Compact Modeling of Semiconductor Devices: MOSFET

82
Compact Modeling of Semiconductor Devices: MOSFET Yogesh S. Chauhan Assistant Professor and Ramanujan Fellow Nanolab, Department of Electrical Engineering IIT Kanpur Email: [email protected] Homepage – http://home.iitk.ac.in/~chauhan/

Transcript of Compact Modeling of Semiconductor Devices: MOSFET

Page 1: Compact Modeling of Semiconductor Devices: MOSFET

Compact Modeling of Semiconductor Devices: MOSFET

Yogesh S. Chauhan Assistant Professor and Ramanujan Fellow

Nanolab, Department of Electrical Engineering IIT Kanpur

Email: [email protected] Homepage – http://home.iitk.ac.in/~chauhan/

Page 2: Compact Modeling of Semiconductor Devices: MOSFET

Outline

• Compact Modeling • MOSFET • Drain Current in MOSFET • Smoothing Functions • Terminal Charges • Scaling • FinFET

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 2

Page 3: Compact Modeling of Semiconductor Devices: MOSFET

Compact Modeling or SPICE Modeling

• Excellent Convergence • Simulation Time – ~µsec • Accuracy requirements

– ~ 1% RMS error after fitting • Example: BSIM6, BSIM-

CMG

Medium of information exchange

Good model should be Accurate: Trustworthy simulations. Simple: Parameter extraction is easy.

Balance between accuracy and simplicity depends on end application

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 3

Page 4: Compact Modeling of Semiconductor Devices: MOSFET

Industry Standard Compact Models

• Standardization Body – Compact Model Coalition

• CMC Members – EDA Vendors, Foundries, IDMs, Fabless, Research Institutions/Consortia

• CMC is by the industry and for the industry

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 4

Page 5: Compact Modeling of Semiconductor Devices: MOSFET

What is MOSFET?

• MOSFET is a transistor used for amplifying or switching electronic signals.

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 5

Gate

Drain

Source

Page 6: Compact Modeling of Semiconductor Devices: MOSFET

Introduction to MOSFET

• Building block of Gb memory chips, GHz microprocessors, analog, and RF circuits.

Yogesh S. Chauhan, IIT Kanpur 6

Basic MOSFET structure and IV characteristics

12/3/2014

Polysilicon gate & SiO2

Page 7: Compact Modeling of Semiconductor Devices: MOSFET

How can we simulate MOSFET based circuits?

• We need – Currents

𝐼𝐼𝑑𝑑𝑑𝑑 = 𝑊𝑊.𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖. 𝜈𝜈 = 𝑊𝑊.𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖.𝜇𝜇𝑖𝑖𝑑𝑑𝐸𝐸

𝐼𝐼𝑑𝑑𝑑𝑑 = 𝑊𝑊.𝐶𝐶𝑜𝑜𝑜𝑜 𝑉𝑉𝑔𝑔𝑑𝑑 − 𝑉𝑉𝑡𝑡 .𝜇𝜇𝑖𝑖𝑑𝑑𝑑𝑑𝑉𝑉𝑐𝑐𝑐𝑑𝑑𝑑𝑑

– Charges (for capacitance)

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 7

Page 8: Compact Modeling of Semiconductor Devices: MOSFET

Energy Band Diagram in Equilibrium

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 8

Page 9: Compact Modeling of Semiconductor Devices: MOSFET

Depletion and Inversion

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 9

Surface is depleted of holes Surface is inverted

Page 10: Compact Modeling of Semiconductor Devices: MOSFET

Threshold Condition and Threshold Voltage

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 10

Threshold (of inversion): ns = Na , or (Ec–Ef)surface= (Ef – Ev)bulk , or A=B, and C = D

ox

BsaBfbgt C

qNVthresholdatVV

φεφ

222 ++==

ox

Bsaox C

qNV

φε 22=

𝑉𝑉𝑔𝑔 = 𝑉𝑉𝑓𝑓𝑓𝑓 + 𝜓𝜓𝑑𝑑 + 𝑉𝑉𝑜𝑜𝑜𝑜

𝜓𝜓𝑑𝑑𝑡𝑡 = 2𝜙𝜙𝑓𝑓 = 2𝑘𝑘𝑘𝑘𝑞𝑞𝑙𝑙𝑙𝑙

𝑁𝑁𝑎𝑎𝑙𝑙𝑖𝑖

Amount of band bending at surface is called “Surface Potential”.

Page 11: Compact Modeling of Semiconductor Devices: MOSFET

Inversion Layer Charge • Applied Gate Voltage

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 11

ox

invt

ox

inv

ox

BsaBfb

ox

inv

ox

depBfbg

CQ

V

CQ

CqN

V

CQ

CQ

VV

−=

−++=

−−+=

22

2

2

φεφ

φ

Inversion Layer Charge )( tgoxinv VVCQ −−=

Page 12: Compact Modeling of Semiconductor Devices: MOSFET

MOSFET Vt and the Body Effect

Yogesh S. Chauhan, IIT Kanpur 12

maxd

sdep W

C ε=

sbdeptgsoxeinv VCVVCQ +−−= )(

))(( sboxe

deptgsoxe V

CC

VVC +−−=

• Two capacitors => two charge components

sbtsboxe

deptsbt VVV

CC

VVV α+=+= 00)(

• Redefine Vt as Cdep

Coxe

12/3/2014

Page 13: Compact Modeling of Semiconductor Devices: MOSFET

Uniform Body Doping • In earlier generations of MOSFETs, the body

doping density is more or less uniform and Wdmax varies with Vsb.

• In that case, the theory for the body effect is more complicated.

Yogesh S. Chauhan, IIT Kanpur 13

)22(

)22(2

0

0

BsbBt

BsbBoxe

satt

VV

VC

qNVV

φφγ

φφε

−++≡

−++=

γ is the body-effect parameter.

