Compact wastewater treatment with MBBRB4-1).pdf · Compact wastewater treatment with MBBR ... Prof....

34
1 Compact wastewater treatment with MBBR DSD International Conference Hong Kong, 12.14.11.2014 Hallvard Ødegaard Prof. em. Norwegian University of Science and Technology (NTNU) CEO Scandinavian Environmental Technology (SET) AS [email protected] SET AS

Transcript of Compact wastewater treatment with MBBRB4-1).pdf · Compact wastewater treatment with MBBR ... Prof....

1

Compact wastewater treatment with MBBR

DSD International ConferenceHong Kong, 12.‐14.11.2014

Hallvard Ødegaard

Prof. em. Norwegian University of Science and Technology (NTNU)CEO Scandinavian Environmental Technology (SET) AS

[email protected]

SET AS

2

Aerobic reactor

The principle of the moving bed biofilm reactor (MBBR) technology

Anoxic reactorSET AS

3

The Moving Bed Biofilm Reactor (MBBR) in practice

SET AS

4

THE MAJOR COMPONENTS

a) Tank b) Mediac) Aeration Systemd) Sieve Assembliese) Blowersf) Mixers

The components of the MBBR treatment system

SET AS

Carrier filling fraction (%)(bulk volume occupied by media in empty reactor):  

Possible filling fraction: 0 – 70 %Normal filling fraction:  50 – 65 %

5

The MBBR reactor

SET AS

Rectangular covered concrete reactorsRectangular/Circular open concrete reactors

Circular fiber glass reactorsCircular Steel Reactors (Bolted or Welded)

6

The  (MBBR) carriers 

Courtesy Aqwise

•650 m2/m3 bulk

•13 x 13 mm    diameter/depth 

Courtesy Biowater Technology

•650 m2/m3 bulk

•18.5 x 14.5 x 7.3 mm length/width/depth 

ABC BWT S

K1 K3 K5 BiofilmChip M

• 1200 m2/m3 bulk

• 48 x  2.2 mm diameter/depth 

• 500 m2/m3 bulk 

• 25 x 10 mm diameter/depth 

• 500 m2/m3 bulk

• 9.1 x 7.2 mm diameter/depth 

• 800 m2/m3 bulk 

• 25 x 3.5 mm diameter/depth 

Courtesy AnoxKaldnes

Z‐MBBR

SET AS

Courtesy Qingdao Spring

7

Carriers from the MBBR-based SANI pilot at Shatin

8

Aeration /oxygen transfer

• Oxygen transfer is enhanced by the presence of carriers

• The higher the filling fraction, the better SOTR

• Influence dependent on carrier design. Suppliers should provide SOTR data

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

Renvatten, grov K3, 30% grov K3, 50% grovgO

2/Nm

3 m

Clean water

K3 30 %

K3 50 %

K330 %

g O

2/Nm

3 .m

16

14

12

10

8

6

4

2

0

Christensson, 2013

9

SET AS

SET AS

The sieve assembly

The mixers in anoxic reactors

10

The principal moving bed reactor processes

The basic MBBRprocesses

The high‐rate MBBRprocesses

The IFASprocesses

SET AS

11

Flow diagrams for moving bed biofilm reactor (MBBR) processes for various applications

BOD- and N/P-removalBOD- and NH4-N-removal

BOD- and P-removalBOD-removalPure MBBR-processes

a)

b) d)

Coag.

Coag.

c)

Pure MBBR-processes

e)

f)

g)

Pure MBBR-processes(Coag.).

Coag. Coag.

h)

i)

j)

COD

COD

Pure MBBR- processes

l)

k)

IFAS-processes

n)

m)

IFAS-processes

SET AS

12

Aerobic COD‐removal rates (Ødegaard et al, 2004)

05

101520253035404550

0 20 40 60 80 100Filtered COD loading rate [g SCOD/m2*d]

Filte

red

CO

D re

mov

al ra

te

[g S

CO

D/m

2 *d]

K1 K2 100%

Soluble COD removal rate vs soluble COD loading rate

0

20

40

60

80

100

120

140

0 50 100 150 200Total COD loading rate [g COD/m2*d]

Obt

aina

ble

rem

oval

rate

(C

OD

in-S

CO

Dou

t) [g

/m2 *d

]

