Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land...

28
Community Land Model overview Focus on ecosystem modeling Samuel Levis CLM Science Liaison Terrestrial Sciences Section, CGD, NCAR 3 rd Aug 2011 CESM Tutorial

Transcript of Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land...

Page 1: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Community Land Model overviewFocus on ecosystem modeling

Samuel LevisCLM Science Liaison

Terrestrial Sciences Section, CGD, NCAR

3rd Aug 2011 CESM Tutorial

Page 2: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

• CLM basics• Sample input and output• Application: climate-veg interactions

CLM overview: outline

Page 3: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

• source code: /models/lnd/clm/src• input data: atm + sfc• output data• cesm scripts: can run just clm• documentation: on the web site

CLM…land component of the CESM

Page 4: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

What the CLM does in 100 words or less

INPUT: - near-surface atmosphere data (sim/obs)S, L, T, q, u, v, p, P, [CO2]

- surface data (sim/obs)veg., soil, other data (eg, %lake)

OUTPUT: H, λE, G heat fluxesreflected & emitted radiation fluxessoil, snow, plant T and W …river flowC & N fluxes…BVOC & dust emissions

• Coupler passes information to atm. and ocn. models making the CLM a source of climate system feedbacks

the energyand massexchangeat the interface

Page 5: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Absorbed solarradiation

Diff

use

sola

r ra

diat

ion

Long

wav

e ra

diat

ion

Reflected solar radiation

Em

itted

long

wav

era

diat

ion

Sen

sibl

e he

at fl

ux

Late

nt h

eat f

lux

ua0

Momentum fluxWind speed

Soil heat flux

Heat transfer

Drainage

Canopy Evaporation

Interception

SnowMelt

Sublimation

ThroughfallStemflow

Infiltration Surface runoffEvaporation

Transpiration

Precipitation

Soil

Energy fluxes Hydrology/Rivers

Climate change

Vegetation dynamics Land

use

Establishment

GrowthCompetition

Disturbance Deforestation

Afforestation

Current-generation land models

Urbanization

Ice sheets

Climate change

Heterotrophicrespiration

PhotosynthesisAutotrophicrespiration

Litterfall

Nutrientuptake

Foliage

Stem

Root Soil carbon

Mineralization

Fire

Biogeochemical CyclesBVOC

Dust

Land Management

Biogeophysics

Page 6: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Beyond CLM4SP: Option CLM4CNBiogeochemical Cycles in the CLM

All these processes are affected by and may also affect the physicsThornton et al.

Page 7: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Option CLM4CNDVDynamic Vegetation in the CLMYear 1:Bioclimatology accumulators

lake wetland

natural vegetation

glacier urban

0.11 =baref

crop

lake wetland

natural vegetation

glacier urban

999.02 ≈baref

crop

End of year 1:Establishment

Year 2+:Bioclimatology accumulatorsBiogeochemistry:Photosynth., respiration, growth, mortality

End of year 2+:EstablishmentCompetition for Light (space)

Levis et al.All these processes are affected by and may also affect the physics

Page 8: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Newest option CLM4cropInteractive crop management

lake wetland glacier urban

unmanaged crop

soil withunmanagedvegetation

CTRL simulation

lake wetland glacier urban

unmanaged crop

corn

temp. cereals

soybean

soil withunmanagedvegetation

CROP simulations

CLM’s managed PFTs (% of grid cell) Levis et al.

Page 9: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Subroutine Tree- Initialize- Time stepping loop →

Surface radiationSoil fluxes …Urban fluxesCanopy fluxes …Lake fluxesDust emission …BVOC emissionHydrology …SnowC and N cycles …Balance checkSurface albedo …River fluxDynamic vegetationwrite history and restart data

BGC

Page 10: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

• CLM basics Sample input and output• Climate-vegetation interactions

CLM overview: outline

Page 11: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

P. Lawrence et al.

% glacier

Sample input data

Page 12: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Sample output: linking land to ocean

Page 13: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

CLM-CN stressdeciduous phenology

CN-cropphenology

LEA

F A

RE

A IN

DE

X (m

2le

af m

-2gr

ound

)

Page 14: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

~250-yr CNDV (Qian-Dai atm. driver)

Page 15: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

(%)

(Castillo and Levis)

boreal

tropical

arctic

arid

temperate

boreal

10-yr avg vegetation cover

Page 16: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

• CLM basics• Sample input and output Application: climate-veg interactions

CLM overview: outline

Page 17: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Climate-Vegetation Interactions

CLIMATE-VEGETATION FEEDBACKS

±?

Page 18: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Climate-Vegetation InteractionsCLIMATE-VEGETATION FEEDBACKS

• Climate changes → vegetation responds• Vegetation changes → climate responds:

A. Biogeophysical feedbacks:1. Surface radiation balance Rn = S + L2. Surface heat balance Rn = H + λE

B. Biogeochemical feedbacks1. Carbon cycle

Page 19: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

2 x CO2 climate and vegetation

month latitude

∆Le

af A

rea

Inde

x (m

2le

af m

-2gr

ound

)

ºN ºN ºN

2xC

O2

war

min

g

(Levis et al. 1999)

Page 20: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Biogeophysical feedbacks1. Surface radiation balance:

Trees darken snow-covered surfaces

SNOW COVERED TUNDRA BOREAL FOREST

S

S

αtSαbS

Tt < Tb

αt ≅ 0.8 αb ≅ 0.2

Page 21: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Biogeophysical feedbacks1. Surface radiation balance

Trees darken snow-covered surfaces2. Surface heat balance Rn = H + λE

Vegetation increases the latent heat flux

S S

λEλE

HH

AMAZON BASIN

Page 22: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Trees increase evapotranspiration…deforestation decreases it

(Shukla et al. 1990)

Temperature (K) Precipitation (mm yr-1) Evapotranspiration (mm yr-1)

++

– –

Page 23: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Effect of deforestation on albedo

winter summer

Page 24: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

(Sitch et al. 2005)

A2 - widespread cropland B1 - temperate reforestation

Biogeochemical

Net effect

Biogeophysical

Future land use effect on temperature

∆T2100

Page 25: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Carbon model intercomparison:Nine climate models of varying complexity with active carbon cycle

Figures courtesy of Pierre Friedlingstein

Uncertainty arises from differences in terrestrial fluxes

• One model simulates a large source of carbon from the land• Another simulates a large terrestrial carbon sink• Most models simulate modest terrestrial carbon uptake•Terrestrial carbon cycle can be a large climate feedback• Considerable more work is needed to understand this feedback

CSM1

Page 26: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

Courtesy of Pierre Friedlingstein

Large uncertainty in simulated atmospheric CO2 at 2100

max is > 1000 ppmmin is < 750 ppm

CSM1

Carbon model intercomparison:Nine climate models of varying complexity with active carbon cycle

Page 27: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the
Page 28: Community Land Model overview Focus on ecosystem modeling · Biogeochemical Cycles BVOC Dust Land Management Biogeophysics Beyond CLM4SP: Option CLM4CN Biogeochemical Cycles in the

CLM basics and Sample input/output Climate-vegetation interactions First order effect seems to be land use Biogeochemical effect Human behavior our greatest uncertainty

From natural vegetation Snow-vegetation-albedo feedback

QUESTIONS?

Summary & Conclusions