12/3/2014

Page 14: Compact Modeling of Semiconductor Devices: MOSFET

Threshold Voltage Modeling

• Long/Wide Channel Model With Uniform Doping – VFB=flat band voltage – VTH0=threshold voltage of device at zero substrate

bias – γ is the body bias coefficient given by

Yogesh S. Chauhan, IIT Kanpur 14 12/3/2014

Page 15: Compact Modeling of Semiconductor Devices: MOSFET

Threshold Voltage Modeling • As channel length gets shorter Vth shows a greater dependence on

– Short-channel effect Higher Off Current Leakage – DIBL Higher Off Current Leakage at high Vds

Yogesh S. Chauhan, IIT Kanpur 15 12/3/2014

Page 16: Compact Modeling of Semiconductor Devices: MOSFET

Threshold Voltage Modeling

• The complete Vth model implemented in SPICE as

Yogesh S. Chauhan, IIT Kanpur 16 12/3/2014

Page 17: Compact Modeling of Semiconductor Devices: MOSFET

Surface Mobility

• Scattering mechanisms – Phonon scattering – Coulomb scattering – Interface roughness scattering

Yogesh S. Chauhan, IIT Kanpur 17

L V V V WC

L V WQ

WQ v Q W I

ds ns t gs oxe

ds ns inv

ns inv inv ds

/ ) (

/

µ

µ

µ

− =

=

= × × = E

Vg = Vdd , Vgs = Vdd

Ids

Vds > 0

12/3/2014

Page 18: Compact Modeling of Semiconductor Devices: MOSFET

Surface Mobility • Mobility is a function of the average of the fields at the

bottom and the top of the inversion charge layer, Eb and Et .

Yogesh S. Chauhan, IIT Kanpur 18

From Gauss’s Law, Eb = – Qdep/εs

oxedepstfbt CQVV /−+= φ

) ( st fb t s

oxe b V V C E φ

ε − − = Therefore,

) (

) ( /

/ ) (

st fb gs s

oxe

t gs s

oxe b s inv b

s inv dep t

V V C

V V C E Q E

Q Q E

φ ε

ε ε

ε

− − =

− + = − =

+ − =

oxe

t gs

t gs s

oxe

st fb t gs s

oxe t b

T V V

V V C

V V V C E E

6 V 2 . 0

) V 2 . 0 ( 2

) 2 2 ( 2

) ( 2 1

+ + =

+ + ≈

− − + = +

ε

φ ε

oxsfbg VVV ++= ψ

NMOS with n+ poly-Si gate Vfb≈-0.5 and ψst≈0.4

12/3/2014

Page 19: Compact Modeling of Semiconductor Devices: MOSFET

Universal Surface Mobilities

Yogesh S. Chauhan, IIT Kanpur 19

•Surface roughness scattering is stronger (mobility is lower) at higher Vg, higher Vt, and thinner Toxe.

Surface mobility (cm

2/V-s)

Empirical fitting

12/3/2014

Page 20: Compact Modeling of Semiconductor Devices: MOSFET

Mobility Modeling in BSIM4

Yogesh S. Chauhan, IIT Kanpur 20

oxe

tgsteffeff

oxe

tgseff

oxe

tgseff

TVV

E

TVVtV

E

TVV

E

62

62

6

+=

+−=

+=

12/3/2014

Page 21: Compact Modeling of Semiconductor Devices: MOSFET

Current in subthreshold region • Subthreshold conduction

– Transistor is in depletion • Surface potential is determined by

depletion under the gate, which is constant everywhere (ψS≈ ψsa).

Yogesh S. Chauhan, IIT Kanpur 21

dxdVWQxI CB

ieffds µ=)(

12/3/2014

22

42

−++−=≈ FBGBsasa VVγγψψ

+−=

t

MGCn

VV

t

CBf

AsI e

V

NqQ φφ

φ

ε'

'

22

2

Page 22: Compact Modeling of Semiconductor Devices: MOSFET

Current in subthreshold region

• Integrating from source to drain,

Yogesh S. Chauhan, IIT Kanpur 22

∫∫ ⋅⋅⋅=L

CBieff

L

ds dVQWdxxI00

)( µ

∫ ⋅=DB

SB

V

VCBieffds dVQ

LWI µ

∫ ⋅

+=

−−DB

SB

t

THCBGBV

VCB

nVVV

t

CBf

Aseffds dVe

V

NqL

WI φφφ

εµ

'22

2

−=

−−

t

THGD

t

THGSn

VVn

VV

ds eeII ϕϕ0

−=

−−

t

DS

t

THGSnV

nVV

ds eeII ϕϕ 10

12/3/2014

Page 23: Compact Modeling of Semiconductor Devices: MOSFET

Current in subthreshold region

• Note – VTH is a function of body bias. – If VB increases in negative direction, VTH

increases.

Yogesh S. Chauhan, IIT Kanpur 23

−=

−−

t

DS

t

THGSnV

nVV

ds eeII ϕϕ 10

( )000 φφγ −++= SBTTH VVV

12/3/2014

Page 24: Compact Modeling of Semiconductor Devices: MOSFET

Subthreshold slope • It is defined as the amount of gate voltage

required to change the gate current by 1-decade.

Yogesh S. Chauhan, IIT Kanpur 24

( )ds

GS

IddVSlog

=

12/3/2014

At room temperature

( )

+≈

+=

ox

dep

ox

dep

CC

mVCC

S 1601)30.2(85.25

Page 25: Compact Modeling of Semiconductor Devices: MOSFET

Drain Current and Qinv in MOSFET

• Qinv = – Cox(Vgs – Vcs – Vt0 – α (Vsb+Vcs) • = – Cox(Vgs – Vcs – (Vt0 +α Vsb) – α Vcs) • Qinv = – Cox(Vgs – mVcs – Vt) • • m ≡ 1 +α = 1 + 3Toxe/Wdmax ≈1.2 • m is called the body-effect factor or bulk-charge factor.

Yogesh S. Chauhan, IIT Kanpur 25

( ) ( )cbtGCoxTHGCoxI VVVCVVCQ α−−−=−−= 0'''

• Channel voltage Vc=Vs at x = 0 and Vc=Vd at x = L.

