Comparison Between Fuel Cell and Hydrogen Engine Fuel ... - Presentations/hydrogen... · Comparison...

of 15 /15
Comparison Between Fuel Cell and Comparison Between Fuel Cell and Hydrogen Engine Fuel Consumption April 2008 SAE 2008010635 Aymeric Rousseau, Sylvain Pagerit, Thomas Wallner, Henning LohseBusch Sponsored by Lee Slezak (U.S. DOE) This presentation does not contain any proprietary, confidential, or otherwise restricted information

Embed Size (px)

Transcript of Comparison Between Fuel Cell and Hydrogen Engine Fuel ... - Presentations/hydrogen... · Comparison...

  • Comparison Between Fuel Cell andComparisonBetweenFuelCellandHydrogenEngineFuelConsumption

    April2008SAE2008010635

    AymericRousseau,SylvainPagerit,ThomasWallner,HenningLohseBusch

    Sponsored by Lee Slezak (U.S. DOE)

    Thispresentationdoesnotcontainanyproprietary,confidential,orotherwiserestrictedinformation

  • Outline

    PSATModelingAssumptions Vehicle

    FuelCellSystem

    H d E i HydrogenEngine

    ComponentSizing

    Si l ti R lt SimulationResults

  • Vehicle AssumptionsMidsizecarplatform Bothnonhybridandhybridconfigurationsconsidered All vehicles achieve similar performances (060mph, grade)Allvehiclesachievesimilarperformances(0 60mph,grade) AllvehicleshavesameamountofonboardH2(5kg) Componentuncertaintiestakenintoaccount UDDSandHWFETdrivecyclesconsidered

    Parameter Unit Midsize Car

    Ratiosbasedonfueleconomygasolineequivalentusing2008EPAcorrections

    Parameter Unit Midsize CarGlider Mass kg 990Frontal Area m2 2.1D C ffi i t 0 29

    Parameter Unit Value060mph s 9 +/- 0.1030mph s 3Drag Coefficient 0.29

    Wheel Radius m 0.317Rolling Resistance 0.008

    0 30mph s 3

    Grade at 60 mph % 6

    Maximum Speed mph > 100 (1)

    (1) Two gear transmission used for series(1)Twogeartransmissionusedforseries

  • Fuel Cell System AssumptionsParameter Unit Current Status FreedomCAR

    GoalSpecific Power W/kg 500 650

    0.7

    Specific Power W/kg 500 650

    Peak Efficiency % 55 60

    d l

    0.5

    0.6

    (%)

    FreedomCAR2007 Status

    ModelLimitation:Theefficiencycurvesusedaresteadystate,underestimating the

    0.3

    0.4

    Sys

    tem

    Effi

    cien

    cy ( underestimatingthe

    parasiticload,whichismuchhigherinrealworlddrivingbecause of transient and non

    WithoutCEM

    0 10 20 30 0 00

    0.1

    0.2S

    becauseoftransientandnonoptimumcontrolWithCompressorExpander

    Module(CEM)

    0 10 20 30 40 500

    Fuel Cell Power (kW)

  • Hydrogen Engine Characteristics for C t T h l G t d f Current Technology Generated from Experimental Data Manufacturer FordMotorCo.

    M d l 2 3L D t Model 2.3LDuratec

    Cylinders 4

    Bore 87.5mm

    Stroke 94mm

    Compressionratio 12

    Valve train 4V DOHCValvetrain 4VDOHC

    Speedrange 6000RPM

    ModificationsSupercharger and intercooler Superchargerandintercooler

    Hydrogenportfuelinjection

    AftermarketECU4cylinderhydrogenenginesetup

  • Port Injected Maps Generated for Different Air/Fuel RatiosAir/Fuel Ratios

  • Final Port Injected Map Generated To Maximize Brake Thermal EfficiencyMaximize Brake Thermal Efficiency

    Brakethermalefficiencyincreaseswithincreasedi /f l iair/fuelratio

    Maximumtorquedecreaseswith increased air/fuel ratiowithincreasedair/fuelratio

    Duetoleanoperationpeakefficiencyisachievedatfulll dload

  • Direct Injection Hydrogen Engine OperationEstimated from Single Cylinder Test Datag y

    DI results in increased peak torque

    Increased compression ratio & turbo charging

    Hydrogen Direct Injection will increase the peak torque curve

    Torque

    Increased compression ratio will result in an increase in engine efficiency

    Turbo-charging will increase the engine efficiency compared to supercharging

    l d ll Lean part load operation will result in a further part load efficiency increase compared to throttled operation

    SpeedLean part load

    throttled operation

  • Component Average Power

    140

    160EngineFuel CellElectric Machine

    100

    120

    r (kW

    )

    MC2 / GCBattery

    SpecificPower(W/kg)

    80

    100

    onen

    t Pow

    er (W/kg)

    40

    60

    Com

    po

    0

    20

    Conv Split Series ICE FC FC HEV

  • Vehicle Mass

    1900

    2000

    Future vsCurrentvs.

