Como pasar de redes HFC a tecnología RFoG

54
1 PT-104190-EN PRIVATE AND CONFIDENTIAL © 2010 CommScope, Inc Alejandra Zuluaga Agosto 15 de 2012 RFoG Technology

Transcript of Como pasar de redes HFC a tecnología RFoG

Page 1: Como pasar de redes HFC a tecnología RFoG

1

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Alejandra Zuluaga Agosto 15 de 2012

RFoG Technology

Page 2: Como pasar de redes HFC a tecnología RFoG

2

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Laser

Transmitter EDFA

Return Path

Receiver

Downstream

Video FeedForward

Path 1550 or

1310nm

Hub

Optical

Distribution

Network (6

fibers)

Nodes of 256 - 1000 homes with

4 coax trunks

Return Path

1310 nm•Migrate to single fiber per node by adding WDM

•Remove amplifiers and RF Taps

•Shrink the HFC node and place one with each subscriber

•Take fiber to each home via taps and splitters

Customer

Premise

Coax with RF amplifiers

and RF taps

Micro

Node

Micro

Node

Micro

Node

Micro

Node

Traditional

Node

Passive Fiber

Splitters/Taps

Traditional HFC Architecture

Evolved

to RFoG Architecture

Page 3: Como pasar de redes HFC a tecnología RFoG

3

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

HFC-PON Comparison

RPR

Node

WDM

RPR

HFCRFoG

MicroNode

MicroNode

MicroNode

Headend / Hub Outside Plant Customer Premises

1550nm LaserTransmitter

CoreNetwor

k

CMTS

1550nm LaserTransmitter

Video/RF

Feeds

CoreNetwor

k

CMTS

~~ Power

Video/RF

Feeds

EDFA

EDFA

Splitter

Splitter

Page 4: Como pasar de redes HFC a tecnología RFoG

4

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

RFoG Operation

WDM

1550 nmDownstream

1310 nm or 1610nmUpstream

1x32Splitter

MicroNode

Headend Outside Plant Customer Premises

Cable Modem

1310 nm or 1610nmUpstream

Single fiber supports both forward and return path One return path receiver port can be shared by 32 or more MicroNode

transceivers MicroNode operates upstream in “Burst Mode”

Upstream laser is “on” only during an RF burst from the cable modem or STB

Ingress and impulse noise is substantially reduced or eliminated entirely Allows recovery of lower 10MHz of upstream spectrum

IPApplication

Switch CMTS

STB

LaserTransmitter

EDFA

Return Path Receiver

Video, Voice & Data –

Combined Signal

VoiceNetwork

1550 nmDownstream

Many Names• MicroNode• RFoG ONU• R-ONU• NIU

Page 5: Como pasar de redes HFC a tecnología RFoG

5

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

RFoG Improves SNR

DSFee

d

LaserTransmitter

NodeCMTS

ReturnReceiver

Tap

CM

STB

UnterminatedEndpoints

Splitter

(sums ingress noise)

EDFA

HFC SNR = 26dB

DSFee

d

LaserTransmitter

CMTS

ReturnReceiver

EDFA

Tap

CM

STB

UnterminatedEndpoints1 x n

Splitter

WDM

MicroNodeRFoG SNR = 34dB

Downstream Better Distance / Density

Low Noise Receiver 20Km range with 32 splits

Bandwidth to 1GHz

Upstream - Higher SNR than HFC Recovers 10MHz Lost to Ingress Noise Enables 64QAM upstream channel bonding

(27Mbps 108Mbps)

Page 6: Como pasar de redes HFC a tecnología RFoG

6

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

RFoG Operation

WDM

1550 nmDownstream

1310 nmUpstream

1x32Splitter

MicroNode

Headend Outside Plant Customer Premises

Cable Modem

1310 nmUpstream

Single fiber supports both forward and return path One return path receiver can be shared by 32 MicroNode transceivers MicroNode operates upstream in “Burst Mode”

Upstream laser is “on” only during an RF burst from the cable modem or STB

Ingress and impulse noise is substantially reduced or eliminated entirely Allows recovery of lower 10MHz of upstream spectrum

IPApplication

Switch CMTS

STB

LaserTransmitter

EDFA

Return Path Receiver

Video, Voice & Data –

Combined Signal

VoiceNetwork

1550 nmDownstream

Page 7: Como pasar de redes HFC a tecnología RFoG

7

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Burst Mode Operation

1. CMTS schedules the Cable Modem to transmit data

MicroNode

MicroNode

MicroNode

Splitter

1

n

EDFA

RPR

1550nm Laser

Transmitter

Video/RF Feed

CMTS

CoreNetwork

WDM

1310nm

Cable Modem

Set Top Box

(STB)