12/3/2014

Page 26: Compact Modeling of Semiconductor Devices: MOSFET

Drain Current Calculation

Yogesh S. Chauhan, IIT Kanpur 26

cs

L V

tcsgsnsoxeds dVVmVVWCdxI ds )(0 0∫ ∫ −−= µ

Ids = WCoxe(Vgs– mVcs – Vt)μnsdVcs/dx

Now,

Integrating the above equation over the channel length L, gives the current voltage relation as follows:

IdsL = WCoxeµns(Vgs – Vt – mVds/2)Vds

dsdstgsoxensds VVmVVL

WCI

−−=

12/3/2014

Page 27: Compact Modeling of Semiconductor Devices: MOSFET

I-V characteristics

Yogesh S. Chauhan, IIT Kanpur 27

0dVdI

ds

ds =

0)mVV(VμCL

Wdsattgsnsoxe =−−

mVV

V tgsdsat

−=

Vds ˂ Vdsat Linear Region Vds ≥ Vdsat Saturation region

2)(2 tgsnsoxedsat VVC

mLWI −= µ

Drain current in saturation regio

Linear Region Saturation region

• transconductance: gm= dIds/dVgs )( tgsnsoxemsat VVCmLWg −= µ

12/3/2014

Page 28: Compact Modeling of Semiconductor Devices: MOSFET

I-V characteristics

What happens at Vds=Vdsat & why Ids remains constant beyond Vdsat At Vds=Vdsat , Qinv near the drain end of the

channel becomes zero ! i.e. Pinch off. Ids = WQinvµnsE (Large E and and negligible Qinv)

At Vds >Vdsat , A very short region near the drain end where the Qinv = 0, a very high electric field exist due to the drop of the additional Vds - Vdsat . Yogesh S. Chauhan, IIT Kanpur 28 12/3/2014

Page 29: Compact Modeling of Semiconductor Devices: MOSFET

Velocity Saturation

• At low E • The inversion-layer electron velocity saturates

at high field

Yogesh S. Chauhan, IIT Kanpur 29

ν = μnsE

sat

ns

/1 ξξ+ξµ

satξ is the field at which velocity saturation becomes dominant.

ξ satξ<< ξµ=ν ns

satnssat ξµνν == ξ satξ≥

,

,

12/3/2014

Page 30: Compact Modeling of Semiconductor Devices: MOSFET

Velocity Saturation and I-V Model

Yogesh S. Chauhan, IIT Kanpur 30

( )

sat

cs

csns

tcsgsoxeds

dxdV

1

dxdV

VmVVWCI

ξ+

µ−−=

cssat

dstcsgsnsoxe

L

0

V

0ds dVI)VmVV(WCdxI ds

ξ−−−µ=∫ ∫

sat

ds

dstdsgsnsoxe

ds

LV

VVVmVCL

W

I

ξ

µ

+

−−

=1

2

Ids = WQinvν

Drain current when ν ˂ νsat

sat

ns

/1 ξξ+ξµ

12/3/2014

Page 31: Compact Modeling of Semiconductor Devices: MOSFET

Velocity Saturation and I-V Model

• If L is large then will be negligible, then:

• Effect of velocity saturation on Ids:

• In short channel devices

Yogesh S. Chauhan, IIT Kanpur 31

sat

ds

LVξ

dsdstgssoxeds VVmVVCL

WI )2

( −−= µIt is called the long channel I-V model

Ids = (Long channel Ids)/( sat

ds

LV1ξ

+ )

11 >+sat

ds

LVξ

12/3/2014

Page 32: Compact Modeling of Semiconductor Devices: MOSFET

Velocity Saturation and I-V Model • Drain current for Vds ≥Vdsat

Yogesh S. Chauhan, IIT Kanpur 32

( )

LmVV

1

VVC

mL2WI

sat

tgs

2tgs

nsoxedsat

ξ

−+

−µ= =Long channel Idsat/(

LmVV

1sat

tgs

ξ

−+ )

Very short channel case:

• Idsat is proportional to Vgs–Vt rather than (Vgs – Vt)2 , •Not as sensitive to L as than long channel case (∝1/L).

( )LmEVVCWvI sattgsoxesatdsat −−=tgssat VVLE −<<

Long channel case:

( )2

2 tgsnsoxedsat VVCmLWI −≈ µ

tgssat VVLE −>>

( )tgsoxesatdsat VVCWvI −≈

12/3/2014

Page 33: Compact Modeling of Semiconductor Devices: MOSFET

I-V Characteristics

• Long Channel Short Channel

• Ids ∝ (Vgs-Vt)2 Ids ∝ Vgs-Vt DITS +CLM+ DIBL

Yogesh S. Chauhan, IIT Kanpur 33 12/3/2014

Page 34: Compact Modeling of Semiconductor Devices: MOSFET

I-V Characteristics

Yogesh S. Chauhan, IIT Kanpur 34

Curves for a particular gate voltage

Curves for a different gate voltages

12/3/2014

Page 35: Compact Modeling of Semiconductor Devices: MOSFET

Compact Modeling is Art based on Science

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 35

Page 36: Compact Modeling of Semiconductor Devices: MOSFET

Smoothing function and I-V Model

• Smoothing function is required for a smooth transition between two functions. – This stems from the need to have a single equation

valid in all regions of operation. • BSIM3 introduced use of smoothing functions

to get single equation valid in all regions of biases. – This gave continuous and smooth I-V and C-V

making it popular model for analog design.

