Comparative evaluation of casting retention using the ITI solid abutment with six cements

6
Ahmed Mansour Carlo Ercoli Gerald Graser Ross Tallents Mark Moss Authors’ affiliations Ahmed Mansour, Carlo Ercoli, Gerald Graser, Division of Prsothodontics, University of Rochester Eastman, Department of Dentistry, Rochester, NY, USA. Ross Tallents, Temporomandibular Joint Disorder Program, University of Rochester Eastman, Department of Dentistry, Rochester, NY, USA. Mark Moss, Division of Oral Sciences, University of Rochester Eastman, Department of Dentistry, Rochester, NY, USA Correspondence to: Dr. Carlo Ercoli Division of Prosthodontics University of Rochester Eastman Department of Dentistry 625 Elmwood Avenue Rochester, NY 14620 USA Tel: π1 (716) 275 5042 Fax: π1 (716) 244 8772 e-mail: carlo_ercoli/urmc.rochester.edu Date: Accepted 10 July 2001 To cite this article: Mansour A, Ercoli C, Graser G, Tallents R, Moss M. Comparative evaluation of casting retention using the ITI solid abutment with six cements Clin. Oral Impl. Res, 13, 2002; 343348 Copyright C Blackwell Munksgaard 2002 ISSN 0905-7161 343 Review article Comparative evaluation of casting retention using the ITI solid abutment with six cements Key words: casting retention, cements, ITI, solid titanium abutment Abstract: Objective: The purpose of this study was to test the retention of metal copings fabricated to fit on the one-groove, one flat-sided solid titanium abutment using six different cements. Materials and methods: Ten hollow screw 3.8 mm ITI implants were mounted in acrylic resin blocks. A solid titanium abutment was placed on each implant and torqued at 35 Ncm. Prefabricated burn-out caps were placed on the titanium abutment and wax loops added to the occlusal surface to allow for subsequent retention testing. All plastic caps were embedded in phosphate-bonded investment and cast with noble alloy. Castings were inspected for surface irregularities using a stereomicroscope at 10¿ magnification. The six cements were: 1) eugenol-free zinc oxide (Temp Bond NE); 2) zinc-oxide eugenol (IRM); 3) zinc phosphate (Hy-Bond); 4) resin-modified glass ionomer (Protec Cem); 5) zinc polycarboxylate (Durelon) and 6) 10-methacryloyloxydecyl dihydrogen phosphate resin (Panavia 21). After cementation, implant–abutment–casting assemblies were stored for 24 h in 100% humidity. Samples were subjected to a pull-out test using an Instron universal testing machine at a crosshead speed of 0.5 mm/min. The load required to de-cement each coping was recorded and mean values for each group calculated. Means and standard deviations of loads at failure were analyzed using ANOVA and a Tukey studentized test. Statistical significance was set at P 0.05. Results: The mean values (SD) of loads in kilograms at failure (n 10) for the various cements were as follows: Temp Bond 3.18 (1.1) (Tukey group D), IRM 9.25 (3.83) (Tukey group CD), HY-Bond 10.9 (6.52) (Tukey group C), Protec Cem 18.98 (6.23) (Tukey group B), Durelon 23.55 (4.29) (Tukey group B) and Panavia 21, 36.53 (8.1) (Tukey group A). Means with the same letter in the Tukey grouping are not significantly different. Conclusions: The retention values of castings cemented to ITI solid abutments have not been reported in the literature. Within the limitations of this in vitro study, the results do not suggest that one cement type is better than another, but they do provide a ranking order of the cements in their ability to retain the castings. This ranking is somehow different than that obtained when the same cements are used on natural teeth. The material and surface characteristics of the implant abutment are likely responsible for this difference. Cement retention values obtained from studies that use teeth as abutments may be misleading when used in cement-retained implant-supported crowns. It is at the clinician’s discretion to use a certain type of cement, based on the situation at hand.

Transcript of Comparative evaluation of casting retention using the ITI solid abutment with six cements

Page 1: Comparative evaluation of casting retention using the ITI solid abutment with six cements

Ahmed MansourCarlo ErcoliGerald GraserRoss TallentsMark Moss

Authors’ affiliationsAhmed Mansour, Carlo Ercoli, Gerald Graser,Division of Prsothodontics, University ofRochester Eastman, Department of Dentistry,Rochester, NY, USA.Ross Tallents, Temporomandibular JointDisorder Program, University of RochesterEastman, Department of Dentistry, Rochester,NY, USA.Mark Moss, Division of Oral Sciences,University of Rochester Eastman, Departmentof Dentistry, Rochester, NY, USA