5. CMTS proceeds to next scheduled device

2.Cable modem sends burst of data

3. MicroNode senses burst; turns on laser for duration of data

4. RPR receives data; sends it to CMTS

Page 8: Como pasar de redes HFC a tecnología RFoG

8

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Burst On-Time

Preamble Data

Cable ModemTransmission

MicroNodeTransmission

MicroNodeBurst begins within 1.22μS

Page 9: Como pasar de redes HFC a tecnología RFoG

9

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

MicroNode TransmitterBurst Timing

Cable ModemTransmission

MicroNodeTransmission

Ramp-UpPhase Preamble

1.0 μS

220 nS

• 220nS into the Ramp Up Phase, the MicroNode laser transmitter begins to turn on

• Laser reaches “on” state 1.0 μS later

• Total response time =1.22 μS

Page 10: Como pasar de redes HFC a tecnología RFoG

10

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Laser ON/OFF Time forDOCSIS 3.0 Requirements

Fast Laser Turn On & Turn Off Times are Critical The device has to respond to cable modem burst rapidly to avoid loss of data DOCSIS 2.0 and DOCSIS 3.0 have 8-symbol ramp up and ramp down spec 8 symbols equates to ramp time of:

Ramp up

8 Symbols

Ramp Down

8 Symbols

Microseconds @ Symbol Rate of

1.6 5120 Ksym/Sec

3.2 2560 Ksym/Sec

6.4 1280 Ksym/Sec

12.8 640 Ksym/Sec

Standards-compliant RFoG ONUs Turn on / Turn Off times = 1.5 microsecond

MicroNode meets DOCSIS 2.0/3.0 maximum upstream timing

Page 11: Como pasar de redes HFC a tecnología RFoG

11

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Upstream Bandwidth Improvement

0 5 10 15 20 25 30 35 40

42

HFC typical spectrum upstream

27MHz

MicroNode usable spectrum upstream = 37MHz

MHz

RFoG enables37% more usable RF upstream

Page 12: Como pasar de redes HFC a tecnología RFoG

12

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Downstream Bandwidth Improvement

0 50 100 500 600300 700 800

870

HFC typical spectrum downstream

50-870MHz

RFoG MicroNode downstream spectrum = 50-1100 MHz

MHz200 400 1000 1100

RFoG MicroNodes have28% more downstream BW

Page 13: Como pasar de redes HFC a tecnología RFoG

13

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

MicroNode SNR

DSFee

d

LaserTransmitter

NodeCMTS

ReturnReceiver

Tap

CM

STB

UnterminatedEndpoints

Splitter

(sums ingress noise)

EDFA

HFC SNR = 26dB

DSFee

d

LaserTransmitter

CMTS

ReturnReceiver

EDFA

Tap

CM

STB

UnterminatedEndpoints1 x n

Splitter

WDM

MicroNodeRFoG SNR = 34dB

Downstream Better Distance / Density

Low Noise Receiver 20Km range with 32 splits

Bandwidth to 1GHz

Upstream - Higher SNR than HFC Recovers 10MHz Lost to Ingress Noise Enables 64QAM upstream channel bonding

(27Mbps 108Mbps)

Page 14: Como pasar de redes HFC a tecnología RFoG

14

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

RFoG NetworkArchitecture

Page 15: Como pasar de redes HFC a tecnología RFoG

15

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

RFoG Network Architecture – 3 Elements

WDM

1550 nmDownstream

1310 nmUpstream

1x32Splitter

MicroNode

Headend Outside Plant

Customer Premises

Cable Modem

1310 nmUpstream

IPApplication

Switch CMTS

STB

LaserTransmitter

EDFA

Return Path Receiver

Video, Voice & Data –

Combined Signal

VoiceNetwork

1550 nmDownstream

Page 16: Como pasar de redes HFC a tecnología RFoG

16

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

RFoG Headend Architecture

Return Path

Receiver

WDM1550nm

1310/1610nmUpstream

IPApplication

Switch CMTS

Video Inputs: - Off Air Analog or Digital - Satellite Source:

- Analog Tier -Transcoded Digital via QTM

VoIP Server

Local Content – Community Server

Internet Connection to the World

Single Strand Bi-Directional Fiber

1550nm Down 1310nm Up

To 1x32 splitter

All Downstream

Traffic

Return Path

Receiver

EDFALaser Transmitter

1550nm Downstream Optical1310nm Upstream; Voice, Data, STB SignalingEthernet (10/100/1000bT) or OpticalCoax