Yogesh S. Chauhan, IIT Kanpur 36 12/3/2014

Page 37: Compact Modeling of Semiconductor Devices: MOSFET

Linear to Saturation transition • First generation SPICE models used this kind of equation,

𝐼𝐼𝐷𝐷 =

𝑊𝑊𝐿𝐿 𝜇𝜇𝐶𝐶𝑜𝑜𝑜𝑜′ 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇 𝑉𝑉𝐷𝐷𝐺𝐺 −

𝑚𝑚2 𝑉𝑉𝐷𝐷𝐺𝐺2 ,𝑉𝑉𝐷𝐷𝐺𝐺 < 𝑉𝑉𝐷𝐷𝐺𝐺,𝑑𝑑𝑎𝑎𝑡𝑡

𝑊𝑊𝐿𝐿 𝜇𝜇𝐶𝐶𝑜𝑜𝑜𝑜′

(𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇)2

2𝑚𝑚 ,𝑉𝑉𝐷𝐷𝐺𝐺 ≥ 𝑉𝑉𝐷𝐷𝐺𝐺,𝑑𝑑𝑎𝑎𝑡𝑡

Yogesh S. Chauhan, IIT Kanpur 37

𝐼𝐼𝐷𝐷 and 𝑑𝑑𝐼𝐼𝐷𝐷𝑑𝑑𝑉𝑉𝐷𝐷𝐷𝐷

are continuous at

𝑉𝑉𝐷𝐷𝐺𝐺 = 𝑉𝑉𝐷𝐷𝐺𝐺,𝑑𝑑𝑎𝑎𝑡𝑡 but 𝑑𝑑2𝐼𝐼𝐷𝐷

𝑑𝑑𝑉𝑉𝐷𝐷𝐷𝐷2 is not.

12/3/2014

Page 38: Compact Modeling of Semiconductor Devices: MOSFET

Linear to Saturation transition • For numerical robustness, the derivatives of arbitrary order must be

continuous at all voltage values of interest. This property is sometimes referred to as ∞-differentiability.

• Single equation approach used in BSIM3. Define an effective drain-source bias VDSeff,

𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓 = 𝑉𝑉𝐷𝐷𝐺𝐺,𝑑𝑑𝑎𝑎𝑡𝑡 −12 𝑉𝑉𝐷𝐷𝐺𝐺,𝑑𝑑𝑎𝑎𝑡𝑡 − 𝑉𝑉𝐷𝐷𝐺𝐺 − Δ + (𝑉𝑉𝐷𝐷𝐺𝐺,𝑑𝑑𝑎𝑎𝑡𝑡 − 𝑉𝑉𝐷𝐷𝐺𝐺 − Δ)2+4Δ𝑉𝑉𝐷𝐷𝐺𝐺,𝑑𝑑𝑎𝑎𝑡𝑡

• 𝑉𝑉𝐷𝐷𝐺𝐺 ≪ 𝑉𝑉𝐷𝐷𝐺𝐺,𝑑𝑑𝑎𝑎𝑡𝑡, 𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓 ≈ 𝑉𝑉𝐷𝐷𝐺𝐺 • For 𝑉𝑉𝐷𝐷𝐺𝐺 ≫ 𝑉𝑉𝐷𝐷𝐺𝐺,𝑑𝑑𝑎𝑎𝑡𝑡, 𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓 ≈ 𝑉𝑉𝐷𝐷𝐺𝐺,𝑑𝑑𝑎𝑎𝑡𝑡

• Drain current equation becomes (VGS>VT),

• 𝐼𝐼𝐷𝐷 = 𝑊𝑊𝐿𝐿𝜇𝜇𝐶𝐶𝑜𝑜𝑜𝑜′ 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇 𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓 −

𝑚𝑚2𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓2

• Derivatives are continuous.

Yogesh S. Chauhan, IIT Kanpur 38

Increasing Δ

Δ determines the degree of smoothness.

12/3/2014

Page 39: Compact Modeling of Semiconductor Devices: MOSFET

Sub-threshold to strong inversion transition • For 𝑉𝑉𝐺𝐺𝐺𝐺 ≪ 𝑉𝑉𝑇𝑇,

𝐼𝐼𝐷𝐷 = 𝐼𝐼0𝑒𝑒(𝑉𝑉𝐺𝐺𝐷𝐷−𝑉𝑉𝑇𝑇−𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜)

𝑖𝑖𝑛𝑛𝑇𝑇/𝑞𝑞 1 − 𝑒𝑒−𝑉𝑉𝐷𝐷𝐷𝐷𝑛𝑛𝑇𝑇/𝑞𝑞

– This is not valid in strong inversion. It leads to excessively high current for 𝑉𝑉𝐺𝐺𝐺𝐺 ≫ 𝑉𝑉𝑇𝑇

• For 𝑉𝑉𝐺𝐺𝐺𝐺 ≫ 𝑉𝑉𝑇𝑇

𝐼𝐼𝐷𝐷 =𝑊𝑊𝐿𝐿𝜇𝜇𝐶𝐶𝑜𝑜𝑜𝑜′ 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇 𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓 −

𝑚𝑚2𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓2

– This is not valid in sub-threshold and leads to negative current for 𝑉𝑉𝐺𝐺𝐺𝐺 < 𝑉𝑉𝑇𝑇 • First method – Single equation:

𝐼𝐼𝐷𝐷 = 𝐼𝐼𝐷𝐷,𝑑𝑑𝑠𝑠𝑓𝑓 + 𝐼𝐼𝐷𝐷,𝑖𝑖𝑖𝑖𝑖𝑖

Yogesh S. Chauhan, IIT Kanpur 39

• Good enough for Digital applications, but the derivatives are discontinuous making it unsuitable for Analog cases. 12/3/2014

Page 40: Compact Modeling of Semiconductor Devices: MOSFET

Sub-threshold to strong inversion transition • Second method – Single equation: Use effective

𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇 as

𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓 =

2𝑙𝑙𝑘𝑘𝑘𝑘𝑞𝑞 𝑙𝑙𝑙𝑙 1 + exp 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇

2𝑙𝑙𝑘𝑘𝑘𝑘/𝑞𝑞

1 + 2𝑙𝑙 𝑒𝑒𝑑𝑑𝑒𝑒 −𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇 − 2𝑉𝑉𝑜𝑜𝑓𝑓𝑓𝑓

2𝑙𝑙𝑘𝑘𝑘𝑘/𝑞𝑞

• 𝑙𝑙 is the ideality factor and lies between 1 and 2. • Voff is a parameter for fringing from width side.