Correspondence to:Dr. Carlo ErcoliDivision of ProsthodonticsUniversity of Rochester EastmanDepartment of Dentistry625 Elmwood AvenueRochester, NY 14620USATel: π1 (716) 275 5042Fax: π1 (716) 2448772e-mail: carlo_ercoli/urmc.rochester.edu

Date:Accepted 10 July 2001

To cite this article:Mansour A, Ercoli C, Graser G, Tallents R, Moss M.Comparative evaluation of casting retention usingthe ITI solid abutment with six cementsClin. Oral Impl. Res, 13, 2002; 343–348

Copyright C Blackwell Munksgaard 2002

ISSN 0905-7161

343

Review article

Comparative evaluation of castingretention using the ITI solid abutmentwith six cements

Key words: casting retention, cements, ITI, solid titanium abutment

Abstract: Objective: The purpose of this study was to test the retention of metal copingsfabricated to fit on the one-groove, one flat-sided solid titanium abutment using sixdifferent cements.Materials and methods: Ten hollow screw 3.8 mm ITI implants were mounted in acrylic resinblocks. A solid titanium abutment was placed on each implant and torqued at 35 Ncm.Prefabricated burn-out caps were placed on the titanium abutment and wax loops added tothe occlusal surface to allow for subsequent retention testing. All plastic caps were embeddedin phosphate-bonded investment and cast with noble alloy. Castings were inspected forsurface irregularities using a stereomicroscope at 10¿ magnification.The six cements were: 1) eugenol-free zinc oxide (Temp Bond NE); 2) zinc-oxide eugenol(IRM); 3) zinc phosphate (Hy-Bond); 4) resin-modified glass ionomer (Protec Cem); 5) zincpolycarboxylate (Durelon) and 6) 10-methacryloyloxydecyl dihydrogen phosphate resin(Panavia 21). After cementation, implant–abutment–casting assemblies were stored for 24h in 100% humidity. Samples were subjected to a pull-out test using an Instron universaltesting machine at a crosshead speed of 0.5 mm/min. The load required to de-cement eachcoping was recorded and mean values for each group calculated. Means and standarddeviations of loads at failure were analyzed using ANOVA and a Tukey studentized test.Statistical significance was set at P 0.05.Results: The mean values (∫ SD) of loads in kilograms at failure (n Ω 10) for the variouscements were as follows: Temp Bond 3.18 (∫ 1.1) (Tukey group D), IRM 9.25 (∫ 3.83) (Tukeygroup CD), HY-Bond 10.9 (∫ 6.52) (Tukey group C), Protec Cem 18.98 (∫ 6.23) (Tukey groupB), Durelon 23.55 (∫ 4.29) (Tukey group B) and Panavia 21, 36.53 (∫ 8.1) (Tukey group A).Means with the same letter in the Tukey grouping are not significantly different.Conclusions: The retention values of castings cemented to ITI solid abutments have not beenreported in the literature. Within the limitations of this in vitro study, the results do not suggestthat one cement type is better than another, but they do provide a ranking order of thecements in their ability to retain the castings. This ranking is somehow different than thatobtained when the same cements are used on natural teeth. The material and surfacecharacteristics of the implant abutment are likely responsible for this difference. Cementretention values obtained from studies that use teeth as abutments may be misleading whenused in cement-retained implant-supported crowns. It is at the clinician’s discretion to use acertain type of cement, based on the situation at hand.

Page 2: Comparative evaluation of casting retention using the ITI solid abutment with six cements

Mansour et al . ITI solid abutment with six cements

Fig.1. A: Flat-side of abutment. B: Groove side ofabutment.

Cement-retained implant-supported pros-theses are routinely used in dentistry. Thisapproach resembles conventional prostho-dontic procedures. Cement-retained pros-theses are suggested to have a higher po-tential of passive fit in light of the fact thatthe cement space between retainer andabutment could compensate for minorprosthesis misfit (Chiche & Pinault 1991,Guichet 1994, Misch 1995, Kim et al.1999, Guichet et al. 2000). Temporary lut-ing agents may allow for retrievability ofthe restoration, and the type of cementused for a given clinical situation will dic-tate the amount of retention obtained(Breeding et al. 1992). Hebel & Gajjar haverecommended the use of a weak lutingagent at first, progressing to stronger ce-ments until the desired amount of reten-tion has been achieved (Hebel & Gajjar1997). This approach allows for evaluationof occlusion and tissue reactions (Rosensti-el et al. 1988). However, the use of highstrength cements has become more popu-lar with the increasing confidence in thestability of the implant–abutment screwconnection and the high survival rates ofosseointegrated implants (Hebel & Gajjar1997). The ITI solid abutment is a titaniumcolor-coded (according to height) abutmentwith a distinctive nonrotational surfacecomprising one grooved and one flat side(Fig.1).