K1 K2 100%

Obtainable COD removal rate vs total COD loading rate

SET AS

”Obtainable" COD removal rate : (CODinfluent‐SCODeffluent)*Q/A

Demonstrates removal rate of tot. COD if all particles > 1 µm were removed 

13

High rate MBBR systems

SET AS

Air

CoagulantFe+polymer

Secondary treatment + 90 % P-removal could be met at a:

total HRT ~ 1 hr

The high‐rate MBBR‐coagulation process

The high‐rate MBBR ‐ AS process

MBBR

Frequently used in industrial plants e.g. pulp and paper

14

1. The load of organic matter2. The oxygen concentration3. The ammonium concentration

Factors determining the nitrification rate in MBBR’s (Hem, Rusten and Ødegaard, 1994)

Temperature dependency:

kT2 = kT1∙θ(T2‐T1) ,  θ = 1,06‐1,08

SET AS

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

0 2 4 6 8 10Oxygen concentration, mg O2/L

Nitr

ifica

tion

rate

, g N

H4-N

/m2 /d

15 ºC

Organic load = 0.0 g BOD 5/m

2 /d

1.0

2.0

3.0

4.0

5.0

6.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0Ammonium concentration, mg NH4-N/L

Nitr

ifica

tion

rate

, g N

H 4-N

/m2 /d 15 oC

0.4 g BOD 5/m2/d

DO = 2 mg/L

DO = 6 mg/L

DO = 4 mg/L

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0Ammonium concentration, mg NH4-N/L

Nitr

ifica

tion

rate

, g N

H 4-N

/m2 /d 15 oC

0.4 g BOD 5/m2/d

DO = 2 mg/L

DO = 6 mg/L

DO = 4 mg/L

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

0 2 4 6 8 10Oxygen concentration, mg O2/L

Nitr

ifica

tion

rate

, g N

H4-N

/m2 /d

15 ºC

Organic load = 0.0 g BOD 5/m

2 /d

1.0

2.0

3.0

4.0

5.0

6.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0Ammonium concentration, mg NH4-N/L

Nitr

ifica

tion

rate

, g N

H 4-N

/m2 /d 15 oC

0.4 g BOD 5/m2/d

DO = 2 mg/L

DO = 6 mg/L

DO = 4 mg/L

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0Ammonium concentration, mg NH4-N/L

Nitr

ifica

tion

rate

, g N

H 4-N

/m2 /d 15 oC

0.4 g BOD 5/m2/d

DO = 2 mg/L

DO = 6 mg/L

DO = 4 mg/L

15

Influence of oxygen on nitrification rate ‐practical experiences

SET AS

16

Nitrification process designOrganic matter removal prior to nitrification:

rBOD = 3,9 g BOD5/m2d (10 oC) (kT = 1.06(T-10))

Nitrification rate (when NH4-N is the limiting substrate)

rN = k . (Sn)n

rN = nitrification rate (g NH4-N/m2.d)SN = NH4-N concentration in the reactor n = reaction rate order - n is normally set at 0,7 k = reactor rate constant – 0,4 – 0,6 (varies with the organic load, i.e pre-treatment)

NH4-N is only rate limiting at low NH4-concentrations (ca 1-2 mg NH4-N/l).

At higher concentrations, SN will be determined by the bulk liquid DO concentration and Sn should be replaced by Sn,transition

Sn,transition = (DO-0,5) / 3,2

SET AS

17

Nitrification rates in full‐scale plants 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

Ammonium load, g NH4-N/m2/d

Rem

oval

rate

, g N

H4-

N/m

2 /d R4R4 + R5

Temp. 11 º C

Lillehammer WWTP

Intensive study at Lillehammer WWTP• Very high max rates (1,4 g NH4/m2.d)• Complete nitrification at < 1,2 g NH4/m2.d

(Rusten and Ødegaard, 2007)

10oC

1.17 g NH4-N/m2d

10oC

1.17 g NH4-N/m2d

Nitrification performance at Givaudan WWTPSwitzerland (Tschui, personal comm.)

Challenge: Alkalinity limitation. Recommendation > 1,5 meq./l residual alkalinity

SET AS

18

N‐removal

1. If carbon source is abundant and treatment efficiency needed is < 75 %, pre‐DN is preferable

2. If carbon source is limited and treatment efficiency required is            > 75 %, combined‐DN is preferable

3. If, in addition to 2., space is very limited, post‐DN may be preferable

Choice of process is primarily dependent on availability of internal carbon source for denitrification and treatment efficiency requirement:

CPost-denitrification

Pre-denitrification

C

Combined denitrification

CCPost-denitrification

Pre-denitrification

C

Combined denitrification

Post-denitrification

Pre-denitrification

CC

Combined denitrification

SET AS

19

Denitrification

R= r/(r+1)

C/N (g BSCOD/g N)

R= r/(r+1)

C/N (g BSCOD/g N)

There is a limit to treatment efficiency in conventional pre‐DN caused by the oxygen recycle

Rusten, Hem and Ødegaard, 1995

Pre‐denitrification

rDN = k * [SCOD/(SCOD+KS,COD)]* [SNO3/(SNO3+KS,NO3)]

SET

No carbon limitation as long as:• g CODadded/ g NO3‐Nequiv. is > 3,5• NO3‐N may be the limiting factor at  low NO3‐N

Rusten, Hem and Ødegaard, 1995

Post‐denitrification

20

The combined pre‐ and post‐DN MBBR process

Recirculation of NO3‐N

DN‐rate controlledby carbon addition

• Aerated when larger nitrification volume  is needed (winter).