Assume Voff=0 for further analysis. • For 𝑉𝑉𝐺𝐺𝐺𝐺 ≫ 𝑉𝑉𝑇𝑇, the exponential term inside ln() is

larger than 1 making 𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓 = 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇 • For 𝑉𝑉𝐺𝐺𝐺𝐺 ≪ 𝑉𝑉𝑇𝑇,

𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓 ≈𝑘𝑘𝑘𝑘𝑞𝑞𝑒𝑒𝑑𝑑𝑒𝑒

𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑙𝑙𝑘𝑘𝑘𝑘/𝑞𝑞

Yogesh S. Chauhan, IIT Kanpur 40 12/3/2014

Page 41: Compact Modeling of Semiconductor Devices: MOSFET

Single equation for drain current • Use 𝑉𝑉𝐷𝐷𝐺𝐺,𝑑𝑑𝑎𝑎𝑡𝑡 = 𝑉𝑉𝐺𝐺𝐷𝐷𝑇𝑇,𝑒𝑒𝑜𝑜𝑜𝑜+2𝑛𝑛𝑇𝑇/𝑞𝑞

𝑚𝑚, where 2𝑘𝑘𝑘𝑘/𝑞𝑞 is added for numerical stability

when 𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓 ≪ 2𝑘𝑘𝑘𝑘/𝑞𝑞. • We have written ID as follows valid from linear to saturation-

𝐼𝐼𝐷𝐷 =𝑊𝑊𝐿𝐿𝜇𝜇𝐶𝐶𝑜𝑜𝑜𝑜′ 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇 𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓 −

𝑚𝑚2𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓2

𝐼𝐼𝐷𝐷 =𝑊𝑊𝐿𝐿𝜇𝜇𝐶𝐶𝑜𝑜𝑜𝑜′ 𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓 −

𝑚𝑚2𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓 𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓

• Now drain current becomes,

𝐼𝐼𝐷𝐷 =𝑊𝑊𝐿𝐿𝜇𝜇𝐶𝐶𝑜𝑜𝑜𝑜′ 𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓 −

𝑚𝑚2𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓

𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓

𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓 + 2𝑘𝑘𝑘𝑘/𝑞𝑞𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓

𝐼𝐼𝐷𝐷 =𝑊𝑊𝐿𝐿𝜇𝜇𝐶𝐶𝑜𝑜𝑜𝑜′ 𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓 1 −

𝑚𝑚2

𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓

𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓 + 2𝑘𝑘𝑘𝑘/𝑞𝑞𝑉𝑉𝐷𝐷𝐺𝐺,𝑒𝑒𝑓𝑓𝑓𝑓

• This is valid for all Vgs and Vds.

Yogesh S. Chauhan, IIT Kanpur 41 12/3/2014

Page 42: Compact Modeling of Semiconductor Devices: MOSFET

Terminal Charges and Charge Partition

• AC and Transient simulation need capacitances.

• Quasi-static approximation – The Channel charge is assumed

to respond instantaneously to any change in the bias voltage.

• From 𝑄𝑄𝑖𝑖′, we need to find QG, QB, QS and QD.

Yogesh S. Chauhan, IIT Kanpur 42 12/3/2014

Page 43: Compact Modeling of Semiconductor Devices: MOSFET

Total inversion charge • Before delving into QG, QS and QD. Let us find the total

inversion charge in the channel, 𝑄𝑄𝑖𝑖. • The charge per unit area, 𝑄𝑄𝐼𝐼′, is given as

𝑄𝑄𝐼𝐼′ = −𝐶𝐶𝑜𝑜𝑜𝑜′ 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇 − 𝑚𝑚𝑉𝑉𝐶𝐶𝐺𝐺 𝑑𝑑 • We need to know 𝑉𝑉𝐶𝐶𝐺𝐺 𝑑𝑑 =?

• Define α = 1 − 𝑉𝑉𝐷𝐷𝐷𝐷,𝑒𝑒𝑜𝑜𝑜𝑜

𝑉𝑉𝐷𝐷𝐷𝐷,𝑠𝑠𝑠𝑠𝑠𝑠 which gives,

𝑉𝑉𝐷𝐷𝐷𝐷,𝑒𝑒𝑜𝑜𝑜𝑜

𝑉𝑉𝐷𝐷𝐷𝐷,𝑠𝑠𝑠𝑠𝑠𝑠= 1 − α,

Thus

𝑽𝑽𝑪𝑪𝑪𝑪 =𝑽𝑽𝑮𝑮𝑪𝑪𝑮𝑮,𝒆𝒆𝒆𝒆𝒆𝒆

𝒎𝒎𝟏𝟏 − 𝟏𝟏 −

𝒙𝒙𝑳𝑳𝟏𝟏 − 𝜶𝜶 𝟐𝟐

Yogesh S. Chauhan, IIT Kanpur 43 12/3/2014

Page 44: Compact Modeling of Semiconductor Devices: MOSFET

Total inversion charge • The charge per unit area, 𝑄𝑄𝐼𝐼′, is given as

𝑄𝑄𝐼𝐼′ = −𝐶𝐶𝑜𝑜𝑜𝑜′ 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇 − 𝑚𝑚𝑉𝑉𝐶𝐶𝐺𝐺 𝑑𝑑

𝑄𝑄𝐼𝐼′ = −𝐶𝐶𝑜𝑜𝑜𝑜′ 𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓 1 −𝑑𝑑𝐿𝐿

1 − 𝛼𝛼 2

• Thus total inversion charge

𝑄𝑄𝐼𝐼 = −𝑊𝑊𝐶𝐶𝑜𝑜𝑜𝑜′ � 𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓 1 −𝑑𝑑𝐿𝐿

1 − 𝛼𝛼2 𝑑𝑑𝑑𝑑𝐿𝐿

0

• Total inversion charge

𝑄𝑄𝐼𝐼 = −23𝑊𝑊𝐿𝐿𝐶𝐶𝑜𝑜𝑜𝑜′ 𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓

1 + 𝛼𝛼 + 𝛼𝛼2

1 + 𝛼𝛼

Yogesh S. Chauhan, IIT Kanpur 44 12/3/2014

Page 45: Compact Modeling of Semiconductor Devices: MOSFET

Source-Drain charge partitioning • We know, 𝑄𝑄𝐼𝐼 = 𝑄𝑄𝐺𝐺 + 𝑄𝑄𝐷𝐷 but not the exact share of each. • The assignment of the channel charge to the source and

drain charges is called charge partition. • Charge partitioning

– 50/50 partition: Arbitrarily assign 50% of 𝑄𝑄𝐼𝐼 to 𝑄𝑄𝐺𝐺 and 50% to 𝑄𝑄𝐷𝐷.This is valid only when 𝑉𝑉𝐷𝐷𝐺𝐺 is small. For 𝑉𝑉𝐷𝐷𝐺𝐺~0, MOSFET is symmetrical and 𝑄𝑄𝐺𝐺~𝑄𝑄𝐷𝐷~𝑄𝑄𝐼𝐼/2.