The abutment is supplied with a pre-fabricated burn-out cap (Fig.2) that snapsonto the abutment analogue. This cap ismanufactured to provide a defined cementgap between the crown and the abutment,hence eliminating the need for a die spacer.The cap is available in two types:

1. For fixed partial dentures (FPD): thistype of plastic cap does not engage the flatsurface of the abutment.

344 | Clin. Oral Impl. Res. 13, 2002 / 343–348

Fig.2. A: Prefabricated burn-out cap. B: Implant.

2. For single crowns: this type is providedwith a flat internal surface that engages theflat surface on the abutment.

Both types of coping do not engage theabutment groove; this groove is for screw-driver engagement during abutment place-ment. The snap-on mechanism is providedby a tiny lip on the margin of the cap. Aftercasting, this lip is removed (with a rubberwheel) before seating the casting on theabutment.

The purpose of this study was to test theretention of cemented metal copings fabri-cated to fit on the one-groove, one flat-sided solid titanium abutment using differ-ent luting agents.

Material and methods

Ten hollow screw 3.8mm ITI implants(Straumann USA, Waltham, MA, USA)were used. Each implant was mounted ina self-polymerizing acrylic resin block (Re-pair Material, Dentsply International, Mil-ford, DE. USA) using a dental surveyor. Asolid titanium abutment 5.5mm in height(Straumann USA) was placed on each im-plant and torqued at 35Ncm. Ten patternswere fabricated with the following method.

A prefabricated crown-type burn-out capwas placed on each abutment. A loop ofwax was added to the occlusal surface ofthe cap to allow for subsequent retentiontesting (Breeding et al. 1992, Kishimoto etal. 1983, Dixon et al. 1992) (Fig.3). All theplastic caps were invested using phosphatebonded investment (Hi-Temp, Whip MixCo., Louisville, KY, USA) with 100%special liquid and cast with noble alloy(Protocol, Williams-Ivoclar, Amherst, NY,USA); %-wt composition: Pd 75.2%, Au6%, Ag 6.5%, In 6%, Ga 6%, Ru?1%,

Fig.3. A: Wax loops for retention testing. B: Waxed-up burn-out caps.

Li?1%), by one investigator. Castings weredivested with hydrofluoric acid in an ultra-sonic cleaner and the inner surface of thecopings was inspected for surface irregular-ities with a stereomicroscope (Meiji Tech-no, Model BM 38834, Tokyo, Japan) at 10¿and adjusted with a .1/2 round carbide bur.Each casting was randomly assigned to animplant–abutment assembly and siliconedisclosing medium (Fit Checker, GC Cor-poration, Tokyo, Japan) was used toachieve the best possible fit. Castings andtheir corresponding implant–abutment as-semblies were numbered for the purposesof identification during cementation pro-cedures. Six types of cements were used, inthe following order (Table1):

1. Temp Bond NE2. IRM3. HY-Bond4. Protec Cem5. Durelon6. Panavia 21.Cements were mixed according to

manufacturer’s recommendations and ap-plied on the axial surface of the castings tominimize hydrostatic pressure during seat-ing. Castings were cemented on the abut-ments with a load of 5kg maintained for10min, according to the ADA specification.96. Excess cement was removed using ascaler. Mixing and cementing procedureswere carried out at room temperature byone investigator. After cementation im-plant–abutment–casting assemblies werestored for 24h at 37æC in 100% humidityenvironment. The specimens were thensubjected to a pull-out test using a univer-sal testing machine at a crosshead speed of0.5mm/min (Instron 4204 EngineeringCorp., Canton, MA, USA) (Fig.4). The loadrequired to de-cement each coping was re-corded and mean values for each group cal-culated. The same 10 castings were used

Page 3: Comparative evaluation of casting retention using the ITI solid abutment with six cements

Mansour et al . ITI solid abutment with six cements

Table 1. Cements used

Cement Type Manufacturer

Temp Bond NE Zinc oxide (non-eugenol) Kerr Manufacturing Company, Romulus, MI, USA

IRM Zinc oxide & eugenol Dentsply International Inc., Milford, DE, USA

HY-Bond Zinc phosphate Shofu Inc., Kyoto, Japan

Protec Cem Resin reinforced glass ionomer Ivoclar NA, Amherst, NY, USA

Durelon Zinc polycarboxylate ESPE America Inc., Norristown, PA, USA

Panavia 21 Resin cement J. Morita USA Inc., Tustin, CA, USA

Table 2. Mean values and standard deviations of loads required to de-cement copings

