Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for...

59
The Ottawa L’Hopital Hospital d’Ottawa Regional Cancer Centre Commissioning and clinical implementation of Commissioning and clinical implementation of Monte Carlo treatment planning system for Monte Carlo treatment planning system for electron beams electron beams Joanna E.Cygler The Ottawa Hospital Regional Cancer Centre, Ottawa, Canada Carleton University Dept. of Physics, Ottawa, Canada University of Ottawa, Dept. of Radiology. Ottawa, Canada

Transcript of Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for...

Page 1: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

The Ottawa L’HopitalHospital d’OttawaRegional Cancer Centre

Commissioning and clinical implementation ofCommissioning and clinical implementation ofMonte Carlo treatment planning system forMonte Carlo treatment planning system for

electron beamselectron beams

Joanna E.Cygler

The Ottawa Hospital Regional Cancer Centre, Ottawa, CanadaCarleton University Dept. of Physics, Ottawa, Canada

University of Ottawa, Dept. of Radiology. Ottawa, Canada

Page 2: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Educational ObjectivesEducational Objectives

• Appreciate the need for MC based treatmentplanning systems

• Understand the effect of different types ofheterogeneities (geometry and density) on dosedistribution

• Understand how to set user control parameters inthe TPS to achieve optimum results (minimumstatistical noise, minimum distortion of real dosedistribution )

• Learn and understand differences between watertank and real patient anatomy based monitor unitvalues

Page 3: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Rationale for Monte Carlo dosecalculation for electron beams

• Difficulties of commercial pencil beam basedalgorithms– Monitor unit calculations for arbitrary

SSD values – large errors*– Dose distribution in inhomogeneous media

has large errors for complex geometries

* can be circumvented by entering separate virtualmachines for each SSD – labour consuming

Page 4: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

-10 -5 0 5 100

5

10

15

6.2 cm

9 MeV

depth = 7 cm

depth = 6.2 cm

98-10-21/tex/E TP /abs/X TS K 09S .OR G

MeasuredPencil beamMonte Carlo

Rel

ative

Dos

e

Horizontal Position /cm

Rationale for Monte Carlo dosecalculation for electron beams

Ding, G. X., et al, Int. J. Rad. Onc. Biol Phys. (2005) 63:622-633

Page 5: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Commercial implementations• MDS Nordion 2001*

- First commercial Monte Carlo treatment planning forelectron beams

– Implementation of Kawrakow’s VMC++ Monte Carlodose calculation algorithm (2000)

– Handles electron beams from all clinical linacs• Varian Eclipse eMC 2004

– Based on Neuenschwander’s MMC dose calculationalgorithm (1992)

– Handles electron beams from Varian linacs only

*presently Nucletron

Page 6: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Monte Carlo calculations inMonte Carlo calculations incommercial TPScommercial TPS

• Divide the beam into treatment-independent and treatment-dependent components

• Simulate treatment-independentcomponents

– characterize phase spacedistribution with a beam model

• Simulate transport through the

patient anatomy – dose distribution

Courtesy of Varian

after Janssen et al4

Page 7: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Description of Nucletron ElectronMonte Carlo DCM

Fixed applicatorwith optional,arbitrary inserts

Calculates absolutedose per monitorunit (Gy/MU)

510(k) clearance (June 2002)

Page 8: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

User input data Nucletron TPS

• Position and thickness of jaw collimators and MLC

• For each applicator scraper layer:ThicknessPositionShape (perimeter and edge)Composition

• For inserts:ThicknessShapeComposition

Treatment unit specifications:

Page 9: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

User input data Nucletron TPS contDosimetric data for beam characterization

• Without applicators:

– X and Y in-air profiles (8x8, 8x20, 8x35, 35x35,SDD = 70 & 90 cm)

– Central axis Depth Dose in water for variousfield sizes

• With applicators:– Central axis depth dose and profiles in water– Absolute dose at the calibration point