• Not aerated in summer – more pre‐DN volume – higher recycle in summer 

Nitrification ratecontrolled through O2

Low recirculation of oxygen

Not aerated nitrificationO2 consumption only ‐in order to reduce theamount of recycled O2

SET AS

Carbon

21

DN‐rates with external carbon sources(practical results from combined‐DN plant)

0

1

2

3

4

5

3 5 7 9 11 13 15 17Temperature, °C

Den

itrifi

catio

n ra

te, g

NO

3-N

/m2 /d Ethanol

MethanolMonopropylene glycol

Rusten et al, 1996

SET AS

22

Four Norwegian combined DN‐plants

Flocc.

Secondary sed.Primarysed. Chem.CarbonNO3 recycle

AEAN AN/AE

AE AE AN AN AE

a)

Flocc.

DAFPrimary sed. Chem.CarbonNO3 recycle

AEAN AN/AE

AE AE AN AE

b)

Primary sed. Chem.CarbonNO3 recycle

AEAN AE AE AN AE

c)Secondarysed.

ANFlocc.

Secondary sed.Primarysed. Chem.CarbonNO3 recycle

AEAN AN/AE

AE AE AN AN AE

a)

Flocc.

DAFPrimary sed. Chem.CarbonNO3 recycle

AE

Flocc.

Secondary sed.Primarysed. Chem.CarbonNO3 recycle

AEAN AN/AE

AE AE AN AN AE

a)

Flocc.

DAFPrimary sed. Chem.CarbonNO3 recycle

AEAN AN/AE

AE AE AN AE

b)

Primary sed. Chem.CarbonNO3 recycle

AEAN AE AE AN AE

c)Secondarysed.

AN

Lillehammer WWTP

Nordre Follo and Gardermoen WWTP

RA2 WWTP

SET AS

23

MBBR design/operating values and performances

Parameter Lille-hammer

Nordre Follo

Garder-moen

NRA

Average flow (m3/h)Max flow (m3/h) Temperature (oC)

120019003-14

75011256-14

92013004-14

230072007-14

MBBRTotal volume (m3)Carrier fill fraction (%) Average(max) HRT (hrs)

384065,03,2 (2,0)

371066,24,9 (3,3)

579058.56,3 (4,5)

1937042,78,4 (2,7)

Carbon sourceg CODadded/g TNequiv

Ethanol

3.3

Methanol(now glycol)

2.2

Glycol

2.4

Methanol(now glycol)

-

Efficiency, 2005Average out conc.and treatment efficiency BOD5

COD Tot NTot P

Out Remmg/l %2,2 9935 932,9 920.12 98

Out Remmg/l %2,8 9839 919,7 730.20 96

Out Remmg/l %3,2 9825 967,0 870.18 98

Out Remmg/l %4,0 9527 935,0 830.05 99

SET AS

24MBBR biomass separation alternatives

MBBR – Coag./settling(also Actiflo)

MBBR - settling

MBBR - flotation

MBBR – media filtration

MBBR – microscreening(i.e. Disc filtration)

MBBR – Membrane filtration

SET AS

25

Anaerobic ammonium oxidation (Anammox):    NH4

+ + NO2- -> N2 + 2H20

Advantages• No carbon source needed• Less air needed (than in N/DN):

~1,8 g O2/g N (60 % less)• Very low sludge production

~ 0,11 g SS/g NH4-N• Less CO2 - production/

less alkalinity consumption

Disadvantages• Some nitrate is formed:

i.e max N-removal ca 80 %• Nitrite has to be generated• Slow growth rate - long start-up• Necessary to have a long SRT

(Biofilm or granules favorable)

SET AS

Primarily used for N‐removal in sludge water treatment

26

Anammox with MBBR (Christensson et al, 2013)