Cement type Mean Standard deviation Tukey grouping

Temp Bond NE 3.18 ∫ 1.1 D

IRM 9.25 ∫ 3.83 C D

HY-Bond 10.9 ∫ 6.52 C

Protec Cem 18.98 ∫ 6.23 B

Durelon 23.55 ∫ 4.29 B

Panavia 21 36.53 ∫ 8.1 A

Means with the same letter in the Tukey grouping are not significantly different.

to test the six cements (Dixon et al. 1992).Cement residues were removed from thecastings and abutments with the followingprocedure. Each casting was heated to atemperature of 600æC for 1.5h and thenallowed to bench cool at room temperature(Dixon et al. 1992). The casting was placedin an ultrasonic cleaner for 30min with acement-removal solution (Removalon-1,Premier Dental Products, Inc., Norris-town,, PA, USA) (Dixon et al. 1992, Ma-thews et al. 1991). Abutments werecleaned in distilled water in an ultrasoniccleaner for 30min, then wiped with cottongauze. Before the first cementation, allcastings were heat treated and cleaned inthe manner described above for uniformityof method.

Retention values were analyzed using anANOVA and a Tukey studentized test.Statistical significance was set at P0.05.

Results

Retention values are shown in Table2 andFig.5. Temp-Bond showed the least reten-tion and was not significantly differentfrom IRM. Panavia 21 provided the highestretention and was significantly differentfrom the other cements. Hy-Bond was notsignificantly different compared with IRM.Protec Cem and Durelon showed statisti-cally similar retention values.

345 | Clin. Oral Impl. Res. 13, 2002 / 343–348

Discussion

The ITI solid abutment–plastic burn-outcap system provides the laboratory tech-nician with easy and predictable pro-cedures. A space is manufactured betweenthe abutment and the plastic cap, henceeliminating the need for die spacer. Thisbuilt-in cement space measures 20mm,which is consistent with ADA specifi-cation .96 for ideal cement thickness. Thepresence of this uniform cement space alsodecreases the need for casting adjustments.As expected, specimens cemented withPanavia 21 showed the highest retentionvalues, while Temp-Bond revealed theweakest values. It was interesting to notethat IRM and Hy-Bond provided similar re-tention and were not significantly differ-ent. This finding contrasts with clinical ex-perience in traditional fixed prosthodonticsand with the findings of Jørgensen (Jørgen-sen & Holst 1967). This could be explainedby the following reasons: zinc phosphatecements provide casting retention bymicromechanical interlocking into thecasting and the abutment surface irregular-ities (Craig 1997, Øilo & Jørgensen 1978).It has been shown that surface roughnessof tooth preparation is an important factor-affecting casting retention. Moreover theretentive ability of zinc phosphate cementsvaries in relation to metal and dentin abut-ments. In rough surfaced abutments, the

retention was approximately three timesgreater on metal than it was on dentin.This was explained by the lower dentinhardness and therefore greater compress-ibility of dentin peaks. These dentin irregu-larities could be compressed and allowedto ‘slip out’ of cement contact. Therefore,the utilization of surface irregularities forthe retention of dental restorations de-pends on the compressive strength notonly of the cement, but also of the adjacenttooth/metal materials (Øilo & Jørgensen1978). This concept has important impli-cations in cement-retained prostheses. Ce-ments that provide casting retentionmainly by mechanical interlocking (i.e.zinc phosphate) will show, for similarroughness, a greater percentage increase inretention than adhesive cements (Øilo &Jørgensen 1978).

In our study, the machined abutment sur-face was not modified with any preparationand was therefore relatively smooth. Thiscould have decreased cement–abutmentmicromechanical interlocking, leading todecreased cement retention values. This ex-planation is also supported by the obser-vation that cement failure always occurredat the cement–abutment interface (residualcement was generally present inside thecasting). Another possible reason is the lackof thermocycling and aging of the cementsbefore testing. Retention testing was con-ducted 24hafter cementation and storage in100% humidity environment. The rela-tively early testing method adopted couldhave been partially responsible for this re-sult. The retention provided by polycarbox-ylate cement was significantly greater thanzinc phosphate, and zinc oxide cements.This is likely explained by the adhesiveproperties of polycarboxylate cements. Ithas been shown that, during setting, thistypeofcementcanadhere to tooth structure

Fig.4. A: Aircraft cable used for retention testing. B:Cemented casting during pull-out test. C: Instronmachine vise grips. D: Acrylic resin block.