RFCombiner

RFoG

Multiple clusters of 32 MicroNodes can share a DOCSIS CMTS port as one logical “Node”

Return Path Receiver

OtherEDFAs

OtherODNs

Page 17: Como pasar de redes HFC a tecnología RFoG

17

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

RFoG ODN Architecture

WDM

Up to 32 Splits

Fiber Distribution Network

Fiber connectors/splitters Single fiber supports both

forward and return path Single mode fiber Point to multi-point design Indoor or outdoor passive

fiber splitters Cabinet shown, pedestals

also available

HeadendChassis Mount Coupler

Rack Mount Splitters

MicroNode

Fiber Network to the home

Page 18: Como pasar de redes HFC a tecnología RFoG

18

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

RFoGFiber

Insid

e C

oax

Wir

ing

Ethernet, USB,or wireless

Regular telephone

wiring

MicroNode

Coax Brick Powering Not

Shown

Home Architecture - CPE

Customer Premise Equipment (CPE) with MicroNodes

Single fiber supports both forward and return path MicroNode provides optical to electrical conversion Media - “F” connector to 75 ohm coax cable Up to 1.1 GHz downstream & full spectrum

upstream NTSC & PAL bandwidth plans Analog and digital video Digital music Very high speed Internet traffic VoIP

Battery backup power (optional)

Spare ports available for other devices

Page 19: Como pasar de redes HFC a tecnología RFoG

19

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

RFoG Remote Hub

WDM1550nm

1310/1610nmUpstream

IPApplication

Switch

CMTS

Video Inputs: - Off Air Analog or Digital - Satellite Source:

- Analog Tier -Transcoded Digital via QTM

VoIP Server

Local Content – Community Server

Internet Connection to the World

Single Strand Bi-Directional Fiber

(1550nm Down 1310nm Up )To 32 users

Per fiber

All Downstream

Traffic

EDFA

Laser Transmitter

1550nm Downstream Optical1310nm Upstream; Voice, Data, STB SignalingEthernet (10/100/1000bT) or OpticalCoax 54-860MHz

RFCombiner

OtherRemote Hubs

Return Path

ReceiverReturn Path

ReceiverReturn Path

ReceiverReturn Path Receiver

Transmitter

Remote HUB 128 users, 256

HP

Page 20: Como pasar de redes HFC a tecnología RFoG

20

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Application Engineering&Configurations with MicroNodes

Page 21: Como pasar de redes HFC a tecnología RFoG

21

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

OSP Network256

Subscribers

RPR Headend Application

1550nm LaserTransmitter

RF Video Feed

Return Path Receiver

Headend

CMTS

1

32

STB

CM

OpticalSplitter1550 nm

1590 nm

WDM 1

32

STB

CM

1

32

STB

CM

1

32

STB

CM

1

256

EDFA

Return Path

Receiver

Page 22: Como pasar de redes HFC a tecnología RFoG

22

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Hub OSP Network256

Subscribers

RPR Hub Application

1550nm LaserTransmitter

RF Video Feed

Return Path ReceiverReturn Path

Receiver

Headend

WDM

CMTS

EDFA EDFA

1

64

STB

CM

OpticalSplitter1550 nm

1590 nm

WDM 1

64

STB

CM

1

64

STB

CM

1

64

STB

CM

1

256

Return Path Receiver

Return Path

Transmitter

Page 23: Como pasar de redes HFC a tecnología RFoG

23

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Optical Budget Considerations

For optimum future growth RFoG networks should be designed for PON compatibility ITU and IEEE PON standards focus on 20Km / 32&64 splits per fiber Allows future applications using CWDM wavelengths on the same fiber

network

26dB optical budget supports most configurations with

Connectors 32 splits 20Km reach

Typical loss parameters for MicroNode fiber plant:17.0dB splitter budget for 32 splits is standard 2.4dB for connector losses at 6 points (.4db / connector) 0.2dB for fusion splicing at 6 splice locations 1.5dB for 1590nm WDM coupler (1.4dB downstream @ 1550nm) 21.1dB total for splitter, splicing, connectors, WDM

4.4dB fiber loss - 20Km @ .22dB / Km = 4.4dB

25.5dB loss budget downstream and 25.5 db loss upstream

Page 24: Como pasar de redes HFC a tecnología RFoG

24

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

RFoG - 8.1 Km fiber example

ODN Component Loss (dB) Amount Loss (dB)Split ter (1:32) 17 1 17.0APC connectors 0.4 8 3.2Mechanical Splice 0.1 1 0.1Fusion Splice 0.02 6 0.1