Dosimetric data for verification

– Central axis depth doses and profiles for variousfield sizes

Page 10: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Varian Macro Monte CarloVarian Macro Monte Carlo• PDF table look-up for “kugels” or spheres

instead of analytical and numericalcalculation

• CT images pre-processes– Homogenous areas → large spheres– In/near heterogeneous areas → small spheres

• Database with probable outcome for everycombination of:– 30 incident energy values (0.2-25 MeV)– 5 materials (air, lung, water, Lucite and solid

bone)– 5 sphere sizes (0.5-3.0 mm)

EGSnrc used to create beam data

Page 11: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

User input dataUser input data -- VarianVarian eMCeMCOpen field measurements (no applicator)

• Depth-dose curves in water at the source-to-phantom distance (SPD) = 100 cm

• Absolute dose, expressed in [cGy/MU], at aspecified point on the depth dose curve

• Profile in air at source-detector distance,

SDD = 95 cm for the wide open field without anapplicator, e.g. 40x40 cm2.

Page 12: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

For each energy/applicator combination:

• PDD in water at SSD = 100 cm

• Absolute dose, expressed in [cGy/MU], at a specifiedpoint on the depth dose curve

User input VarianUser input Varian eMCeMC cont.cont.

No head geometry details required, since at this timeEclipse works only for Varian linac configuration

Page 13: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Clinical implementation oftreatment planning software

• Beam data acquisition and fitting• Software commissioning tests• Clinical implementation

– procedures for clinical use– possible restrictions– staff training

A physicist responsible for TPS implementation shouldhave a thorough understanding of how the system works.

Page 14: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

User controlled calculationUser controlled calculationparametersparameters

• Nucletron– User can define number of histories used in

calculation (in terms of particle #/cm2)• Varian

– User can define:• Maximum number of histories used in

calculation >/=0• statistical uncertainty (within the high dose

volume)• Calculation grid size (voxel size)• Smoothing method and level• Random number generator seed

Page 15: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Software commissioning tests: goals• Setting user control parameters in the TPS

to achieve optimum results (minimumstatistical noise, accuracy vs. speed ofcalculations)– Number of histories– Voxel size– Smoothing

• Understand differences between watertank and real patient anatomy basedmonitor unit values

Page 16: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Software commissioning tests• Homogeneous water phantom• Inhomogeneous phantoms (Cygler et al, Phys. Med. Biol., 32,

1073 (1987) and Ding G.X.et al, Med. Phys., 26, 2571-2580, 1999)– Shiu et al, Med.Phys. 19, 623—36, 1992;– Boyd et al, Med. Phys., 28, 950-8, 2001

• All scans done with a high (1 mm) resolution• Criteria for acceptability (Van Dyk et al, Int. J. Rad. Oncol.

Biol. Phys., 26, 261-273,1993;Fraass, et al, AAPM TG 53: Quality assurance for clinicalradiotherapy treatment planning,” Med. Phys. 25, 1773–1829 1998)

Page 17: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Typical Experimental setup

Electron applicatorElectron applicator

Water tankWater tank

DiodeDiodedetectordetector

••RFA300RFA300((ScanditronixScanditronix))dosimetry systemdosimetry system

••pp--type electrontype electrondiodediode

••Scan resolution =Scan resolution =1mm1mm

In-air or in water beam profiles

Page 18: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Homogeneous water phantom tests• Standard SSD 100 cm and extended SSD

– Open applicators – PDD and profiles– Square and circular cut-outs

• Oblique incidence– GA = 150 and 300

• MU tests – SSD 100 and extended SSD– All open applicators– Square, rectangular, circular, some irregular

cutouts

Page 19: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Inhomogeneous phantoms

• Low and high density inhomogeneities

– 1 D (slab) geometry

– 2 D (ribs) geometry

– 3 D (small cylindrical) geometry

• Complex (trachea and spine) geometry

Page 20: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

0 20 40 60 80 100 1200

20

40

60

80

100

120

Depth (mm)

Dos

e (%

)

MeasurementeMC − 1%eMC − 3%

20 MeV, SSD=100 cm,homogeneous water phantom.Central axis PDD measured andeMC (Eclipse) calculated for1% and 3% statisticalprecision, 2.5 mm voxel size, nosmoothing.