Page 4: Comparative evaluation of casting retention using the ITI solid abutment with six cements

Mansour et al . ITI solid abutment with six cements

Fig.5. Tensile loads (kgf) at de-cementation (nΩ10). Error bars represent standard deviations.

by chelation of calcium ions (Smith 1968)and to metal substrates by chelation of met-allic ions (Saito et al. 1976, Ady & Fairhurst1973, Moser et al. 1974). The authors there-fore suggest that the significantly higher re-tention obtained by polycarboxylate ce-ment could be due to adhesion of the ce-ment to the titanium abutment. Whenusing smooth titanium implant abutments,the greater compressive strength of zincphosphate cements (Jørgensen & Holst1967, Craig 1997, Øilo & Jørgensen 1978,Powers et al. 1976, Mizrahi & Smith 1969,Phillips etal. 1970) compared to polycarbox-ylate and zinc oxide cements probably doesnot play a major role in providing retention.Resin-modified glass ionomers adhere todentin and metal in the same manner as po-lycarboxylate cements; however, the curingprocess may last 24h or more (Yoshikawa etal. 1994, Swift et al. 1995). Early water con-tact may result in weakening of the restora-tive material due either to water absorptionor to elution of HEMA (Yoshikawa et al.1994).This explains ourfindings thatProtecCem did not offer significantly higher reten-tion values than Durelon. The method of re-moving the luting agents from the castingsfor recementation purposes did not affectthe surface texture of the abutments or thecastings. Felton and coworkers showed thatthere was no significant difference in the re-tention values of crowns before and afterporcelain firing cycles and that the oxidesformed on the alloy surfaces did not nega-tively affect cement retention (Felton et al.1987).

One limitation of our study was the useof a pure tensile test. In a clinical situation,

346 | Clin. Oral Impl. Res. 13, 2002 / 343–348

it is likely that forces other than tensilecan contribute to crown de-cementation.However, the pure tensile testing was usedbecause it has been adopted in otherstudies and could allow comparison of ourresults with previous investigations (Breed-ing et al. 1992, Dixon et al. 1992).

As anticipated, the standard deviationsin the tests were high. Variations of thismagnitude are common when a test of thistype is used. This may be accounted for byfactors such as difficulties in securing anideal wetting of the surface by the cement,the unavoidable introduction of stressesother than tensile stress during the test andthe fact that the degree of humidity at thetime of cement mixing was not strictlycontrolled, which could have affected thewater content of some of the cements.Also, slight differences in the internal sur-face morphology of the castings could havecontributed to the findings.

Conclusions

The retention values associated with ce-mented castings on ITI solid abutment havenot been reported in the literature. Withinthe limitations of this in vitro study, the re-sults do not suggest that one cement type isbetter than another, but they do provide aranking order of the cements in their abilityto retain the castings. This ranking is some-how different than that obtained when thesame cements are used on natural teeth.The material and surface characteristics ofthe implant abutment are likely responsiblefor this difference. Cement retention values

obtained from studies that use teeth as abut-ments may be misleading when used in ce-ment-retained implant-supported crowns.It is at the clinician’s discretion to use a cer-tain type of cement, based on the situationat hand.

Acknowledgments This project was sup-ported by an educational grant from ITI(The Straumann Company USA).The authors acknowledge the help andsupport of Ivoclar North America, Inc.