20.4

WavelengthLoss

(dB/km) Length (km) Loss (dB)1310 nm (data up) 0.35 8.1 2.81490 nm (data down) 0.27 8.1 2.21550 nm (video down) 0.22 8.1 1.8

WavelengthClass

(ITU.G983.1)Total Loss

(dB)1310 nm B 23.31490 nm B 22.61550 nm B 22.2

Fibre G.652C/D

ODN Loss

Page 25: Como pasar de redes HFC a tecnología RFoG

25

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

EDFA Considerations

• EDFA– Erbium-Doped Fiber Amplifier– Amplifies optical signal without conversion to electrical– Provides constant output power over wide range of input levels– Typically used as a multi-port distribution amplifier in a hub or headend

• RFoG Applications– One EDFA can support up to 16ea 20km optical networks– Headend – directly feed each optical network– Remote hubs - use a single fiber using WDM couplers from headend to EDFA at remote hub site

• Optimizes fiber utilization• Reduces costs

– Buy high power EDFA only when needed, or– Use 1:n splitters to get more output ports from a single port of a high-power EDFA

• Network Engineering Considerations– EDFA input levels should be above 0dBm

• +3dBm delivers optimal SNR

– MicroNodes need to receive the 1550nm optical signal at –3.0db level• Range: 0 to –6dBm• “Hot” signals cause service degradation

– It is recommended that the WDM coupler be used for both the return path fiber connections but for test points for trouble shooting by maintenance technicians

Page 26: Como pasar de redes HFC a tecnología RFoG

26

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

WDM Loss Considerations

Loss = 1.4dBm for RF downstream @ 1550nm “EDFA” is the RF input “ODN” is the coupler towards the customer/MicroNode

Loss = 1.5 dBm for the RF upstream @ 1610nm “ODN” is the input “Rtn Rx” is the output towards the return receiver

Loss = 1.2 dB for OLT downstream @ 1490nm “OLT” is the input port “ODN” is the output port towards the customer/ONT

Loss = 1.2 dB for OLT upstream @ 1310nm “ODN” is the input port “OLT” is the output port towards the OLT

Page 27: Como pasar de redes HFC a tecnología RFoG

27

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Downstream Levels(1550nm)

1550nm LaserTransmitter

EDFA

Downstream Channel Lineup

WDM 1x32Splitter

MicroNode

To CMTS/STB Controller

1490nm Downstream

OLT

IP VideoData, VoIP

TDM VoiceTDM

Business

+3dBm 2.6dBm

+19.6dBm

8.5dB loss forfiber +splicing +

connectors

Drop fiber

1550nm signal is OK 0.0dBm to -6.0dBm is good

+6dBm

+21dBm -5.9dBm

ReturnReceiver

Fiber Distribution20Km = 4.4dB loss

Page 28: Como pasar de redes HFC a tecnología RFoG

28

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Return Path Levels (1610nm)

1550nm LaserTransmitter

EDFA

ReturnReceiver

Downstream Channel Lineup

WDM 1x32Splitter

MicroNode

Fiber Distribution20Km= 4.4dB loss

To CMTS/STB Controller

1490nm Downstream

OLT

IP VideoData, VoIP

TDM VoiceTDM

Business

-5.5dBm

-22.5dBm

8.5dB loss forfiber +splicing +

connectors

Drop fiber

-24.0dBm

+3.0dBm

Page 29: Como pasar de redes HFC a tecnología RFoG

29

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

RFoG 256 Home Remote Hub

WDM1550nm

20Km

CMTS

One Fiber1550nm Down/1590nm Up

32 users per fiber

All Downstream

Traffic

8 Port EDFA

LaserTransmitter

RFCombiner

Temperature-Hardened products

60 Km fiber distance

1

8

1

.

8

coax

1...8

Transmitter

HUB sites can be larger (or smaller) using this configuration

template

Video Head End

Remote HUB

Video Inputs: - Off Air Analog & Digital - Satellite Source:

- Analog Tier -Transcoded Digital via QTM

Page 30: Como pasar de redes HFC a tecnología RFoG

30

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

RFoG with Optical Nodes/VHubs

1550nm LaserTransmitter

WDM

RFoG MicroNodes

MicroNode

MicroNode

1x32 Splitter

20Km fiber

RRcv

1310 nm

1550 nm EDFA

MicroNode

CMTS

Hub sized in increments of 32(32, 64, 96, 128…

256)

coax wiringinside

buildings

1

32

Long Reach 20Km reach from Hub to RFoG ONUs

+ 60Km or more from HE to Hub

Compatible with products like Aurora Networks VHub (shown)

