  With  averages  of  0.8  (SE  =  1.3),  the  0%  roots  subplots  contained  small  (<  10)  and  medium  (10  –  50  segments)  and  0.2  (SE  =  0.45)  big  (<  50)  thalli,  compared  to  0.6  small  and  0.4  medium  and  big  thalli  (all  sizes  SE  =  0.89)  in  the  0%  no  roots  treatment.  H.  monile  is  more  abundant  (4.2  ±  4.4,  10.2  ±  8.1,  6.0  ±  3.8  and  3.6  ±  4.6  respectively  for  all  treatments),  showing  overall  a  high  proportion  of  medium  sized  individuals  (2.4  ±  3.0,  6.2  ±  6.2,  3.4  ±  2.7  and  1.4  ±  2.2).  The  increase  in  recruitment  within  the  0%  roots  treatment  is  gradual,  which  is  supported  by  FIGURE  3  that  presents  a  relatively  big  share  of  the  Halimeda  spp.  to  be  medium  sized  or  big.  No  significant  differences  were  found  within  different  treatments  or  size  classes.      

 FIGURE  3.  Mean  amount  of  three  types  of  size  classes  (<10  segments,  green;  10-­‐50  segments,  blue;  >50  segments  –  yellow)  H.  incrassata  and  H.  monile.  In  subplots  with  different  treatments  (100%,  50%,  0%  seagrass  cover  with  or  without  roots)  of  15x15  cm  measured  at  1-­‐29-­‐16.      In  FIGURE  4  is  shown  that  the  final  biomass  of  seagrass  in  the  100%  treatment  is  4.93  ±  1.10  g  dw-­‐1  per  15x15  cm  (219  ±  49  g  dw-­‐1m-­‐1)  and  in  the  50%  treatment  2.32  ±  0.36  g  per  15x15  cm  (103  ±  16  g  dw-­‐1m-­‐1)  (APENDIX  3,  TABLE  7  AND  8).  The  recruitment  plots  contained  a  small  mass  of  H.  incrassata  (respectively  0.00  for  100%,  0.17  for  50%,  0.54  for  0%  roots  and  0.35  g  dw-­‐1  for  0%  no  roots)  and  Penicillus  spp.  (0.06,  0.06,  0.55  and  0.24  g  dw-­‐1per  15x15  cm)  and  a  big  mass  of  H.  monile  (3.35,  10.32,  2.06  and  4.06  g  dw-­‐1),  showing  a  non-­‐significant  difference  between  the  treatments.  Udotea  was  only  present  in  the  0%  no  roots  treatment  (one  individual  that  weighted  0.17  g).  The  total  amount  of  biomass  was  8.44,  12.96,  5.44  and  5.17  g  dw-­‐1for  respectively  the  100%,  50%,  0%  roots  and  0%  no  roots  recruitment  plots,  for  which  the  difference  was  non-­‐significant.    Combining  the  data  in  FIGURE  3  and  4,  the  dry  weight  per  individual  algae  (per  size  class)  can  be  calculated  (see  APPENDIX  3,  TABLE  9).  TABLE  10  on  the  same  page  demonstrates  non-­‐significant  differences  between  treatments.  The  heaviness  of  the  algae  in  the  0%  no  roots  treatment  was  caused  by  the  presence  of  three  very  big  algae.  Although  FIGURE  4  indicates  that  the  total  biomass  production  in  

0  

2  

4  

6  

8  

10  

12  

100%   50%   0%  roots   0%  no  roots  

100%   50%   0%  roots   0%  no  roots  

H.  incrassata   H.  monile  

Mean  am

ount  of  H

alim

eda  pe

r  15x15  cm  

Species  and  treatment  

<10  segments   10-­‐50  segments   >50  segments  

the  50%  treatment  is  1.5  times  higher  than  in  the  100%  treatment,  and  about  3-­‐4  times  higher  in  the  0%  treatments,  no  significant  differences  were  found.  Even  though  the  seagrass  cover  was  more  than  twice  as  high,  the  dry-­‐weight  of  the  50%  treatment  is  mainly  determined  by  the  amount  of  H.  monile,  which  has  a  higher  specific  weight.      