Courtesy of R. Popple, Med Phys. 33, 1540- 51, 2006

Effect of statistical uncertaintyon MC calculations

Page 21: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Lateral profiles at various depths,SSD=100 cm, Nucletron TPS

9 MeV, 10x10cm2 applicator, SSD=100cm. Homogeneouswater phantom,cross-plane profiles at various depths. MC

with 10k/cm2.

0

10

20

30

40

50

60

70

80

90

100

110

-10 -5 0 5 10

Off - axis / cm

Dos

e/

cGy

meas.@2cm

calc.@2cm

[email protected]

[email protected]

[email protected]

[email protected]

20 MeV, 10x10cm2 applicator, SSD=100cm.Homogeneous water phantom. Cross-plane profiles at

various depths. MC with 10k and 50k/cm2.

0

10

20

30

40

50

60

70

80

90

100

110

-10 -5 0 5 10

Off - axis / cm

Dos

e/c

Gy

meas.@d=3cm

calc.@d=3cm

calc.@d=3cm,50k

meas.@d=7.8cm

calc.@d=7.8cm

calc.@d=7.8cm,50k

meas.@d=9cm

calc.@d=9cm

calc.@d=9cm,50k

Page 22: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

1- MC/hand

frac

tion

Mean=-0.003

Variance=0.0129

Theory

Our data

Overall mean and variance of MC/handmonitor unit deviation, Nucletron TPS

Cygler et al. Med. Phys. 31 (2004) 142-153

Page 23: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Air cylinder900 MHz, CPU time for 50k/cm2

14:01-20 MeV , 9:31 – 9MeVVoxel size 0.39 cm, 47 slices

9MeV, Air cylinder,10x10cm2 applicator,SSD=100cm. Cross-planeprofiles.

MCwith10k/cm2.

0

20

40

60

80

100

120

140

-8 -6 -4 -2 0 2 4 6 8

Off - axis / cm

Do

se/c

Gy

meas@d=2.1cm

calc.@d=2.1cm

calc.@d=2.1cm,50k

meas.@d=4cm

calc.@d=4cm

calc.@d=4cm,50k

meas.@d=5cm

calc.@d=5cm

calc.@d=5cm,50k

20MeV, Air cylinder,10x10cm2 applicator,SSD=100cm. Cross-planeprofiles.

MCwith10k/cm2.

0

20

40

60

80

100

120

-8 -6 -4 -2 0 2 4 6 8

Off - axis / cm

Do

se/c

Gy meas.@d=2.1cm

calc.@d=2.1cm

calc.@d=2.1cm,50k

meas.@d=6cm

calc.@d=6cm

calc.@d=6cm,50k

Page 24: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Results MC tests:voxel size9 MeV

Cygler et al. Med. Phys. 31 (2004) 142-153

60

70

80

90

1 00

1 10

1 20

1 30

1 40

-1 -0 .5 0 0 .5 1

o ff-a x is / c m

do

se/c

Gy

MeasMeas 0.1 cm0.1 cm

0.39 cm0.39 cm

0.19 cm0.19 cm

Aircylinder

Page 25: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

-6 -4 -2 0 2 4 60

10

20

30

40

50

60

70

80

90

100

110

120

4.7 cm

depth = 4.7 cm

Bone

Off-axisY position /cm

Rel

ativ

eD

ose

18 MeV

MeasuredeMC

Off-axisX position /cm-6 -4 -2 0 2 4 6

0

10

20

30

40

50

60

70

80

90

100

110

120

depth = 6.7 cm

depth = 7.7 cm

depth= 4.7cm

Air Air

Bone

Rel

ative

Dos

e

MeasuredeMC

18 MeV

EclipseEclipse eMCeMC no smoothingno smoothingVoxel size = 2 mm

Ding, G X., et al (2006). Phys. Med. Biol. 51 (2006) 2781-2799.