Up to 256 homes supported with strand/pole-mounted hub

Pole or strand mount

RXmtr WDM

VHub

Hub

Page 31: Como pasar de redes HFC a tecnología RFoG

31

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

MicroNode For MDUs

EDFA Downstream Video Feed

Uses existing coaxdistribution wiring

Optical Splitter

Headend or NodeApartment Building –

Single or Multiple Floors

APT 1

Upstream CMTS Feed toIP Network & VoIP Switch

RF AMP

MicroNodeTransceive

rAPT 3

APT n-1

APT n

APT 2

AdditionalOpticalNetworks

RFCombin

er

Additional EDFAs

1550nm LaserTransmitter

WDM

Additional WDMs

ReturnReceiver

Page 32: Como pasar de redes HFC a tecnología RFoG

32

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Apartment Buildings

Cable Modem

PONFiber

Insid

e C

oax

Wir

ing

Ethernet, USB,or wireless

Regular telephone

wiring

MicroNode Coax Brick Powering Not

Shown

Analog TV

Digital TV

Spare ports available for other devices

Wiring Assumptions: One MicroNode feeds the whole building 4 active devices connected per apt. Limit to 100 feet of coax in the

apartment RF amplifier location

< 100 feet from 32 apartments < 200 feet from 16 apts.

Page 33: Como pasar de redes HFC a tecnología RFoG

33

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

MDU Application with Drop Amp

1550nm LaserTransmitter

EDFA

Downstream Video and CMTS Feed

WDM

1550 nm

1x32Splitter

Headend Optical Distribution

Network

Apartment Building

APT 1

Apt 16

UpstreamCMTS Feed

2 way RF AMPOutput = +36dBmV

RFAMP

32 coax splits to the apartments plus 4 coax splits inside the apartment = 26.0 db of loss

200 feet of coax =10.0 dB loss

TV or STBs receive level = 0.0 dBmV

Apt 32

Up to 1024 apartments per

return path receiver

1610 nm

+18dBmV output level

MicroNode

Coaxial CableFiber

Return Path Receiver MGMT

Alloptic

RFOutput Optical InputsReturn Path Receiver MGMT

Alloptic

RFOutput Optical Inputs

Page 34: Como pasar de redes HFC a tecnología RFoG

34

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

1610 nm Return Path

• Meets the developing SCTE RFoG standard • Delivers PON Compatible DOCSIS based services• Works on the same ODN with any PON that uses ITU compliant

wavelengths (10G EPON, EPON, GPON)• 1 GHz RF spectrum provides extended RF capacity.• Fast laser activation prevents degradation of upstream bursts.• RF-based AGC to provide constant RF output over optical input

range.• High RF output with up-tilt reduces need for in-home amplifier.• Transparent return path allows use of existing CPE (All Cable

Modems & Set-top Boxes).• Return transmission threshold suppresses noise from the

subscriber’s residence (Full 5 – 42 MHz band is available).• Dedicated F port for powering• Die-cast aluminum housing protects electronics and provides

excellent shielding.• Temperature Hardened

Page 35: Como pasar de redes HFC a tecnología RFoG

35

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

1610 nm Return PathPerformance Characteristics

• Downstream– Input wavelength: 1545 - 1565nm– Input Power Range: +0 to –6 dBm– RF Output @ 550MHz: +17dBmV/ch ±2dBmV– Frequency response: 50 MHz - 1GHz– Tilt: 5dB– RF Performance:

• CNR > 48 dB (–4 dBm input level)• CSO > 65 dB (0 dBm input level)• CTB > 65 dB (0 dBm input level)

• Upstream– Wavelength: 1610 nm– Output Power: +3 dBm– Input dynamic range: +15dBmV to +40dBmV– Frequency response: 5 to 42MHz– Laser Activation: <1.5 s

• SCTE compliant F connectors and cast housing.

Page 36: Como pasar de redes HFC a tecnología RFoG

36

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

High Power 1610 nm Return Path

• Extra high RF output with up-tilt to support MDU applications.