Resume

Le but de cette etude a ete de tester la retention de syste-mes metalliques confectionnes pour etre places sur lespiliers avec une marque et une surface plate en titane etce a l’aide de six ciments differents. Dix implants-vis ITIcreux de 3,8 mm ont ete montes dans des blocs de resineacrylique. Un pilier en titane solide a ete place sur chaqueimplant et serre avec une force de torsion de 35Ncm. Descapsules prefabriquees ont ete placees sur les piliers entitane et des boucles en cire ont ete ajoutees a la surfaceocclusale afin de tester la retention subsequente. Toutesles capsules en plastique ont ete enrobees par un systemecontenant du phosphate et prises dans un alliage noble.Les irregularites de surface ont ete controlees a l’aide d’unstereomicroscope a agrandissement 10x. Les six cimentsetaient : 1) de l’oxyde de zinc sans eugenol (Temp BondNE), 2) de l’oxyde de zinc avec eugenol (IRM), 3) du phos-phate de zinc (HY-Bond), 4)de l’ionomere de verre modifiea la resine (Protec Cem), 5) un polycarboxylate de zinc(Durelon) et 6) une resine de phosphate dihydrogene 10-methacryloyloxydecyl (Panavia 21). Apres cimentationles assemblages implants-piliers et superstructures ontete conserves 24 h durant dans un environnement avecun taux d’humidite de 100%. Les echantillons ont etesoumis a des tests de traction a l’aide de la machine detest Instron a une vitesse de 0,5mm/min. La chargeresquise pour decimenter chaque superstructure a eteenregistree et les valeurs moyennes pour chaque groupecalculees. Les moyennes et les deviations standards descharges a la rupture ont ete analysees par l’ANOVA et letest etudiant de Tukey. Une signification statistique etaitplace a p Ω 0,05. Les valeurs moyennes des charges enkilogrammes au moment de la rupture (NΩ10) etaient :Temp Bond 3,2; (groupe Tukey D), IRM 9,3 (C,D), HY-Bond 11 (C), Protec Cem 19 (B), Durelon 23,6 (B) et Pana-via 21 ; 36,5 (A). Les moyennes avec les memes lettresdans le groupe Tukey ne sont pas significativement diffe-rentes. Dans les limites de cette etude in vitro, les resul-tats n’indiquent pas qu’un ciment soit superieur a un au-tre mais apportent un ordre d’echelonnage des differentsciments et leur capacite a retenir les superstructures. Cetechelonnage est quelque peu different de celui obtenuavec les memes ciments lorsqu’ils sont utilises sur lesdents naturelles. Les caracteristiques du materiau et de lasurface du pilier sont sans doute responsables de cettedifference. Les valeurs de retention du ciment provenantde ces etudes qui utilisent les dents comme pilier peu-vent etre trompeuses lorsqu’elles sont utilisees pour descourronnes cimentees sur les implants. C’est donc au cli-nicien de decider quel ciment utiliser suivant la situationdevant laquelle il se trouve confronte.

Page 5: Comparative evaluation of casting retention using the ITI solid abutment with six cements

Mansour et al . ITI solid abutment with six cements

terial einerseits, und die Oberflächencharakteristika der tos en su habilidad para retener los colados. Este rankingSekundärteile auf den Implantaten andererseits verant- es de alguna manera diferente a aquel obtenido cuandoZusammenfassung wortlich. Die Retentionswerte der Studien, die Zähne als los mismos cementos se utilizan en dientes naturales. ElStümpfe verwenden, können somit für die Zementierung material y las caracteristicas de la superficie del pilar delvon implantatgetragenen Kronen irreführend sein. Es ist implante son seguramente las responsables de este dife-Ziel: Das Ziel dieser Studie war es, die Retention vondem Kliniker überlassen, der Situation entsprechend ei- rencia. Los valores de retencion del cemento obtenidos devorgefertigten Metallkappen auf den einseitig abgeflach-nen geeigneten Zementtyp auszuwählen. estudios que usan dientes como pilares pueden conducir aten und gegenüber mit einer Rille versehenen Massivse-

error cuando se usan en coronas implantosoportadas rete-kundärteilen aus Titan mit sechs verschiedenen Zemen-nidas por cemento. Debe ser la discrecionalidad del clini-ten zu untersuchen.co a usar un determinado tipo de cemento, basandose enMaterial und Methode: Man montierte 10 Hohlschrau- Resumen la situacion del momento.benimplantate (3.8 mm) in einen Acrylblock. Anschlies-

send erhielt jedes Implantat ein mit 35 Ncm festge-schraubtes Massivsekundärteil. Auf diese Sekundärteile Objectivo: El proposito de este estudio fue probar la reten-setzte man vorfabrizierte ausbrennbare hülsen und wach- cion de copines de metal fabricados para ajustar en pilaresste jeder eine Öse auf die Okklusalfläche, um dort anset- de titanio macizo de un surco y un lado plano usandozend die Stärke der Retention testen zu können. man bet- seis diferentes cementos.tete die Hülsen ein und goss sie aus einer edlen Legie- Material y metodos: Se montaron diez implantes cilindri-rung. Der Guss wurde dann mit einen Steromikroskop cos huecos de 3.8 mm ITI en bloques de resina acrilica.und in 10-facher Vergrösserung auf Unregelmässigkeiten Se coloco un pilar de titanio macizo en cada implante yder Oberfläche untersucht. Die sechs untersuchten Ze- se apreto con un torque de 35 Ncm. Se colocaron fundasmente waren: 1) Eugenolfreier Zinkozydzement (Temp calcinables en los pilares de titanio y se anadieron arosBond NE); 2) Zinkoxyddeugenolzement (IRM); 3) Zink- de cera en la superficie oclusal para permitir posterioresphosphatzement (Hy-Bond); 4) Kunststoffverstärkter Gla- pruebas de retencion. Todas la fundas de plastico se em-sionemerzement (Protec Cem); 5) Zinkpolycarboxylatze- bebieron en revestimiento de fosfato y se colaron conment (Durelon) und 6) 10-Methacryloyloxydecyl Dihy- aleacion noble. Los colados se inspeccionaron para encon-drogen Phosphatkunststoff (Panavia 21). nach dem trar irregularidades usando un estereomicroscopio a 10¿