 FIGURE  4.  Mean  biomass  (g  dw-­‐1)  in  subplots  of  15x15  cm  measured  at  1-­‐29-­‐16  for  different  treatments  (100%,  50%,  0%  seagrass  cover  with  or  without  roots).  The  species  are  subdivided  into  three  size  groups  (small,  <10  segments;  medium,  10-­‐50  segments;  big,  >50  segments).  H.  incrassata  is  displayed  in  light  green,  H.  monile  in  dark  green,  Penicillus  spp.  in  blue,  Udotea  spp.  in  yellow  and  seagrass  species  in  grey.    Growth  During  a  five  week  period,  the  daily  percentage  number  of  new  Halimeda  segments  produced  ranged  from  0.00  to  3.63  %.  On  average,  individual  algae  grew  0.78  %  new  segments  per  day.  Between  0.00  and  5.98  %  segments  were  lost  per  individual  per  day,  with  an  average  loss  of    0.98  %.  Comparing  the  daily  percent  net  growth  (new  growth  minus  loss  of  tissue  from  storm  activity,  grazing,  etc.),  lost  segments  or  new  segments  showed  no  significant  differences  between  treatments  (see  APPENDIX  3,  FIGURE  8  and  TABLE  11).  A  weak  positive  correlation  (R  =  0.397)  was  found  between  the  size  before  treatment  and  the  number  of  new  segments,  indicating  that  plant  size  was  not  a  very  strong  predictor  of  growth.  Three  of  the  treatments  (50%,  0%  roots,  0%  no  roots)  show  an  average  decrease  of  root  length,  although  this  differs  not  significantly  from  the  slight  growth  of  root  length  seen  in  the  100%  treatment  or  amongst  each  other  (APPENDIX  3,  FIGURE  9).    The  alizarin  staining  experiment  results  can  be  found  in  APPENDIX  3,  FIGURE  10.  It  shows  that  after  17  days,  Halimeda  monile  has  grown  between  2  and  84  new  segments.  This  results  in  a  %  growth  of  2.35-­‐54.55%.  As  the  data  was  not  normally  distributed,  an  ANOVA  could  not  be  performed.  When  the  standard  deviation  and  the  mean  amount  of  old  and  new  segments  and  the  %  new  segments  were  compared  within  treatments,  no  differences  were  found.  The  graph  seems  to  display  a  bigger  range  in  