• Delivers PON Compatible DOCSIS based services• Works on the same ODN with any PON that uses ITU compliant

wavelengths (10G EPON, EPON, GPON)• 1 GHz RF spectrum provides extended RF capacity.• Fast laser activation prevents degradation of upstream bursts.• RF-based AGC to provide constant RF output over optical input

range.• Transparent return path allows use of existing CPE (All Cable

Modems & Set-top Boxes).• Return transmission threshold suppresses noise from the

subscriber’s residence (Full 5 – 42 MHz band is available)..• Dedicated F port for powering• Die-cast aluminum housing protects electronics and provides

excellent shielding.• Temperature Hardened

Page 37: Como pasar de redes HFC a tecnología RFoG

37

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

High Power 1610 nm Return PathPerformance Characteristics

• Downstream– Input wavelength: 1545 - 1565nm– Input Power Range: +0 to –6 dBm– RF Output @ 550MHz: +34dBmV/ch ±1dBmV– Frequency response: 50 MHz - 1GHz– Tilt: 6dB– RF Performance:

• CNR > 48 dB (–4 dBm input level)• CSO > 60 dB (0 dBm input level)• CTB > 60 dB (0 dBm input level)

• Upstream– Wavelength: 1610 nm– Output Power: +3 dBm– Input dynamic range: +10dBmV to +30dBmV– Frequency response: 5 to 42MHz– Laser Activation: <1.5 s

• SCTE compliant F connectors and cast housing.

Page 38: Como pasar de redes HFC a tecnología RFoG

38

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

1610 nm Return Pathw/ PON Pass Through

• Adds Support for PON ONTS s– Integrated WDM provides fiber connectivity with ONT– WDM provides 1490/1310 nm PON wavelengths

• Delivers PON and DOCSIS based services• 1 GHz RF spectrum provides extended RF capacity.• Fast laser activation prevents degradation of upstream bursts.• RF-based AGC to provide constant RF output over optical input

range.• High RF output with up-tilt reduces need for in-home amplifier.• Transparent return path allows use of existing CPE (All Cable

Modems & Set-top Boxes).• Return transmission threshold suppresses noise from the

subscriber’s residence (Full 5 – 42 MHz band is available).• Dedicated F port for powering• Die-cast aluminum housing protects electronics and provides

excellent shielding.• Temperature Hardened

Page 39: Como pasar de redes HFC a tecnología RFoG

39

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

1610 nm w/ PON Pass ThroughPerformance Characteristics

• Downstream– Input wavelength: 1545 - 1565nm– Input Power Range: +0 to –6 dBm– RF Output @ 550MHz: +17dBmV/ch ±2dBmV– Frequency response: 50 MHz - 1GHz– Tilt: 5dB– RF Performance:

• CNR > 48 dB (–4 dBm input level)• CSO > 65 dB (0 dBm input level)• CTB > 65 dB (0 dBm input level)

• Upstream– Wavelength: 1610 nm– Output Power: +3 dBm– Input dynamic range: +15dBmV to +40dBmV– Frequency response: 5 to 42MHz– Laser Activation: <1.5 s

• SCTE compliant F connectors and cast housing.

Page 40: Como pasar de redes HFC a tecnología RFoG

40

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

High Power 1610 nm w/ PON Pass Through

• High RF output with up-tilt to support MDU applications.

• Adds Support for PON ONTS s– Integrated WDM provides fiber connectivity with ONT– WDM provides 1490/1310 nm PON wavelengths

• Delivers PON Compatible DOCSIS based services• Works on the same ODN with any PON that uses ITU

compliant wavelengths (10G EPON, EPON, GPON)• 1 GHz RF spectrum provides extended RF capacity.• Fast laser activation prevents degradation of upstream

bursts.• RF-based AGC to provide constant RF output over optical

input range.• Transparent return path allows use of existing CPE (All

Cable Modems & Set-top Boxes).• Return transmission threshold suppresses noise from the

subscriber’s residence (Full 5 – 42 MHz band is available).• Dedicated F port for powering• Die-cast aluminum housing protects electronics and

provides excellent shielding.• Temperature Hardened

Page 41: Como pasar de redes HFC a tecnología RFoG

41

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

High Power 1610 nm w/ PON Pass Through

Performance Characteristics

• Downstream– Input wavelength: 1545 - 1565nm– Input Power Range: +0 to –6 dBm– RF Output @ 550MHz: +17dBmV/ch ±2dBmV– Frequency response: 50 MHz - 1GHz– Tilt: 5dB– RF Performance:

• CNR > 48 dB (–4 dBm input level)• CSO > 65 dB (0 dBm input level)• CTB > 65 dB (0 dBm input level)

• Upstream– Wavelength: 1610 nm– Output Power: +3 dBm– Input dynamic range: +15dBmV to +40dBmV– Frequency response: 5 to 42MHz– Laser Activation: <1.5 s

• SCTE compliant F connectors and cast housing.