– 0/100 partition: This is based on the logic that in saturation, the pinch off region implies that 𝑄𝑄𝐷𝐷 = 0, which is actually not correct.

– 40/60 partition: This is a more physical distribution of charges. One should note that the charge distribution under this scheme is 40/60 only in saturation. However this partition scheme is valid in all regions.

Yogesh S. Chauhan, IIT Kanpur 45 12/3/2014

Page 46: Compact Modeling of Semiconductor Devices: MOSFET

Source-Drain charge • Ward-Dutton partitioning scheme

𝑄𝑄𝐷𝐷 = 𝑊𝑊∫ 𝑜𝑜𝐿𝐿𝑄𝑄𝐼𝐼′𝑑𝑑𝑑𝑑

𝐿𝐿0 , 𝑄𝑄𝐺𝐺 = 𝑊𝑊∫ 1 − 𝑜𝑜

𝐿𝐿𝑄𝑄𝐼𝐼′𝑑𝑑𝑑𝑑

𝐿𝐿0

• Drain charge

𝑄𝑄𝐷𝐷 = 𝑊𝑊�𝑑𝑑𝐿𝐿 𝑄𝑄𝐼𝐼

′𝑑𝑑𝑑𝑑𝐿𝐿

0= −𝑊𝑊𝐶𝐶𝑜𝑜𝑜𝑜′ 𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓 �

𝑑𝑑𝐿𝐿 1 −

𝑑𝑑𝐿𝐿 1 − 𝛼𝛼2 𝑑𝑑𝑑𝑑

𝐿𝐿

0

𝑄𝑄𝐷𝐷 = −2

15𝑊𝑊𝐿𝐿𝐶𝐶𝑜𝑜𝑜𝑜′ 𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓3𝛼𝛼3 + 6𝛼𝛼2 + 4𝛼𝛼 + 2

(1 + 𝛼𝛼)2

• Similarly, 𝑄𝑄𝐺𝐺 = 𝑊𝑊∫ 1 − 𝑜𝑜

𝐿𝐿𝑄𝑄𝐼𝐼′𝑑𝑑𝑑𝑑

𝐿𝐿0 = − 2

15𝑊𝑊𝐿𝐿𝐶𝐶𝑜𝑜𝑜𝑜′ 𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓

2𝛼𝛼3+4𝛼𝛼2+6𝛼𝛼+31+𝛼𝛼 2

Yogesh S. Chauhan, IIT Kanpur 46

Ref.: S.-Y. OH, D. E. WARD and, A. W. DUTTON, “Transient Analysis of MOS Transistors,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-15, NO. 4, AUGUST 1980.

12/3/2014

Page 47: Compact Modeling of Semiconductor Devices: MOSFET

Gate and Bulk charge • Total gate charge

𝑄𝑄𝐺𝐺 = 𝑊𝑊𝐿𝐿𝐶𝐶𝑜𝑜𝑜𝑜′ �𝑉𝑉𝐺𝐺𝐺𝐺𝑇𝑇,𝑒𝑒𝑓𝑓𝑓𝑓

𝑚𝑚𝑚𝑚 − 1 +

23∙

1 + 𝛼𝛼 + 𝛼𝛼2

1 + 𝛼𝛼

+ 2 𝑚𝑚 − 1 2𝜙𝜙𝐹𝐹 − 𝑉𝑉𝐵𝐵𝐺𝐺 �

• Finally Bulk charge, 𝑄𝑄𝐵𝐵 = − 𝑄𝑄𝐺𝐺 − 𝑄𝑄𝐼𝐼

• Capacitance 𝐶𝐶𝑚𝑚𝑖𝑖 = 𝜕𝜕𝑄𝑄𝑚𝑚

𝜕𝜕𝑉𝑉𝑛𝑛

Yogesh S. Chauhan, IIT Kanpur 47 12/3/2014

Page 48: Compact Modeling of Semiconductor Devices: MOSFET

Charge and Capacitance plots

Yogesh S. Chauhan, IIT Kanpur 48 12/3/2014

Page 49: Compact Modeling of Semiconductor Devices: MOSFET

Real Device Effects

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 49

Page 50: Compact Modeling of Semiconductor Devices: MOSFET

Parasitic Source-Drain Resistance

• The main effect of the parasitic resistance is that Vgs in the Ids equations is reduced by Rs·Ids

Yogesh S. Chauhan, IIT Kanpur 50

)(1 0

0

tgs

sdsat

dsatdsat

VVRI

II

−+

12/3/2014

Page 51: Compact Modeling of Semiconductor Devices: MOSFET

High-Frequency performance

Yogesh S. Chauhan, IIT Kanpur 51

S

GRin

Rd

Rs

D

Low FrequencyModel

S

GRin

Rd

Rs

D

Low FrequencyModel

High-frequency performance is limited by input R and/or C.

iielectrodegin RRR += −

Intrinsic input resistance Gate-electrode resistance

12/3/2014

Page 52: Compact Modeling of Semiconductor Devices: MOSFET

Gate-Electrode Resistance

Yogesh S. Chauhan, IIT Kanpur 52

Multi-finger layout greatly reduces the gate electrode resistance

212/ fggelectrodeg NLTWR ρ=−

ρ : resistivity of gate material, Wf : width of each gate finger, Tg : gate thickness, Lg : gate length, Nf : number of fingers.