0  

1  

2  

3  

4  

5  

6  

7  

100%   50%   0%  roots   0%  no  roots  

Mean  biom

ass  g

 per  15x15  cm  

Treatment  

H.  incrassata  (<10  segments)   H.  incrassata  (10-­‐50  segments)   H.  incrassata  (>50  segments)  

H.  monile  (<10  segments)   H.  monile  (10-­‐50  segments)   H.  monile  (>50  segments)  

Penicillus  spp.   Udotea  spp.   Seagrass  

the  amount  of  new  segments  grown  in  the  0%  roots  treatment.  A  weak  positive  correlation  (R  =  0.370)  was  found  between  the  number  of  old  and  new  segments,  which  indicates  that  tissue  loss  does  not  affect  tissue  growth  strongly.    APPENDIX  3,  FIGURE  11  shows  a  slight  daily  root  growth  per  day  for  Penicillus  spp.  The  length  of  the  stalk  stayed  the  same  during  the  five  week  period  in  which  the  experiment  took  place  and  the  brush  length  seems  to  have  decreased.  The  data  is  not  normally  distributed  (neither  after  transformation),  so  no  ANOVA  could  be  executed.  However,  when  looking  at  the  means  and  standard  deviations,  no  differences  were  shown  in  the  growth  of  individuals’  roots,  stalk  and  brush  between  treatments.    The  percentage  of  CaCO3  per  dry  weight  of  Halimeda  incrassata.  Individuals  varies  between  82  –  84%,  which  is  higher  than  the  part  of  Penicillus  capitatus  that  is  calcified  (61  –  71%)  (APPENDIX  3,  FIGURE  12).  The  percentage  is  significantly  higher  for  H.  incrassata  in  the  100%  treatment  compared  to  the  0%  roots  treatment  (P  =  0.025;  see  APPENDIX  3,  TABLE  12  and  13).  The  amount  of  CaCO3  in  P.  capitatus  significantly  differs  in  all  treatments;  an  increasing  percentage  is  shown  when  comparing  0%  roots,  0%  no  roots,  50%  and  100%  (from  high  to  low),  with  a  trend  between  0%  roots  and  0%  no  roots.    Abiotic  factors  In  the  pH  graph  (APPENDIX  3,  FIGURE  13),  a  clear  increase  in  pH  during  the  day  is  displayed,  as  in  all  measurements,  the  pH  at  6:00  AM  is  lower  (varying  between  7.95  –  8.14)  than  at  12:00  AM  (8.18  –  8.28).  In  the  beginning  of  the  experiments,  the  morning  pH  was  higher  and  the  afternoon  pH  lower,  indicating  less  photosynthetic  and  respirational  activity.  There  is  no  significant  difference  between  treatments.  However,  dates  mutually  differ  significantly  from  each  other  (APPENDIX  3,  TABLE  14  AND  15).    The  salinity  of  the  site  is  between  35.2  –  35.8  (see  APPENDIX  3,  FIGURE  14),  with  a  difference  of  ~0.15  between  (lower)  morning  and  (higher)  midday  measurements.  Significant  differences  are  found  in  both  timeslots.  Salinity  levels  at  12.00h  are  significantly  higher  (P  =  0.019)  in  the  0%  no  roots  than  in  the  0%  roots  treatment  and  a  trend  is  found  between  100%  and  0%  no  roots  (P  =  0.078).  The  daytime  salinity  is  significant  higher  at  October  5th  and  December  3rd,  and  significantly  lower  at  11-­‐5-­‐2015  and  3,  significantly  lower  at  January  8th  (APPENDIX  3,  TABLE  16,  17  and  18).    During  the  experiment,  both  the  average,  minimum  and  maximum  temperature  dropped  (APPENDIX  3,  FIGURE  15).  This  might  cause  a  drop  in  photosynthesis  as  well,  as  shown  in  the  pH  graph.  The  slightly  higher  temperature  in  the  0%  roots  treatment  and  could  point  to  the  temperature  buffering  effect  of  seagrass.  There  are  significant  difference  between  the  maximum  per  treatment,  showing  a  slightly  higher  temperature  for  the  0%  roots  treatment  and  lower  numbers  for  the  100%  and  50%  treatment  (a  trend  is  found  comparing  the  (higher)  0%  roots  maximum  temperature  and  the  (lower)  0%  no  roots  maximum.  The  average  and  minimum  temperature  do  not  show  any  significant  differences  (APPENDIX  3,  TABLE  19,  20  and  21).      The  daily  average  light  intensity  at  the  bed  level  varies  between  4300-­‐6100  lux  (APPENDIX  3,  FIGURE  16).  There  is  a  big  difference  between  cloudy  (10000  lux)  and  sunny  (50000  lux)  days.  Maximum  light  intensity  is  significantly  higher  in  the  0%  roots  treatment  compared  to  the  0%  no  roots  treatment,  and  a  trend  shows  a  higher  intensity  for  the  0%  roots  compared  to  the  50%  treatment  (APPENDIX  3,  TABLE  22).  The  average  intensity  is  higher  in  the  0%  roots  plots  compared  to  the  100%  and  0%  no  roots  plots.    