Page 42: Como pasar de redes HFC a tecnología RFoG

42

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

1310 nm Return Path

• Meets the developing SCTE RFoG standard • Provides the lowest cost approach to deliver DOCSIS based

services over a deep fiber RFoG infrastructure• 1 GHz RF spectrum provides extended RF capacity.• Fast laser activation prevents degradation of upstream bursts.• RF-based AGC to provide constant RF output over optical input

range.• High RF output with up-tilt reduces need for in-home amplifier.• Transparent return path allows use of existing CPE (All Cable

Modems & Set-top Boxes).• Return transmission threshold suppresses noise from the

subscriber’s residence (Full 5 – 42 MHz band is available).• Dedicated F port for powering• Die-cast aluminum housing protects electronics and provides

excellent shielding.• Temperature Hardened

Page 43: Como pasar de redes HFC a tecnología RFoG

43

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

1310 nm Return PathPerformance Characteristics

• Downstream– Input wavelength: 1545 - 1565nm– Input Power Range: +0 to –6 dBm– RF Output @ 550MHz: +17dBmV/ch ±2dBmV– Frequency response: 50 MHz - 1GHz– Tilt: 5dB– RF Performance:

• CNR > 48 dB (–4 dBm input level)• CSO > 65 dB (0 dBm input level)• CTB > 65 dB (0 dBm input level)

• Upstream– Wavelength: 1310 nm– Output Power: +3 dBm– Input dynamic range: +15dBmV to +40dBmV– Frequency response: 5 to 42MHz– Laser Activation: <1.5 s

• SCTE compliant F connectors and cast housing.

Page 44: Como pasar de redes HFC a tecnología RFoG

44

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

High Power 1310 nm Return Path

• High RF output with up-tilt to support MDU applications.

• Provides the lowest cost approach to deliver DOCSIS based services over a deep fiber RFoG infrastructure

• 1 GHz RF spectrum provides extended RF capacity.• Fast laser activation prevents degradation of upstream

bursts.• RF-based AGC to provide constant RF output over

optical input range.• Transparent return path allows use of existing CPE (All

Cable Modems & Set-top Boxes).• Return transmission threshold suppresses noise from

the subscriber’s residence (Full 5 – 42 MHz band is available).

• Dedicated F port for powering• Die-cast aluminum housing protects electronics and

provides excellent shielding.• Temperature Hardened

Page 45: Como pasar de redes HFC a tecnología RFoG

45

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

High Power 1310 nm Return PathPerformance Characteristics

• Downstream– Input wavelength: 1545 - 1565nm– Input Power Range: +0 to -6 dBm– RF Output @ 550MHz: +34dBmV/ch ±1dBmV– Frequency response: 50 MHz - 1GHz– Tilt: 6dB– RF Performance:

• CNR > 48 dB (–4 dBm input level)• CSO > 60 dB (0 dBm input level)• CTB > 60 dB (0 dBm input level)

• Upstream– Wavelength: 1310 nm– Output Power: +3 dBm– Input dynamic range: +10dBmV to +30dBmV– Frequency response: 5 to 42MHz– Laser Activation: <1.5 s

• SCTE compliant F connectors and cast housing.

Page 46: Como pasar de redes HFC a tecnología RFoG

46

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Network Interface Device (NID)

• Environmental and mechanical protection for NIU• Integral fiber management/splice tray• Inner cover to secure optics from subscribers• Weather seal around door, and grommets for fiber & coax cables.• Engineered to UL specifications for “Extreme Weatherability”• Compatible with 1550/1310 and 1550/1610 NIUs

Page 47: Como pasar de redes HFC a tecnología RFoG

47

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

RFoG MDU Application with 4 STBs/CMs per Apartment

1550nm LaserTransmitter

EDFA

Downstream Video and CMTS Feed

WDM

1550 nm

1x32Splitter

Headend Optical Distribution

Network

Apartment Building

APT 1

Apt 16

UpstreamCMTS Feed

RFAMP

Apt 32

Up to 1024 apartments per

Return Path Receiver

1590 nm

MicroNode

Coaxial CableFiber

Return Path Receiver MGMT

Alloptic

RFOutput Optical InputsReturn Path Receiver MGMT

Alloptic

RFOutput Optical Inputs

16-way coax splitter to the apartments & 4-way splitters inside the apartment = 26 .0 db of loss 200 feet of coax =10.0 dB loss

Or32-way coax splitter for 32 apartments with 100 feet of coax is about the same loss

