Comparison of Full and Partial Admission Flow Fields in · Comparison of Full and Partial Admission...

34
Comparison of Full and Partial Admission Flow Fields in the Simplex Turbine Daniel J. Dorney, Lisa W. Griffin and Douglas L. Sondak NASA Marshall Space Flight Center Applied Fluid Dynamics Analysis Group MSFC, AL 35812 10 September 2001 https://ntrs.nasa.gov/search.jsp?R=20030000731 2019-04-01T08:29:20+00:00Z

Transcript of Comparison of Full and Partial Admission Flow Fields in · Comparison of Full and Partial Admission...

Comparison of Full and Partial Admission Flow Fields in

the Simplex Turbine

Daniel J. Dorney, Lisa W. Griffin and Douglas L. SondakNASA Marshall Space Flight Center

Applied Fluid Dynamics Analysis GroupMSFC, AL 35812

10 September 2001

https://ntrs.nasa.gov/search.jsp?R=20030000731 2019-04-01T08:29:20+00:00Z

Outline @

Motivation

Flow code description - CORSAIR

- Capabilities

- Future directions

Results

- Full admission Simplex turbine

- Partial admission Simplex turbine

Conclusions

10/22/01 2

Motivation

Determine the effects of partial admission flow on:

- rotor performance as a function of circumferentiallocation

- unsteady rotor loading

Provide an efficient technique for determining

turbine performance

10/22/01 3

Flow Code Capabilities - I

CORSAIR

- Unsteady time-dependent equations of motion

- Full Navier-Stokes, thin-layer Navier-Stokes or Euler

- Variable fluid properties (Cp, gamma)

Third-order spatial diseretization of inviseid fluxes

- Roe's scheme

Second-order spatial diseretization of viscous fluxes

- Standard central differences

Second-order temporal accuracy

Multi-block O-H grid topology

- O-grids around airfoils and in tip clearance regions

- H-grids for remainder of flow field and nozzles

- Well-suited for medium-to-fine grain parallel simulations

10/22/01 4

Flow Code Capabilities - II

• Turbulence models

- Highly-modified Baldwin-Lomax model

Transition models

- Abu-Ghannam and Shaw (natural)

- Mayle (natural)

- Modified Roberts' correlation (bubble)

Boundary conditions

- Steady and unsteady inlet and exit

- Specified wall temperature or heat flux

- Film cooling/mass injection

- Actuator disk

- Component linking

Grid Motion

- Arbitrary translation/rotation

- Blade vibration

10/22/01 5

Flow Code Capabilities - III

MPI and OpenMP used for parallel simulations

- decomposition by blade row

- decomposition by blade passage

- decomposition by O- and H-grids

- decomposition by component

- user specified decomposition

Graphical User Interface

- Grid generation

- Flow solver

- Error checking

- Design page

- User's manual/help facility

- Post-processing

Miscellaneous capabilities

- Conjugate heat transfer capability

- Provides unsteady pressure file for stress analysis

- Provide Fourier decomposition of unsteady pressures

- Will run on any Unix, Linux or Windows NT platform

10/22/01 6

CORSAIR Future Directions

Modifying code for pump geometries

- incorporating incompressible flow physics

Incorporate two-phase flow modeling

Incorporate cavitation modeling

10/22/01 7

Simplex Turbine Simulations

Objective - determine the effects of partial admission

on the rotor unsteady load and performance as afunction of circumferential location

Full-Admission simulation (FA)

- 1 nozzle and 8 rotors modeled

- 750,000 grid points

- 8 full cycles (one complete rotor revolution) completed

Partial-Admission simulation (PA)

- 6 nozzles and 95 rotors modeled

- 7 million grid points

- 0.95 revolutions completed

- PA-IN- in region of nozzle flow

- PA-OUT - outside the region of nozzle flow

10/22/01 8

Simplex Turbine Rotors

10/22/01 9

Simplex Turbine Nozzles

= iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

iiiiiiii

10/22/01 10

Computational Grids - Rotor

.... _ ........ • .... ,,,,,4------_------ ......... ------,+++++++

:::-3_: Z Z_L'::Z+++)_++_ :::: :::::

_Z_......_ .......

_ ==_ _ _ _ ...........................................................

++}_+ :rrr-_rrr_

:+r _+r+ ------_------ _- ............

................_, .... iiiiiil

......._..............._ ....................._............

................._ ......

......., _,_Z Z Z_ ................................................

10/22/01 11

Nozzle/Rotor Interface - Mach Number (PA)

10/22/01 12

Instantaneous Mach Number- Nozzle

FULL ADMISSION PARTIAL ADMISSION

10/22/01 13

Instantaneous Mach Number- Nozzle

FULL ADMISSION PARTIAL ADMISSION

10/22/01 14

Instantaneous Mach Number

FULL ADMISSION PARTIAL ADMISSION

10/22/01 15

Instantaneous Mach Number- Rotor Exit

FULL ADMISSION PARTIAL ADMISSION

10/22/01 16

P/Pt

Unsteady Rotor Pressure Envelopes (FA)

11.7% Span

0,3 \

0.2

0.1

D 0.2 0.4

X/C

P/Pt

03

0.2

0.1

50.0% Span

0.6 0.8 0 0.2 0.4 0.6 0,8 1

X/C

...... Minimum

........ Maximum

........... Time-AvgP/Pt

10/22/01 X/C 1'7

Unsteady Rotor Pressure Envelopes (PA-IN)

P/Pt

0.3

0._

0.