The  majority  of  the  plots  have  sedimentation  or  no  net  change,  ranging  to  a  maximum  of  67  mm  (APPENDIX  3,  FIGURE  17).  The  0%  roots  treatment  shows  significantly  less  sedimentation  than  the  other  treatments  (APPENDIX  3,  TABLE  23  and  24).  There  is  a  trend  between  the  50%  plots  and  the  100%  and  0%  no  roots  plots,  indicating  that  these  50%  plots  have  a  lower  amount  of  sedimentation  (0.20  ±  0.15)  compared  to  100%  (0.34  ±  0.36)  and  0%  no  roots  (0.34  ±  0.40)  plots.      Dissolution  rates  vary  between  50-­‐60%  (APPENDIX  3,  FIGURE  18).  This  corresponds  with  an  absolute  loss  of  3.83g  Ca  (which  makes  up  23.28%  of  the  blocks).  Rates  differ  in  time:  the  first  measurement,  taken  at  November  16th,  shows  significantly  lower  numbers  than  the  measurements  taken  in  December.  The  0%  no  roots  blocks  decreases  more  than  the  other  treatments  (53.5%  compared  to  57.2%  (100%),  57.5%  (50%)  and  58.9%  (0%  roots)  APPENDIX  3,  TABLE  25,  26  and  27).        DISCUSSION  AND  CONCLUSION    Recruitment  was  influenced  by  seagrass  density,  as  could  be  seen  in  our  manipulated  plots:  a  gradual  increase  in  the  amount  of  algae  took  place  within  the  0%  roots  treatment  and  a  less  gradual  increase  was  shown  in  the  50%  treatment  for  the  last  month  of  the  three-­‐month  experimental  period.  The  amount  of  algae  within  the  control  treatments  increases  just  slightly  over  time.  This  implies  that  a  change  in  the  amount  of  algae  is  not  only  dependent  on  seasonal  changes,  but  does  relate  to  the  density  of  the  seagrass  cover.  These  results  indicate  that  the  seagrass  is  limiting  the  recruitment  of  the  calcifying  algae  and  a  competitive  relationship  exists  between  calcifying  algae  and  seagrass,  which  might  be  the  result  of  reaching  a  population  limit  related  to  the  amount  of  resources  available  (Biber  et  al.  2004).  Yet,  as  the  0%  no  roots  treatment  didn’t  show  an  increase  in  algae,  the  seagrass  at  the  same  time  is  beneficial  to  the  algae.      The  gradual  increase  of  Halimeda  spp.  in  the  0%  roots  plots  was  represented  in  the  relatively  big  share  of  medium  sized  and  large  algae.  A  big  portion  of  small  algae  was  expected  to  be  found  in  the  50%  treatment  based  on  the  sudden  invasion  during  the  last  month,  however,  this  was  not  the  case.  This  is  most  probably  caused  by  the  fact  that  only  one  subplot  per  plot  was  used  to  determine  biomass.    Another  explanation  relates  to  sedimentation  that  took  place,  so  that  the  younger  recruits  were  covered  in  sediment  and  it  were  not  observed  in  earlier  measurements.      Halimeda  spp.  seems  to  benefit  more  from  lower  seagrass  densities,  which  is  in  line  with  previous  research  that  shows  that  Halimeda  is  much  more  storm  resistant  and  thus  would  have  a  lower  dependence  on  the  facilitation  of  seagrass  than  Penicillus,  which  is  easily  uprooted  and  poorly  tolerant  to  sediment  burial  (Cruz  Palacios  &  van  Tussenbroek  2005).  Our  research  also  shows  that  individuals  of  Halimeda  spp.  contain  a  bigger  share  of  CaCO3  than  Penicillus  spp.  individuals,  which  could  make  Halimeda  both  more  susceptible  to  a  changing  climate  (more  vulnerable  to  higher  pH  levels)  and  less  susceptible  (through  its  calcification  is  firmer  and  therefore  less  sensitive  to  storms),  although  this  is  not  extensively  researched  yet.  There  are  indications  that  Penicillus  spp.  grow  in  plots  with  higher  density  of  seagrass.  Because  of  its  morphology  this  species  can  be  benefited  more  by  seagrass  (as  suggested  by  Cruz  Palacios  &  van  Tussenbroek  2005)  although  this  result  is  –  due  to  the  small  amount  of  replicates  –  not  very  reliable.  Udotea  spp.  seems  to  disappear  after  December,  which  can  possibly  be  explained  by  seasonal  changes  in  abiotic  factors,  reproductive  activity  and/or  abundance  of  herbivorous  fishes.    The  balance  between  competition  and  facilitation,  measured  here  as  the  impact  of  the  presence  and  abundance  of  seagrass  affecting  growth  and  long-­‐term  persistence  (abundance  and  recruitment)  of  