Page 26: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

EclipseEclipse eMCeMCEffect of voxel size and smoothing

-6 -4 -2 0 2 4 60

10

20

30

40

50

60

70

80

90

100

110

120

2 mm and with 3D smoothing

2mmandnosmoothing

4.7 cm

5 mm and with3D smoothing

depth = 4.9 cm

Bone

Off-axisY position /cm

Rel

ativ

eD

ose

18 MeV

Off-axisX position /cm-6 -4 -2 0 2 4 6

0

10

20

30

40

50

60

70

80

90

100

110

120

2mmandwith3Dsmoothing

5 mm and with 3D smoothing

2mmandnosmoothing

depth = 4.9 cm

Air Air

Bone

Rel

ativ

eD

ose

18 MeV

Ding, G X., et al (2006). Phys. Med. Biol. 51 (2006) 2781-2799.

Page 27: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

DoseDose--toto--water vs. dosewater vs. dose--toto--mediummedium

Ding, G X., et alPhys. Med. Biol. 51(2006) 2781-2799

0 1 2 3 4 50

10

20

30

40

50

60

70

80

90

100

110

Bonecylinderlocation

BEAM/dosxyzsimulation

Bone cylinder is replacedby water-like medium butwith bone density

9 MeV

Off-axisdistance /cm

Dos

e

depth in water /cm

Off-axis distance /cm

Dos

e

Dos

eCentral AxisDepth /cm

-8 -6 -4 -2 0 2 4 6 80

10

20

30

40

50

60

70

80

90

100

1101 cm diameter and 1 cm length

Hard bone cylinder

MeasuredeMC

0 1 2 3 4 51.10

1.11

1.12

1.13

1.14

9 MeV

Water/Bone stopping-power ratios

SP

R

-8 -6 -4 -2 0 2 4 6 80

10

20

30

40

50

60

70

80

90

100

depth=2

depth=4

depth = 3

2cm

MeasuredeMC

Page 28: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

9 MeV9 MeV –– hard bone Dhard bone Dmm vs.vs. DDww

Location of hardbone

Dose profileswithin the bone

Page 29: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

9 MeV9 MeV –– clinical hard boneclinical hard boneDDmm vs.vs. DDww

(a) (b)

(c)

Location ofbone

Page 30: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Results: ClinicalResults: Clinical –– soft bonesoft bone• The maximum difference in dose is 1.8%, in

agreement with soft bone phantom studyand consistent with stopping power ratio

Dose-to-Water Dose-to-Medium

Page 31: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Results: ClinicalResults: Clinical –– soft bonesoft bone• The maximum difference in dose is 1.8%,

which is in agreement with the phantomstudies

%do

se

across patient / cm

Page 32: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Treatment Planning ProcedureThe physician:• outlines CTV and/or GTVThe dosimetrist / physicist:

• models the beam (energy, custom cutout)– CTV covered by 90% isodose line

The software calculates :• absolute dose distribution in cGy• number of monitor units, MU

Page 33: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Clinical implementation issues

• Bolus fitting (no air gaps)

• Lead markers (wires, lead shots) used insimulation

• Monitor unit calculations

– Water tank or real patient anatomy

– Dose to water or dose to medium

• Workload

Page 34: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Example of poorly fitting bolus

Page 35: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

How to correct poorly fitting bolus

Page 36: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Good clinical practice

• Murphy’s Law of computer software

“All software contains at least one bug”

• Independent checks

Page 37: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

MU MC vs. hand calculations

Monte CarloMonte Carlo Hand CalculationsHand Calculations

Real physical doseReal physical dosecalculated on a patientcalculated on a patientanatomyanatomy

Rectangular waterRectangular watertanktank

InhomogeneityInhomogeneitycorrection includedcorrection included

NoNo inhomogeneityinhomogeneitycorrectioncorrection

Arbitrary beam angleArbitrary beam anglePerpendicular beamPerpendicular beamincidence onlyincidence only

Page 38: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

9 MeV, full scatter phantom(water tank)

RDR=1 cGy/MU

Page 39: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Lateral scatter missing