Zementtieren wurden die Prüfkörper während 24 Stun- aumentos. Los seis cementos fueron: 1) Oxido de zincden bei 100%-iger Luftfeuchtigkeit aufbewahrt. Der an- libre de eugenol (Temp. Bond NE); 2) Oxido de zinc euge-schliessende Abreisstest erfolgte mit einer Universaltest- nol (IRM); 3) Fosfato de zinc (Hy-Bond); 4) lonomero demaschine (Instron), deren Testkopf eine Geschwindigkeit vidrio de resina modificada (Protec Cem); 5) Policarboxi-von 0.5 mm/min erreichte. man zeichnete die Kräfte, die lato de zinc (Durelon) y &) Resina de 10-Metacriloiloxide-zum Abreissen der Kappen aufgewendet werden musste cil Dihidrogen Fosfato (Panavia 21). Tras el cementadoauf, und errechnete für alle Gruppen den Mittelwert. Mit- los montajes implante-pilar-colados se almacenaron du-telwerte und Standardabweichungen der Kräfte im Mo- rante 24 horas en un 100% de humedad. las muestras semen des Retentionsverlustes wurden mit dem ANOVA- sometieron a una prueba de extraccion usando una ma-und dem Tukey-Test statistisch ausgewertet. Die Grenze quina de pruebas Instron universal a una velocidad de 0.5für eine statistische Signifikanz setzte man bei p0.05. mm/min. La carga requerida para despegar cada copın seResultate: Die Mittelewerte (∫SD) der Kräfte beim Re- registro y se calcularon los valores medios para cada gru-tentionsverlust in Kilogram (N¿10) waren: 1) Temp po. SE analizaron las medias y las desviaciones estandarBond, Mittelwert 3.18 (∫1.1), Tukey Gruppe D; 2) IRM, de las cargas al fallar usando ANOVA y el test estudenti-Mittelwert 9.25 (∫3.83), Tukey Gruppe C/D; 3) HY- cado de Tukey. la significacion estadıstica se situo enBond, Mittelwert 10.9 (∫6.52), Tukey Gruppe C; 4) Pro- P0.05.tec Cem, Mittelwert 18.98 (∫6.23), Tukey Gruppe B; 5) Resultados: Los valores medios (∫SD) de las cargas enDurelon, Mittelwert 23.55 (∫4.29), Tukey Gruppe B; 6) kilogramos al fallar (N¿10) fueron: 1)Tipo de cemento,Panavia 21, Mittelwert 36.53 (∫8.1), Tukey Gruppe A; Media 3.18 (∫1.1), Grupos Tukey D; 2) IRM, Media 9.25

(Mittelwerte mit demselben Buchstaben bei der Tukey- (∫3.83), Grupos Tukey C/D; 3) HY-Bond, Media 10.9Gruppierung sind nicht signifikant verschieden. (∫6.52), Grupos Tukey C; 4) Protec Cem Media 18.98

Zusammenfassung: Die Retentionswerte von auf ITI- (∫6.23), Grupos Tukey B 5) Durelon, Media 23.55

Massivsekundärteilen zementierten Gussstücken wurde (∫4.29), Grupos de Tukey B; 6) Durelon, Media 36.53

bis heute in der Literatur nicht unter sucht. Mit all den (∫8.1). Medias con la misma letra en el grupaje de TukeyVorbehalten, die eine in vitro-Studie hat, wollen diese Re- no son significativamente diferentes.sultate nicht einen dieser Zemente favorisieren, es kri- Conclusiones: Los valores de retencion de los colados ce-stallisiert sich aber eine Rangliste bezüglich Retention mentados a pilares macizos ITI no han sido descritos endes Geüstes heraus. Diese Rangliste anders, als wenn la literatura. Dentro de los limites de este estudio in vitro,man dieselben Zemente bei natürlichen Zähnen anwen- los resultados no sugieren que un tipo de cemento es me-det. Für diese Unterschiede sind wahrscheindlich das Ma- jor que otro, pero suministran un ranking de los cemen-

References

Ady, A.B. & Fairhurst, C.W. (1973) Bond strength of twotypes of cement to gold casting alloy. Journal of Pros-

thetic Dentistry 29: 217–219.Breeding, L.C., Dixon, D.L., Bogacki, M.T. & Tietge, J.D.