calcifying  algae  (Halimeda  spp.  and  Pencillus  spp.),  displayed  no  significant  difference  in  growth  rates.  None  of  our  three  growth  experiments  (the  five  week  H.  incrassata  and  Penicillus  spp.  experiments  and  the  experiment  on  H.  monile  with  alizarin  red)  showed  any  differences  caused  by  the  treatments.  The  five  week  experiment  gives  an  indication  of  H.  incrassata  and  Penicillus  spp.  growth  rates  in  stress  –  after  transplantation,  which  possibly  explains  the  net  decrease  of  amount  of  segments.  As  transplantation  is  not  necessary  for  the  alizarin-­‐red  dying  method  with  H.  monile,  it  gives  more  reliable  results  of  growth  rates  in  the  field.  As  no  difference  is  shown  between  treatments  in  this  specific  experiment,  it  indicates  that  growth  rates  are  not  particularly  impacted  by  surrounding  seagrass,  indicating  that  the  algae  are  not  limited  in  nutrients,  light  and  space  when  looking  at  growth  it  itself.  However,  this  result  could  also  relate  to  our  experimental  design.  Except  for  limitations  in  plot  size  and  the  amount  of  replicates  –  which  will  be  discussed  more  extensively  later  on  –  another  restriction  of  our  experiment  was  the  fact  that  we  did  not  measure  grazing.  It  might  be  that  the  amount  of  grazing  is  influenced  by  seagrass  density,  which  could  cancel  out  possible  differences  in  treatments.  It  is  therefore  highly  recommended  to  conduct  further  field  experiments  using  anti-­‐grazer  barriers.    We  found  no  clear  evidence  in  any  of  the  abiotic  measurements  that  explained  a  difference  in  recruitment.  A  slightly  higher  maximum  temperature  combined  with  a  higher  average  and  maximum  light  intensity  and  less  sedimentation  in  the  0%  roots  plots  could  have  influenced  the  amount  of  recruits,  but  as  none  of  this  data  also  supports  the  increase  of  recruits  in  the  50%  plots  this  is  not  likely.  Therefore,  the  increase  of  recruitment  with  seagrass  thinning  was  most  likely  due  to  an  increase  of  free  space.  This  could  be  provoked  by  the  opening  up  of  the  canopy  which  stimulates  algae  recruits  to  grow  (McCoy  2015).  However,  there  appears  to  be  a  facilitative  effect  too.  We  did  not  find  any  directions  that  could  imply  a  change  in  sediment  stabilization  (erosion/sedimentation  measurements)  or  attenuation  of  hydrodynamical  forcing  (mass  transfer  rates/calcium  dissolution).  However,  the  seagrass  can  provide  a  refuge  for  young  recruits,  which  might  allow  the  early  sexual  stage  of  the  algae  (the  gametophytes)  to  have  a  better  chance  of  settlement  and  development  (although  this  statement  needs  proof).  It  would  be  of  great  interest  to  explore  this  possibility  in  more  detail  in  further  research.    Other  explanations  for  the  absence  of  significant  abiotic  factor  results  that  clearly  indicate  what  causes  the  difference  in  recruitment  might  relate  to  the  research  setup.  It  is  very  likely  that  the  plots  are  still  being  influenced  by  the  surrounding  canopy,  as  they  are  limited  in  size.  For  further  research  it  is  therefore  highly  recommended  to  increase  the  size  of  the  plots,  based  on  preliminary  measurements  of  pH,  temperature,  light  and  mass  transfer.  Also,  it  was  hard  to  compare  the  two  bare  plots.  The  0%  no  roots  treatment  was  very  different:  the  (unstable)  sediment  layer  was  thicker,  there  was  greater  bed  shear  stress  and  the  plots  were  deeper  (±  150  cm  compared  to  ±  80  cm),  making  it  advisable  to  repeat  similar  experiments  with  a  treatment  in  which  the  roots  are  manually  removed.    Additional  recommendations  for  further  research  include:  1)  looking  at  different  seagrass  densities  to  investigate  if  there  is  a  tipping  point  for  competition  that  neutralizes  facilitation,  2)  explore  if  this  interaction  differs  in  different  wave  regimes  (for  different  algae),  3)  performing  a  longer  experiment  to  investigate  the  fate  of  the  new  recruits,  4)  repeat  these  measurements  with  more  replicates.    It  is  crucial  to  have  a  more  detailed  understanding  of  the  impact  of  climate  change  on  the  Caribbean  coastal  ecosystem,  concerning  the  projected  sea  level  rise  and  increase  in  storm  frequency  and  severity.  Know-­‐how  of  the  relationship  of  key  species  in  this  system  (seagrasses  and  calcyfing  algae)  is  essential  for  assessing  impacts.  Our  research  shows  that  in  the  future,  seagrass  might  provide  a  high-­‐pH  refuge  for  calcifying  algae,  and  calcifying  algae  will  help  seagrass  meadows  recover  faster  from  storm  