MicroNode requires +15 to +40dBmV

Page 48: Como pasar de redes HFC a tecnología RFoG

48

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

MicroNode with RF return in a Building with 200’ coax

1550nm LaserTransmitter

EDFA

Downstream Video and CMTS Feed

WDM

1550 nm

1x32Splitter

Headend Optical Distribution

Network

Apartment Building

APT 1

Apt 16

UpstreamCMTS Feed

RFAMP

Apt 32

Up to 512 apartments per

Return Path Receiver

1590 nm

MicroNode

Coaxial CableFiber

Return Path Receiver MGMT

Alloptic

RFOutput Optical InputsReturn Path Receiver MGMT

Alloptic

RFOutput Optical Inputs

A single MicroNode supports 16 apartments with 4 coax runs for any service

Coax distance < 200 feet from RF amplifier for longest coax run

Page 49: Como pasar de redes HFC a tecnología RFoG

49

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

RFoG to the Curb

1550nm LaserTransmitter

WDM

RFoG to the Curb

1x32 Splitter + 20Km of fiber

RPR

1310 nm

1550 nm EDFA

CMTS

Hub “Node” size can be 32, 64, 96, 128, 256 (increments of 32)

Coax drops

Pole or Strand mount hubs

RP Xmtr

Coax RF amps

MicroNode

MicroNode

100’s of meters of coax

WDM

MicroNode

Coaxial CableFiber Most MicroNodes are temperature-hardened (-40C to +65C working temp)

RF signal quality can be amplified for coax distances and splits MicroNode powering:

+12VDC external or coax supplied Very low power consumption: 3W typical

RF signal levels upstream and downstream must be considered when engineering the RF amplifiers and coax cable distances.

Shared users greatly reduces the cost per user

MicroNode

MicroNode

MicroNode

MicroNode

MicroNode

Page 50: Como pasar de redes HFC a tecnología RFoG

50

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

MicroNode Comparison

1550nm RF

1610nm RF

RF

1550nm RF

1310nm RF

RF

1550 nm RF1490 nm PON

1610 nm RF1310 nm PON

RF

To ONT

xPON-Friendly 1590nm Upstream

avoids wavelength conflict

Standard 1550nm Downstream

No ONT Support 1310nm Upstream

may conflict with PON wavelength

Standard 1550nm Downstream

xPON ONT Supported 1610nm Upstream

avoids wavelength conflict

Port for ONTStandard 1550nm

Downstream RFWDM integrated for

PON support

Page 51: Como pasar de redes HFC a tecnología RFoG

51

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Low Noise Return Path Receiver

Average MER VS RF Drive Level-20 dBm into Return Rx

15

20

25

30

35

40

20 25 30 35 40 45 50

RF Level Per Channel (dBmV)

Av

era

ge

ME

R (

dB

)

Alloptic Receiver, Rev 2

Alloptic Current Receiver, Rev 1

C-Cor Reciever

Measured with four 6.4 MHz 64QAM carriers plus

one 1.6 MHz QPSK carrier

Typical HFC receivers have no dynamic range at 30dB MER; which is the level needed for error-free 64QAM performance

EIN = 7pA/rtHz

Alloptic’s current return path receivers meet the 30dB requirement with 10dB of dynamic range

EIN = 4pA/rtHz

Alloptic’s next-gen return path receivers meet the 30dB requirement with 15dB of dynamic range

EIN = 1.5pA/rtHz

Typical HFC Receiver

Noise performance correlates directly to the distance, splits and modulation formats achieved in RFoG applications

MER/NPR is critical to enabling full DOCSIS 3.0 compatibility

Page 52: Como pasar de redes HFC a tecnología RFoG

52

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Hybrid RF PONAdding Enhanced Business Services

Page 53: Como pasar de redes HFC a tecnología RFoG

53

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Commercial Services Enabled

Hybrid RFoG/PON

1550nm LaserTransmitter

EDFA

Return Path

Receiver

Downstream Channel Lineup

WDM

1550 nm

1x32 Splitter MicroNode

Hub Optical Distribution

Network

Customer Premises

1610 nm

To CMTS/

STB ControllerUnused GEPON PortAdd OLT

Unused Splitter Port

Add Business ONT

Unused MicroNode PortAdd ONT ONT

1490 nm Downstream1310 nm Upstream

OLT

IP VideoData, VoIP

TDM VoiceTDM

Business

ONT

Page 54: Como pasar de redes HFC a tecnología RFoG

54

PT-104190-ENPRIVATE AND CONFIDENTIAL© 2010 CommScope, Inc

Thank You!

Cable Servicios S.A.

[email protected]

Teléfonos: 57 (224 14 87 / 224 14 89)

www.cableservicios.com