Drain

Source

Rg-electrode

12/3/2014

Page 53: Compact Modeling of Semiconductor Devices: MOSFET

Bulk MOSFET

• Drain current in MOSFET (ON operation)

𝐼𝐼𝑂𝑂𝑂𝑂 = 𝜇𝜇𝑊𝑊𝐿𝐿𝐶𝐶𝑜𝑜𝑜𝑜 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑇𝑇𝐻𝐻 2

• Drain current in MOSFET (OFF operation)

𝐼𝐼𝑂𝑂𝐹𝐹𝐹𝐹 ∝ 10𝑉𝑉𝐺𝐺𝐷𝐷−𝑉𝑉𝑇𝑇𝐻𝐻

𝐺𝐺 • Desired • High ION (↓L, ↑Cox, ↑VDD-VTH) • Low IOFF (↑VTH, ↑S)

12/3/2014

Cox=εox/tox=oxide cap. S – Subthreshold slope

Yogesh S. Chauhan, IIT Kanpur 53

Page 54: Compact Modeling of Semiconductor Devices: MOSFET

Technology Scaling • Each time the minimum

line width is reduced, we say that a new technology node is introduced.

• Example: 90 nm, 65 nm, 45 nm – Numbers refer to the

minimum metal line width.

– Poly-Si gate length may be even smaller.

Yogesh S. Chauhan, IIT Kanpur 54 Figure source - Wikipedia

12/3/2014

Page 55: Compact Modeling of Semiconductor Devices: MOSFET

Technology Scaling • Scaling – At each new node, all geometrical

features are reduced in size to 70% of the previous node.

• Reward – Reduction of circuit size by half. (~50% reduction in area, i.e., 0.7 × 0.7 = 0.49.) – Twice number of circuits on each wafer – Cost per circuit is reduced significantly.

• Ultimately – Scaling drives down the cost of

ICs.

Yogesh S. Chauhan, IIT Kanpur 55 12/3/2014

Page 56: Compact Modeling of Semiconductor Devices: MOSFET

Scaling and Moore’s Law • Number of components per IC function will double every

two years – April 19, 1965 (Electronics Magazine) • Shorthand for rapid technological change!

Source: http://www.intel.com/pressroom/kits/events/moores_law_40th/

Still working!

Yogesh S. Chauhan, IIT Kanpur 56 12/3/2014

Page 57: Compact Modeling of Semiconductor Devices: MOSFET

Threshold Voltage Roll-Off

Energy band diagram from source to drain when Vgs=0V and Vgs=Vt. A-b long channel; c-d short channel.

Vt decreases at very small Lg. It determines the minimum acceptable Lg because Ioff is too large when Vt becomes too low or too sensitive to Lg.

Yogesh S. Chauhan, IIT Kanpur 57 12/3/2014 Source: Chenming Hu – Modern Semiconductor Devices for Integrated Circuits

Page 58: Compact Modeling of Semiconductor Devices: MOSFET

Channel Length Modulation Pinch off point moves towards the source as Vds increases

DS DSsatV V∆ ∝ −

long channel Short channel

0 01 1 ds dsatDsat Dsat Dsat

A

V VLI I IL V

−∆ = + = +

Esat Em

C.Hu, Modern Semiconductor Devices for IC, 2009 Prentice Hall

Av reduces 12/3/2014 Yogesh S. Chauhan, IIT Kanpur 58

Page 59: Compact Modeling of Semiconductor Devices: MOSFET

Technology Trend

12/3/2014

Product

Source : www.intel.com

Performance

Yogesh S. Chauhan, IIT Kanpur 59

Page 60: Compact Modeling of Semiconductor Devices: MOSFET

Wasn’t that smooth ride?

• Where is the bottleneck?

𝐼𝐼𝑂𝑂𝑂𝑂 = 𝜇𝜇𝑊𝑊𝐿𝐿𝐶𝐶𝑜𝑜𝑜𝑜 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑇𝑇𝐻𝐻 2

• VTH can’t be decreased – why? • Subthreshold slope gets worse!

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 60

Page 61: Compact Modeling of Semiconductor Devices: MOSFET

Thin Depletion Layer - Problem

Gate

Source Drain

Body

Oxide Cg

• QG = Qi+Qb • Charge sharing

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 61

Page 62: Compact Modeling of Semiconductor Devices: MOSFET

Short Channel – Big Problem

Gate

Source Drain

Oxide Cg

Cd

MOSFET becomes “resistor” at small L. Chenming Hu, “Modern Semiconductor Devices for ICs” 2010, Pearson

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 62

Page 63: Compact Modeling of Semiconductor Devices: MOSFET

Making Oxide Thin is Not Enough

Gate

Source Drain

Leakage Path

Gate cannot control the leakage current paths that are far from the gate.

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 63

Page 64: Compact Modeling of Semiconductor Devices: MOSFET

What can we do?

12/3/2014

Gate

Source Drain

Leakage Path

Yogesh S. Chauhan, IIT Kanpur 64

Page 65: Compact Modeling of Semiconductor Devices: MOSFET

May 4, 2011 The New York Times Front Page

• Intel will use 3D FinFET at 22nm

• Most radical change in decades

• There is a competing SOI technology

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 65

Page 66: Compact Modeling of Semiconductor Devices: MOSFET

One Way to Eliminate Si Far from Gate Thin body controlled By multiple gates.

Gate

Gate

Source Drain

FinFET body is a thin Fin.

N. Lindert et al., DRC paper II.A.6, 2001

Gate Length

Sour

ce

Drai

n

Fin Width Fin Height

Gate Length

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 66

Page 67: Compact Modeling of Semiconductor Devices: MOSFET

40nm FinFET – 1999

30nm Fin allows 2.7nm SiO2 & undoped body

ridding random dopant fluctuation.

66mV/dec

X. Huang et al., IEDM, p. 67, 1999 12/3/2014 Yogesh S. Chauhan, IIT Kanpur 67

Page 68: Compact Modeling of Semiconductor Devices: MOSFET

Introduced New Scaling Rule

Leakage is well suppressed if

Fin thickness < Lg 10nm Lg AMD

2002 IEDM 5nm Lg TSMC

2004 VLSI 3nm Lg KAIST

2006 VLSI

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 68

Page 69: Compact Modeling of Semiconductor Devices: MOSFET

Two Improvements Since 1999

• 2002 FinFET with thin oxide on Fin top F.L.Yang et al. (TSMC) 2002 IEDM, p. 225.