(1992) Use of luting agents with an implant system:Part I. Journal of Prosthetic Dentistry 68: 737–741.

Chiche, G.J. & Pinault, A. (1991) Considerations for fabri-cation of implant supported posterior restorations. In-

ternational Journal of Prosthodontics 4: 37–44.

347 | Clin. Oral Impl. Res. 13, 2002 / 343–348

Craig, R.G., ed. (1997) Restorative dental materials, 10thedn. St Louis: CV Mosby.

Dixon, D.L., Breeding, L.C. & Lilly, K.R. (1992) Use ofluting agents with an implant system. Part II. Journal

of Prosthetic Dentistry 68: 885–890.Felton, D.A., Kanoy, B.E., White, J.T. & Bayne, S.C. (1987)

Porcelain fused to metal surface oxidation effects oncemented casting retention. Journal of Prosthetic Den-

tistry 58: 677–686.

Guichet, D.L. (1994) Load transfer in screw-and-cement-retained implant fixed partial denture designs. Journal

of Prosthetic Dentistry 72: 361 (Abstract).Guichet, D.L., Caputo, A.A., Choi, H. & Sorensen, J.A.

(2000) Passivity of fit and marginal opening in screw-orcement-retained implant fixed partial denture designs.International Journal of Oral and Maxillofacial Im-

plants 15: 239–245.Hebel, K.S. & Gajjar, R.C. (1997) Cement-retained versus

Page 6: Comparative evaluation of casting retention using the ITI solid abutment with six cements

Mansour et al . ITI solid abutment with six cements

screw-retained implant restorations: Achieving opti-mal occlusion and esthetics in implant dentistry.Journal of Prosthetic Dentistry 77: 28–35.

Jørgensen, K.D. & Holst, K. (1967) The relationship be-tween the retention of cemented veneer crowns andthe crushing strength of the cements. Acta Odontolog-

ica Scandinavica 25: 355–359.Kim, W.D., Jacobson, Z. & Nathanson, D. (1999) In vitro

stress analysis of dental implants supporting screw-re-tained and cement-retained prostheses. Implant Den-

tistry 8: 141–151.Kishimoto, M., Shillingburg, H. Jr & Duncunson, M. Jr

(1983) Influence of preparation features on retentionand resistance. Part I: MOD onlays. Journal of Pros-

thetic Dentistry 49: 35–39.Mathews, M.F., Breeding, L.C., Dixon, D.L. & Aquilino,

S.A. (1991) The effect of connector design on cementretention in an implant and natural tooth-supportedfixed partial denture. Journal of Prosthetic Dentistry

65: 822–827.

348 | Clin. Oral Impl. Res. 13, 2002 / 343–348

Misch, C. (1995) Screw-retained versus cement-retainedimplant-supported prosthesis. Practical Periodontics

and Aesthetic Dentistry 9: 15–18.Mizrahi, E. & Smith, D.C. (1969) Direct cementation of

orthodontic brackets to dental enamel. British Dental

Journal 127: 371–375.Moser, J.B., Brown, D.B. & Greener, E.H. (1974) Short-

term bond strengths between adhesive cements anddental alloys. Journal of Dental Research 53: 1377–1386.

Øilo, G. & Jørgensen, K.D. (1978) The influence of surfaceroughness on the retentive ability of two dental lutingcements. Journal of Oral Rehabilitation 5: 377–389.

Phillips, R.W., Swartz, M.L. & Rhodes, B. (1970) Anevaluation of a carboxylate adhesive cement. Journal

of the American Dental Association 81: 1353–1359.Powers, J.M., Craig, R.G. & Farah, J.W. (1976) Modulus of

elasticity and strength properties of dental cements.Journal of the American Dental Association 92: 588–591.

Rosenstiel, S.F., Land, M.F. & Fujimoto, J. (1988) Contem-

porary fixed prosthodontics, 2nd edn. St. Louis: CVMosby.

Saito, C., Sakai, Y., Node, H. & Fusayama, T. (1976) Ad-hesion of polycarboxylate cements to dental casting al-loys. Journal of Prosthetic Dentistry 35: 543–548.

Smith, D.C. (1968) A new dental cement. British Dental

Journal 125: 381–384.Swift, E.J., Pawlus, M.A., Vargas, M.A. & Fortin, D. (1995)

Depth of cure of resin-modified glass ionomer restora-tives. Journal of Dental Research 74: 38 (Abstract no.212).

Yoshikawa, T., Hirasawa, M., Tosaki, S. & Hirota, K.(1994) Concentration of HEMA eluted from light-curedglass ionomers. Journal of Dental Research 73: 133

(Abstract no. 254).