disturbance  by  being  the  first  successors  and  stabilizing  the  sediment  allowing  for  seagrass  to  move  in  –  allowing  for  a  climate  proof  ecosystem.      LITERATURE    Barry,  Savanna  C.,  Thomas  K.  Frazer,  and  Charles  A.  Jacoby.  "Production  and  carbonate  dynamics  of  Halimeda  incrassata  (Ellis)  Lamouroux  altered  by  Thalassia  testudinum  Banks  and  Soland  ex  König."  Journal  of  Experimental  Marine  Biology  and  Ecology  444  (2013):  73-­‐80.    Biber,  P.D.,  M.A.  Harwell  and  W.P  Cropper  Jr.  “Modeling  the  dynamics  of  three  functional  groups  of  macroalgae  in  tropical  seagrass  habitats.”  Ecological  Modelling  175  (2004)  25–54.    Cornwall,  Christopher  E.,  et  al.  "Concentration  boundary  layers  around  complex  assemblages  of  macroalgae:  Implications  for  the  effects  of  ocean  acidification  on  understory  coralline  algae."  Limnology  and  Oceanography  58.1  (2013):  121-­‐130.    Cornwall,  Christopher  E.,  et  al.  "Diffusion  boundary  layers  ameliorate  the  negative  effects  of  ocean  acidification  on  the  temperate  coralline  macroalga  Arthrocardia  corymbosa."  (2014):  e97235.    Cruz-­‐Palacios,  Vania,  and  Brigitta  I.  Van  Tussenbroek.  "Simulation  of  hurricane-­‐like  disturbances  on  a  Caribbean  seagrass  bed."  Journal  of  Experimental  Marine  Biology  and  Ecology  324.1  (2005):  44-­‐60.    Davis,  Braxton  C.,  and  James  W.  Fourqurean.  "Competition  between  the  tropical  alga,  Halimeda  incrassata,  and  the  seagrass,  Thalassia  testudinum."Aquatic  Botany  71.3  (2001):  217-­‐232.    Dickson,  A.G.,  and  F.J.  Millero.  A  comparison  of  the  equilibrium  constants  for  the  dissociation  of  carbonic  acid  in  seawater  media,  Deep-­‐Sea  Res.,  34,  1733-­‐1743,  1987.    Enríquez,  Susana,  and  Nadine  Schubert.  "Direct  contribution  of  the  seagrass  Thalassia  testudinum  to  lime  mud  production."  Nature  communications  5  (2014).    Gledhill,  Dwight  K.,  et  al.  "Ocean  acidification  of  the  greater  Caribbean  region  1996–2006."  Journal  of  Geophysical  Research:  Oceans  (1978–2012)  113.C10  (2008).    Harney,  J.  N.,  and  C.  H.  Fletcher  III.  "A  budget  of  carbonate  framework  and  sediment  production,  Kailua  Bay,  Oahu,  Hawaii."  Journal  of  Sedimentary  Research  73.6  (2003):  856-­‐868.    Hendriks,  I.  E.,  Olsen,  Y.  S.,  Ramajo,  L.,  Basso,  L.,  Steckbauer,  A.,  Moore,  T.  S.,  Howard,  J.,  and  Duarte,  C.  M.:  Photosynthetic  activity  buffers  ocean  acidification  in  seagrass  meadows,  Biogeosciences,  11,  333–346,  doi:10.5194/bg-­‐11-­‐333-­‐2014,  2014.      IUCN.  IUCN  Red  List.  Retrieved  September  3rd  2015  from  http://www.iucnredlist.org/.    Koch,  Marguerite,  et  al.  "Climate  change  and  ocean  acidification  effects  on  seagrasses  and  marine  macroalgae."  Global  Change  Biology  19.1  (2013):  103-­‐132.      Mazarrasa,  Inés,  et  al.  "Seagrass  meadows  as  a  globally  significant  carbonate  reservoir."  Biogeosciences  Discussions  12.5  (2015):  4107-­‐4138.    McCoy,  S.J.  and  N.A.  Kamenos.  “Coralline  algae  (Rhodophyta)  in  a  changing  world:  integrating  ecological,  physiological  and  geochemical  responses  to  global  change.”  J.  Phycol.  51,  6–24  (2015).  DOI:  10.1111/jpy.12262.  