• 2003 FinFET on bulk substrate T. Park et al. (Samsung) 2003 VLSI Symp. p. 135.

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 69

Page 70: Compact Modeling of Semiconductor Devices: MOSFET

State-of-the-Art 14nm FinFET

Source: Anandtech

Taller and Thinner Fins for increased drive current and performance

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 70

Page 71: Compact Modeling of Semiconductor Devices: MOSFET

BSIM Family of Compact Device Models

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 71 BSIM: Berkeley Short-channel IGFET Model

1990 2010 2000 1998 2005 1995

BSIM3

BSIM4

BSIMSOI

BSIM-CMG & BSIM-IMG

BSIM6

Conventional MOSFET

Silicon on Insulator MOSFET

Multi-Gate MOSFET

New

Page 72: Compact Modeling of Semiconductor Devices: MOSFET

BSIM-CMG and BSIM-IMG

• Berkeley Short-channel IGFET Model

• First industry standard SPICE model for IC simulation

• Used by hundreds of companies for IC design since 1997

• BSIM FinFET model became industry standard in March 2012

It’s Free 12/3/2014 Yogesh S. Chauhan, IIT Kanpur 72

Page 73: Compact Modeling of Semiconductor Devices: MOSFET

Common-Multi-Gate Modeling • Common Multi-gate (BSIM-CMG):

– All gates tied together

– Surface-potential-based core I-V and C-V model – Supports double-gate, triple-gate, quadruple-gate,

cylindrical-gate; Bulk and SOI substrates

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 73

Page 74: Compact Modeling of Semiconductor Devices: MOSFET

BSIM-CMG Model

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 74

Surface potential obtained by solving the 1D Poisson’s equation

2

2Body DopingInversion Carriers

chB BqVqφ qφqψi kT kT kT kT

Si

qnψ e e e ex ε

− − ∂= ⋅ ⋅ ⋅ + ∂

Vg

Vg

x

n+ n+ y Vs Vd NA

Net Surface Potential Inversion Carriers only Perturbation due to finite doping

inv pertψ ψ ψ= +

M. V. Dunga et al.,TED 2006

A Perturbation approach is used to handle finite body doping

Page 75: Compact Modeling of Semiconductor Devices: MOSFET

BSIM-CMG Model • Drain current derived from drift-diffusion

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 75

0.0 0.5 1.0 1.50

500µ

1m

Vg = 0.9V

Vg = 1.2V

Vg = 1.5V

Na = 3e18cm-3

Drai

n Cu

rrent

(A)

Drain Voltage (V)0.0 0.5 1.0 1.50

500µ

1m

Drai

n Cu

rrent

(A)

Gate Voltage (V)

Na = 3e18 cm-3

Vd = 0.1 Vd = 0.2 Vd = 0.4 Vd = 0.6

M. V. Dunga, UCB Ph.D. Thesis

Page 76: Compact Modeling of Semiconductor Devices: MOSFET

Global fitting with 30nm–10µm FinFETs

BSIM-CMG

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 76

Page 77: Compact Modeling of Semiconductor Devices: MOSFET

Modeling of Germanium FinFETs @10nm

• Ge FinFET may be used in 10nm node for better P-FinFET.

• Industry standard BSIM FinFET model can now model Ge FinFET.

• Early availability of a unified Si/Ge FinFET model facilitates technology-circuits co-development.

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 77

Page 78: Compact Modeling of Semiconductor Devices: MOSFET

Modeling of Germanium FinFETs @10nm

• Due to the lower m* of holes in Ge the charge-centroid is farther away from the oxide interface resulting in a weaker SR scattering.

• Ge mobility has a weaker dependence on Eeff up-to ∼0.5 MV/cm as the impact of SR scattering is only seen at much higher Eeff in Ge as compared to Si.

20nm

S. Khandelwal et. al., "Modeling 20nm Germanium FinFET with the Industry Standard FinFET Model", IEEE Electron Device Letters, July 2014.

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 78

Page 79: Compact Modeling of Semiconductor Devices: MOSFET

Modeling of InGaAs FinFET @10nm

Data from: J. J. Gu et al. IEDM 2012 L = 20 nm, H = 30 nm, W = 20 nm, Nfin = 4.

S. Khandelwal et. al., "InGaAs FinFET Modeling Using Industry Standard Compact Model BSIM-CMG", Workshop on Compact Modeling, Washington D.C., USA, June 2014. 12/3/2014 Yogesh S. Chauhan, IIT Kanpur 79

Page 80: Compact Modeling of Semiconductor Devices: MOSFET

Transistor Pathway

Source: Applied Materials 12/3/2014 Yogesh S. Chauhan, IIT Kanpur 80

Page 81: Compact Modeling of Semiconductor Devices: MOSFET

FinFET Modeling for IC Simulation and Design: Using the BSIM-CMG Standard

Authors Chapters Yogesh Singh Chauhan, IITK Darsen D Lu, IBM Navid Payvadosi, Intel Juan Pablo Duarte, UCB Sriramkumar Vanugopalan, Samsung Sourabh Khandelwal, UCB Ai Niknejad, UCB Chenming Hu, UCB

1. FinFET- from Device Concept to Standard Compact Model 2. Analog/RF behavior of FinFET 3. Core Model for FinFETs 4. Channel Current and Real Device Effects 5. Leakage Currents 6. Charge, Capacitance and Non-Quasi-Static Effect 7. Parasitic Resistances and Capacitances 8. Noise 9. Junction Diode Current and Capacitance 10. Benchmark tests for Compact Models 11. BSIM-CMG Model Parameter Extraction 12. Temperature Effects

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 81

Book

Page 82: Compact Modeling of Semiconductor Devices: MOSFET

Acknowledgement

• My students • BSIM team • CMC members

12/3/2014 Yogesh S. Chauhan, IIT Kanpur 82