    1800

    1900

    s (k

    g)

    Futurevs.Future

    Current

    1700

    le T

    est M

    ass

    1500

    1600

    Vehi

    cl

    1400

    1500

    C S lit S i ICE FC FC HEVConv Split Series ICE FC FC HEV

  • 2 5

    Non-Hybrid Configurations Comparison

    2.0

    2.5 H2ICEconsumesbetween1.7and2.1timesmorethanthefuelcell

    1.5

    mpt

    ion

    Rat

    io

    FutureH2ICEconsumesbetween1.6h h f l ll

    1.0

    Fuel

    Con

    sum timesmorethanthecurrentfuelcell

    0.5

    F

    0.0Conv FC

    Currentvs.current >H2ICEwillconsume1.7morethanfuelcellFuturevs.future >H2ICEwillconsume2.1morethanfuelcellCurrentfuelcellvs.futureICE>H2ICEwillconsume1.57morethanfuelcell

  • Hybrid Configurations ComparisonH2 ICE consumes from 1 1 to 1 2 (Split) and 1 4 to 1 6

    1 4

    1.6

    1.8 H2ICEconsumesfrom1.1to1.2(Split)and1.4to1.6timesmorethanthefuelcell

    Future H2ICESeriesconsumesthesame than current fuel cell HEV

    1.0

    1.2

    1.4

    ptio

    n R

    atio

    samethancurrent fuelcellHEV

    0.6

    0.8

    Fuel

    Con

    sum

    p

    0.2

    0.4

    F

    Future H2ICESplitconsumesless(0.8)thancurrent fuelcellHEV

    0.0Split Series ICE FC HEV

    Currentvs.current >H2ICESplitwillconsume1.24morethanfuelcellFuturevs.future >H2ICESplitwillconsume1.1morethanfuelcellCurrentfuelcellvs.futureICE>H2ICESplitwillconsume0.8less thanfuelcell

  • All Configurations Comparison

    1 0

    1.2CurrentPowersplitHEVissimilartoCurrentFuelCellOnly

    0.8

    1.0

    Rat

    io

    FutureseriesHEVisclosetocurrentFuelCellHEV

    0.6

    onsu

    mpt

    ion

    0.4

    Fuel

    Co

    0.0

    0.2

    Conv Split Series ICE FC FC HEV

  • Fuel Economy Results Analysis AllHEVsconfigurationcapturesimilaramountofenergyatthe

    wheelduringdeceleration(~98%onUDDS).However,theseriesfi ti h l d t l l t i hiconfigurationshavemorelossesduetolowerelectricmachine

    efficienciesthanthepowersplit.

    BothHEVconfigurationsusingICEhavesimilaraverageefficienciesg g g(~31%forportinjectedand~41.5%fordirectinjectiononUDDS).

    Thefuelcellsystemaverageefficiencyremainshigher(~47%ford 51% f f UDDS)currentcaseand~51%forfuturecaseonUDDS).

    Inaddition,theseriesconfigurationwithH2ICEispenalizedbythedriveline inefficiencies (both generator ~90% and electric machinedrivelineinefficiencies(bothgenerator 90%andelectricmachine~81%)

  • Conclusion

    TheDIH2ICEhasbeendefinedbasedonacombinationoffourcylinderandsinglecylinderdatageneratedfordifferentA/Fratios.

    H2 ICE t i h ld b h b idi d t b titi ith f l ll H2ICEpowertrainshouldbehybridizedtobecompetitivewithfuelcellsystemsvehiclefuelconsumption.

    PowersplitconfigurationoffersthebestfuelconsumptionwhenusingH2ICEduetoaddedinefficienciesintheseriesconfiguration.

    Ifoneconsidersthatthecurrentfuelcellsystemefficiencieswillremainconstant in the future (most research is focused on cost and durability),constantinthefuture(mostresearchisfocusedoncostanddurability),DIH2ICEcouldprovideaninterestingoption(upto20%reductioninfuelconsumption).

    If one considers both future technologies within an HEV a 10 to 40% IfoneconsidersbothfuturetechnologieswithinanHEV,a10to40%increaseinfuelconsumptionisnoticedwhenusingH2ICE.