 Mehrbach,  C.,  C.H.  Culberson,  J.E.  Hawley,  and  R.M.  Pytkowicz.  Measurement  of  the  apparent  dissocieation  constants  of  carboinic  acid  in  sweater  at  atmospheric  pressure,  Limnol.  Oceanogr.,  18,  897-­‐907,  1973.    Meyers,  A.C.,  "Depositional  dynamics  in  seagrass  systems  of  Tampa  Bay,  FL:  Influence  of  hydrodynamic  regime  and  vegetation  density  on  ecosystem  function"  (2010).  Graduate  Theses  and  Dissertations.  http://scholarcommons.usf.edu/etd/1714.    Nature  foundation  St.  Maarten.  “Response  Plan  for  the  Effects  of  Climate.  Change  on  the  Marine  and  Coastal  Zones  of  St.  Maarten”.  N.D.    Pierrot,  D.  E.  Lewis,and  D.  W.  R.  Wallace.  2006.  MS  Excel  Program  Developed  for  CO2  System  Calculations.  ORNL/CDIAC-­‐105a.  Carbon  Dioxide  Information  Analysis  Center,  Oak  Ridge  National  Laboratory,  U.S.  Department  of  Energy,  Oak  Ridge,  Tennessee.  doi:  10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a.    Semesi,  I.  Sware,  Sven  Beer,  and  Mats  Björk.  "Seagrass  photosynthesis  controls  rates  of  calcification  and  photosynthesis  of  calcareous  macroalgae  in  a  tropical  seagrass  meadow."  Mar.  Ecol.  Prog.  Ser  382.4  (2009a).    Semesi,  I.  Sware,  Juma  Kangwe,  and  Mats  Björk.  "Alterations  in  seawater  pH  and  CO  2  affect  calcification  and  photosynthesis  in  the  tropical  coralline  alga,  Hydrolithon  sp.(Rhodophyta)."  Estuarine,  Coastal  and  Shelf  Science  84.3  (2009b):  337-­‐341.    Van  Tussenbroek,  Brigitta  I.,  and  Jent  Kornelis  Van  Dijk.  "Spatial  and  temporal  variability  in  biomass  and  production  of  psammophytic  Halimeda  (bryopsidales,  chlorophyte)  in  a  Caribean  reef  lagoon.”  Journal  of  Phycology43.1  (2007):  69-­‐77.      Short,  Frederick  T.,  and  Robert  G.  Coles,  eds.  Global  seagrass  research  methods.  Vol.  33.  Elsevier,  2001.    Unsworth,  Richard  KF,  et  al.  "Tropical  seagrass  meadows  modify  seawater  carbon  chemistry:  implications  for  coral  reefs  impacted  by  ocean  acidification."Environmental  Research  Letters  7.2  (2012):  024026.    Williams,  S.L.  1990.  Experimental  Studies  of  Caribbean  Seagrass  Bed  Development.  Ecological  Monographs,  Vol.  60,  No.  4  (Dec.,  1990),  pp.  449-­‐469.