13.3% Span

y %%

0 0.2 0.4 0.6 0._

X/C

...... Minimum

........ Maximum

........... Time-AvgP/Pt

P/Pt

0,4

03

0.:

0,]

0.4_--o,._ 50.0% Span

0,2.

0.1

00

%

86.7% Span

0.2, 0.4 0:6 O,g I

10/22/01 X/C 18

Unsteady Rotor Pressure Envelopes (PA-OUT)

P/Pt

o.1 o,i

0.08

o.(3_

o04

0.02

oo

13.3% Span

, _ 1 \

#

,. .[ • J; .A :1 _ Jl J,3.2 0.4 0.6 0.8

P/Pt

0.08

0.02.

50.0% Span

"_ / _ ..

0,2 0,4 0,6 O.8 1

X/C X/C

...... Minimum

........ Maximum

........... Time-Avg

\

, 86.7% Span

oo 0.2 0.4 0,6 0,8 1

10/22/01 X/C 19

0

<

t_

!

"0Tim

0

u

o_0

n.o "0

Tim

0

u

o_0

0

0

Unsteady Pressure- 13.3% Span (PA) @LOg

L2Z

&

4O

]20

4O

00

ZL2C

P,,

40

00

90% Chord S.S.

10/22/01

10% Chord P.S.

50% Chord P.S.

\

16C

90% Chord P.S.

Unsteady Decomposition- 11.7% Span (FA)

30

2_

2_

30

2o

50% Chord S.S.

10% Chord S.S._ 90% Chord S.S.

10/22/01

10% Chord P.S.50% Chord P.S.

90% Chord P.S.22

Unsteady Decomposition- 13.3% Span (PA)3O

10% Chord S.S._ 90% Chord S.S.

10/22/01

10% Chord P.S. 50% Chord P.S.

='_ 20

f (Hz)

f (Hz)

90% Chord P.S.

1_04. 2e1-C_ 3e-_34 4,_-C,4

f (Hz)

23

0

0

I

Unsteady Pressure- 50.0% Span (PA)

10% Chord S.S._

oo

90% Chord S.S.

10% Chord P.S.

10/22/0190% Chord P.S.

Pressure Decomposition- 50.0% Span (FA)

20

20

lo

1C

0 10000 20000 30000 40000

_ 50% Chord S.S.

3O

10% Chord S.S._ 90% Chord S.S.

10/22/01

10% Chord P.S.

26

(ZH) J-

"S'd pJoqo %01,

10/_/01

o=

_3m,;o

oz

"S'S pJoqo %06 "S'S pJoqo %01,

(ZH) J-

3"................................ _............................ "_......... "_"'T'W"w'[FF'wwWT'TT'r'I" F

.Ioc

t--,

G_

r_

3_

[Vd) uuds %0"0_ - uo!l!sodmo:_oO oanssoad

0o

<

=

!

=

=

oo

o

o

<

I

(e_sd) d

c'q

"0

0c-

O

0O_

o

o o 0

¢-q¢-q

0

c_

o ©

Pressure Decomposition- 88.3% Span (FA)

20

10

10% Chord S.S._

1c

0 10000 20000 30000 40 OO,rJ

_ 50% Chord S.S.

3O

20

90% Chord S.S.

10/22/01ol/ilii

50% Chord P.S.

0 "]0000 20000 30000 _gO000

90% Chord P.S.

30

(ZH)

(ZH) j- "S'd pJoqo %06° o

t

"S'd pJoq0 %0_

(ZH) J

"S'd pJoq0 %01,

10/;;/01

o_m=

"S'S pJoqo %06 "S'S pJoqo %01,

_OE

(ZH) J

,sOE

(Vd) uuds %/.'98 - uo!l!sodmo:)oO oanssoad

_m

_m

i

,,- _ I_'E_

Ic_

A

.Qm

LL

::::::::::::::::::::::: ............................ _:=:::::::::::::::::::::::::::::::::::::::::::::

m

LL

C_

0LL

C_

C_f_

c_

0LL

c_

Xc_

A

m

LL

C_

0LL

C_

C_

C_I--

0

0

Unsteady Integrated Forces (PA_ @

O_O,)Z

0._i

-0_01

-0_

-_.6

-0.,:0,_ O_ 0.00D_ 0,_8 0.001

t (sec)

20Axial Force

.........._............._.............._............2[ ............._.............1............._..............l_............._...........21............._...............0 0:0C02 O,COC_ 0 :OZ_ 0.¢038 O,O0:I

t (see)

Radial Force

0 .k._2. 0 .¢N304 0. OOL',6 0 .COD8 0 .CO1

t (sec)

10/22/01 Tangential Force 33

Conclusions

Full admission simulation performed for the Simplex turbine

- models one nozzle and 12 rotors

- Mach number of flow exiting nozzle low

- Mach number at rotor exit too high

- unsteadiness predominantly a nozzle-passing and twice nozzle-

passing frequency

Partial admission simulation underway for Simplex turbine

- models all nozzles and rotors

- design Mach number obtained at nozzle exit

- design Mach number obtained at rotor exit

- unsteadiness at nozzle-passing and lower frequencies

10/22/01 34