BiofilmMedia

Liquid

Nitritation

NH4+

NO2‐AOB

Anammox

N2O2

Aerobic

AnoxicBiofilmMedia

Liquid

Nitritation

NH4+

NO2‐AOB

Nitritation

NH4+

NO2‐AOB

Anammox

N2

Anammox

N2O2O2

Aerobic

Anoxic

MBBR

= 0.5-1.5 mg/L

AOB in biofilm = NO2- limitation

IFAS

SET AS

BiofilmMedia

Liquid

Nitritation

NH4+ NO2

‐AOB

Anammox

N2O2

AnoxicMedia

Liquid

Nitritation

NH4+ NO2

‐AOB

Anammox

N2O2

Anoxic

< 0.5 mg/L

Flocs (1-3 g/L)

AOB in flocs = less NO2- limitation

27

BioFarm concept = Providing seeded carriers for rapid start‐up of  future full‐scale ANITATM Mox unitsSeeded carriers

ANITA™ Mox – Sjölunda WWTP, Malmö (Sweden)

• 4 x 50m3 MBBR• Capacity = 200 kgN/d• 800‐1200 mgN‐NH4/L• 1st ANITA™ Mox reference• Flexibility for fullscale testing

SET AS

28

Full‐scale test resultsANITA™Mox , Sjölunda WWTP(Christensson et al, 2013)

SET AS

• High removal rates and good N‐removal with MBBR 

• Very high removal rate with IFAS ‐ up to 3 kg NH4‐N/m3.d (7.5 g NH4‐N/m2.d)

• Energy consumption :1.2 kWh/kg NH4‐N removed

0

0,5

1

1,5

2

2,5

3

3,5

NH4 load & removal (kgN

/m3.d)

NH4‐load

NH4‐removal

0102030405060708090

930 950 970 990 1010 1030 1050 1070 1090 1110 1130 1150

%NH4 and %TN removal

Days

%TN‐removal%NH4‐removal%NO3‐prod : NH4‐rem

MBBR Tran-sition

IFAS

• K5 – filling fraction 50 %• DOMBBR = 1.0 ‐ 1.3 mg/l • DOIFAS = 0.2 ‐ 1.0 mg/l • MLSSMBBR = 20–400 mg/l • MLSSIFAS = 1800 – 4600 mg/l 

29

Removal of pharmaceuticals (Falås, 2013)

Comparison between activated sludge andcarrier‐based processes

30

Removal og pharmaceuticals in the biomass from an IFAS plant (Bad Ragaz WWTP, CH)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

C/C

initi

al

Time (h)

Atenolol

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

C/C

initi

al

Time (h)

Carbamazepine

Anoxic sludgeOxic sludgeCarriers

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

C/C

initi

al

Time (h)

Mefenamic acid

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

C/C

initi

al

Time (h)

Diclofenac

(Falås et al, 2014)

Where does the removal take place?

31

Conclusions1. The MBBR is a well‐proven, robust and very compact technology                              

(Now altogether > 800 plants in > 50 countries – 50/50 industrial/municipal). 

2. The MBBR is used in pure biofilm processes as well as in hybrid processes (IFAS) 

3. The combined pre‐ and post denitrification MBBR process is especially suitable for low C/N waters and offers great flexibility in operation

4. The MBBR is very efficient in the upgrading of activated sludge plants:a. as ”roughing” reactor before AS in order to reduce organic matter loadingb. in an IFAS‐process in order to achieve: nitrification, N‐removal and or P‐removal

5. The MBBR‐based processes are especially suitable for developing special cultures – for instance for:a. N‐removal by anammox processesb. Organic micropollutants removal 

SET AS

32

Thanks a lot 

for listening

The Pulpit, Lysefjord, Norway

33

Upgrading AS‐plants by the use of MBBRThree options for nitrification

Pure MBBR BAS HYBAS

SET AS

IFAS MBBR MBBR Activated sludge Activated sludge + MBBR

34

SRT Vs Temperature

0123456789

1011121314

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25Temperature, C

SRT,

d

ATV Design Curve

Nitrifier Growth Rate

Broomfield(4.7 days at 13C)

Cheyenne (4.5 days at 9C)

Yucaipa (2.3 days at 18C)

Taos (5.2 days at 8C)

Oxford(3.9 days at 11C) Fields Point & Flagstaff (3.3 days at 14C)

James River(2.7 days at 14C)

Greensboro (5.25 days at 14C)

Springettsbury(2.4 days at 10C)

Lubbock (3.8 days at 15C)

Fairplay (2.5 days at 5C)

New Castle (4.1 days at 10C)

Crestted Butte (3.2 days at 7.5C)

Mamaroneck(1.8 days at 13C)

Georgetown (5.0 days at 9C)

SET AS

Design SRT vs temp for full scale IFAS systems (installed by ANOXKALDNES)