Real contour / Water tank =

=234MU / 200MU=1.17

Page 40: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

MU real patient vs.water tank

MC / Water tank= 292 / 256=1.14

Page 41: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

MUMU--real patient vs. water tankreal patient vs. water tankImpact on DVHImpact on DVH

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0

dose / Gy

% v

olu

me

PTV-MU-MC

PTV-MU-WT

LT eye-MU-MC

LT eye-MU-WT

RT eye-MU-MC

RT eye-MU-WT

Page 42: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Posterior cervical lymph node Posterior cervical lymph node irradiation irradiation -- impact on DVHimpact on DVH

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0

dose / Gy

PTV

/ cm

3

conventional

customized

Jankowska et al, Radiotherapy & Oncology, 2007

Page 43: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Internal mammary nodes

MC / Water tank= 210 / 206=1.019

Page 44: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Timing – Nucletron TPSTheraplan Plus

• 10x10 cm2 applicator• 50k histories/cm2

• Anatomy - 41 CT slices• Voxels 3 mm3

• Pentium 4 Xenon 2.2 GHz• Calculation time

– 1.5 min. for 6 MeV beam– 8.5 minutes for 20 MeV beam

Faster than pencil beam!

Page 45: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Timing – Nucletron TPSOncentra MasterPlan

9 MeV Timer Results:Init = 0.586793 secondsCalc = 204.069 secondsFini = 0.262845 secondsSum = 204.919 seconds

20 MeV Timer Results:Init = 0.628385 secondsCalc = 331.551 secondsFini = 0.232272 secondsSum = 332.412 seconds

Anatomy - 41 CT slicesVoxels 3 mm3

10x10 cm2 applicator50k histories/cm2

Page 46: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Timing – Varian Eclipse

Eclipse MMC, Varian single CPU Pentium IV

XEON, 2.4 GHz

10x10 cm2, applicator, water phantom,

cubic voxels of 5.0 mm sides

6, 12, 18 MeV electrons,

3, 4, 4 minutes, respectively

Chetty et al.: AAPM Task Group Report No. 105: Monte Carlo-based treatment planning, Med. Phys. 34, 4818-4853, 2007

Page 47: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Timing – Pinnacle3

dual processor 1.6 GHz Sun workstation, 16 GB RAM.

Fragoso et al.: Med. Phys. 35, 1028-1038, 2008

24.55.2x108134.54.7x10832.11.1x1074 (face)

5.41.5x10829.91.4x1077.13.3x1063 (breast)

1.57.1x1078.1 6.5x1062.11.7x1062 (ear)

3.91.6x108201.4x1074.83.4x1061(cheek)

CPU time(h)

# historiesCPU time(min)

# histories

CPU time(min)

# historiesPatient

2% 1% 0.5%

Overall uncertainty

Page 48: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

New developmentsNew developments

Page 49: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Energy modulated electron radiation Energy modulated electron radiation therapytherapy

• IMRT using photon beams is a widely used treatment modality and has become feasible with the introduction of the MLC.

• Energy modulated electron therapy (EMET) using Monte Carlo dose calculations is a promising new technique that enhances the treatment planning and delivery of dose to superficially located tumors.

Page 50: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

MLC for electron beamsMLC for electron beams

C-M Ma, et al ,Phys. Med. Biol. 45 (2000) 2293–2311

Pictures courtesy of C. Ma

Page 51: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

MLC for electron beams MLC for electron beams EMET with FLECEMET with FLEC

• Medical Physics Group at McGill University (Al-Yahiya, Verhaegen and Seuntjens) recently proposed and studied the feasibility of a practical “few-leaf electron collimator” (FLEC) for delivering energy modulated electron therapy (EMET).

K. Al-Yahiya et al, Phys. Med. Biol. 50, (2005), 847-857

Page 52: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

The Few Leaf Electron CollimatorThe Few Leaf Electron Collimator

The compact design of the FLEC makes it suitable to be attached to a clinical electron applicator. FLEC can be automated and remotely controlled.

K. Al-Yahiya et al, Phys. Med. Biol. 50, (2005), 847-857

Page 53: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

MERT MERT ––dose distributionsdose distributionsMa et Ma et al.PMBal.PMB 48 (2003) 90948 (2003) 909--924924

patient planned using a) wedged tangential

photon beams b) IMRTtangential

beams c) four field IMRTd) eight field MERTIsodose lines shown:55, 52.5, 50, 45, 40,

25, 15 and 5 Gy.

Page 54: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Dose Volume HistogramsDose Volume HistogramsMa et al. PMB 48 (2003) 909Ma et al. PMB 48 (2003) 909--924924

DVH for the target, lung and heart for: a) the three photon beam plansb) the three IMRTplans for the chest wall patient • Healthy tissues (non-target volumes) receive the least dose with MERT high dose regions are significantly reduced in normal tissues •MERT reduces both max cardiac and lung doses by >20 Gy relative to tangents • Almost no volume receives dose greater than 20 Gy in MERT.•Electron range increases low lung dose

Page 55: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Conclusions• Commercial MC based TP system are available

– easy to implement and use– MC specific testing required

• Fast and accurate 3-D dose calculations• Single virtual machine for all SSDs• Large impact on clinical practice

– CT based planning for most sites – workload increase; accuracy improved

– More attention to technical issues needed– Dose-to-medium calculated– MU based on real patient anatomy (including

contour irregularities and tissue heterogeneities)

• Requirement for well educated physics staff

Page 56: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

AcknowledgementsAcknowledgementsGeorge X. Ding Indrin ChettyGeorge Daskalov Margarida FragosoGordon Chan Richard PoppleRobert Zohr Charlie MaElena Gil Jan Seuntjens

Support of Nucletron and Varian is gratefully acknowledged

Page 57: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

Thank youThank you

Page 58: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

ReferencesReferences1. Kawrakow, I. “VMC++ electron and photon Monte Carlo

calculations optimized for radiation treatment planning”, Proceedings of the Monte Carlo 2000 Meeting, (Springer, Berlin, 2001) pp229-236

2. Neuenschwander H and Born E J 1992 A Macro Monte Carlo method for electron beam dose calculations Phys. Med. Biol. 37 107 – 125

3. Neuenschwander H, Mackie T R and Reckwerdt P J 1995 MMC—a high-performance Monte Carlo code for electronbeam treatment planning Phys. Med. Biol. 40 543–74

4. Janssen, J. J., E. W. Korevaar, L. J. van Battum, P. R. Storchi, and H. Huizenga. (2001). “A model to determine the initial phase-space of a clinical electron beam from measured beam data.” Phys Med Biol 46:269–286.

5. Traneus, E., A. Ahnesjö, M. Åsell.(2001) “Application and Verification of a Coupled Multi-Source Electron Beam Model for Monte Carlo Based Treatment Planning,”Radiotherapy and Oncology, 61, Suppl.1, S102.

Page 59: Commissioningandclinicalimplementationof … · 2009. 5. 18. · Air cylinder 900 MHz, CPU time for 50k/cm 2 14:01 -20 MeV , 9:31 – 9MeV Voxel size 0.39 cm, 47 slices 9 MeV , Air

J.E. Cygler, ACMP 2009

References References cont.cont.6. Cygler, J. E., G. M. Daskalov, and G. H. Chan, G.X. Ding.

(2004). “Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning.” Med Phys 31:142-153.

7. Ding, G. X., D. M. Duggan, C. W. Coffey, P. Shokrani, and J. E. Cygler. (2006). “First Macro Monte Carlo based commercial dose calculation module for electron beam treatment planning-new issues for clinical consideration.”Phys. Med. Biol. 51 (2006) 2781-2799.

8. Popple, RA., Weinberg, R., Antolak, J., (2006) “Comprehensive evaluation of a commercial macro Monte Carlo electron dose calculation implementation using a standard verification data set”. Med Phys 33:1540-1551

9. Fragoso, M., Pillai, S., Solberg, T.D., Chetty, I., (2008) “Experimental verification and clinical implementation of a commercial Monte Carlo electron beam dose calculation algorithm”. Med Phys 35:1028-1038.