Commissioning of the KATRIN main...

41
KIT University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association KIT Center Elementary Particle and Astroparticle Physics (KCETA) Institute for Nuclear Physics (IKP) www.kit.edu Commissioning of the KATRIN main spectrometer Nancy Wandkowsky for the KATRIN Collaboration NuMass 2013, Milano

Transcript of Commissioning of the KATRIN main...

KIT – University of the State of Baden-Württemberg and

National Research Center of the Helmholtz Association

KIT Center Elementary Particle and Astroparticle Physics (KCETA)

Institute for Nuclear Physics (IKP)

www.kit.edu

Commissioning of the KATRIN main spectrometer

Nancy Wandkowsky for the KATRIN Collaboration

NuMass 2013, Milano

KIT – University of the State of Baden-Württemberg and

National Research Center of the Helmholtz Association

KIT Center Elementary Particle and Astroparticle Physics (KCETA)

Institute for Nuclear Physics (IKP)

www.kit.edu

Commissioning of the KATRIN main spectrometer

Nancy Wandkowsky for the KATRIN Collaboration

NuMass 2013, Milano

Introduction

Spectrometer commissioning status

Spectrometer background studies

Summary and Outlook

3 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

KATRIN experiment

Introduction

low endpoint β source

high count rate

high energy resolution

low background (<10-2 cps)

mν < 0.2 eV (90% CL)

key requirements:

4 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

KATRIN experiment

Introduction

low endpoint β source

high count rate

high energy resolution

low background (<10-2 cps)

mν < 0.2 eV (90% CL)

key requirements:

5

Spectrometer commissioning status

N. Wandkowsky - Commissioning of the KATRIN main spectrometer

adiabatic guidance of electrons by magnetic field

precise energy scan by retarding potential

low background: <10-2 cps

UHV in a huge spectrometer: O(10-11) mbar

Requirements for successful electron energy determination:

6

Spectrometer commissioning status

N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Major milestones achieved:

adiabatic guidance of electrons by magnetic field

precise energy scan by retarding potential

low background: <10-2 cps

UHV in a huge spectrometer: O(10-11) mbar

Requirements for successful electron energy determination:

air coil installation

7

Spectrometer commissioning status

N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Major milestones achieved:

wire electrode installation

adiabatic guidance of electrons by magnetic field

precise energy scan by retarding potential

low background: <10-2 cps

UHV in a huge spectrometer: O(10-11) mbar

Requirements for successful electron energy determination:

8

Spectrometer commissioning status

N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Major milestones achieved:

wire electrode installation

adiabatic guidance of electrons by magnetic field

precise energy scan by retarding potential

low background: <10-2 cps

UHV in a huge spectrometer: O(10-11) mbar

Requirements for successful electron energy determination:

air coil installation

9

Spectrometer commissioning status

N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Major milestones achieved:

Requirements for successful electron energy determination:

spectrometer bake-out

adiabatic guidance of electrons by magnetic field

precise energy scan by retarding potential

low background: <10-2 cps

UHV in a huge spectrometer: O(10-11) mbar

10 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer commissioning status

Air coil system

without any air coil system

distorted flux tube due to earth magnetic field

central field too weak (desired value: 3·10-4 T)

loss of signal electrons

B = 6 T B = 1·10-4 T

flux tube

11 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer commissioning status

Air coil system

with earth magnetic field compensation system (EMCS)

flux tube symmetric around spectrometer axis

central field too weak (desired value: 3·10-4 T)

loss of signal electrons

B = 6 T

EMCS

B = 1·10-4 T

12 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer commissioning status

Air coil system

with EMCS and low field correction system (LFCS)

central field at desired value: 3·10-4 T

full transmission

B = 6 T

EMCS LFCS

B = 3·10-4 T

13 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer commissioning status

Air coil system

with EMCS and low field correction system (LFCS)

central field at desired value: 3·10-4 T

full transmission & background suppression (factor 1000)

B = 6 T

e

EMCS LFCS

B = 3·10-4 T

14

Spectrometer commissioning status

N. Wandkowsky - Commissioning of the KATRIN main spectrometer

K. Valerius et al., Particle and Nuclear

Physics, Volume 64, Issue 2, April 2010

M. Prall, PHD thesis, Münster, 2011

250 modules, > 24000 wires

precision requirement 0.2 mm

compatible to UHV

Wire electrode

15

Spectrometer commissioning status

N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Wire electrode

electron energy analysis background suppression

U0

U1

U2

single layer: factor ~10

double layer: factor 100

smooth electric potential

maximal potential in center

16

Wire Electrode – completed (Jan. 2012)

Closing the vessel:

- back at vacuum in July 2012

- p ≈ 10-8 mbar

Th. Thümmler

N. Wandkowsky - Commissioning of the KATRIN main spectrometer

17 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer commissioning status

Spectrometer bake-out: motivation

minimize scattering on residual gas

UHV in a huge spectrometer (1240 m3): O(10-11) mbar

18 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer commissioning status

Spectrometer bake-out: motivation

minimize scattering on residual gas

UHV in a huge spectrometer (1240 m3): O(10-11) mbar

removal of water adsorbed on spectrometer surface

turbomolecular

pump

inner surface: 690 m²

19 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer commissioning status

Spectrometer bake-out: motivation

minimize scattering on residual gas

UHV in a huge spectrometer (1240 m3): O(10-11) mbar

removal of water adsorbed on spectrometer surface

activation of chemical pump (non-evaporable getter St707)

20 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer commissioning status

Spectrometer bake-out: procedure

slow heating/cooling (~1°C/h): expansion of vessel and electrode

temperature breakpoints: 200°C – water removal from vessel

300°C – activation of getter material

1,E-11

1,E-10

1,E-09

1,E-08

1,E-07

1,E-06

1,E-05

1,E-04

0

50

100

150

200

250

300

350

350 450 550 650 750 850 950

pre

ssu

re i

n m

bar

tem

pera

ture

in

°C

time in hours

Baking cycle (4. - 30.1.2013)

temperature

pressure

leak developed

pressure back to

10-11 mbar level

21 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer commissioning status

Spectrometer bake-out: procedure

0

50

100

150

200

250

300

350

22 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer commissioning status

Spectrometer bake-out: procedure

fix point

expansion

insulator

movable point

23 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer commissioning status

Spectrometer bake-out: procedure

J. Wolf

0

50

100

150

200

250

300

350

insulator

24 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

wire electrode installation

spectrometer bake-out

Spectrometer commissioning status

air coil installation

mm precision positioning

UHV compatibility

voltages successfully applied

no wires damaged

getter only partly activated

vacuum: 9·10-11 mbar

earth field compensated

full flexibility of field shaping

Major milestones achieved:

25 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

wire electrode installation

spectrometer bake-out

Spectrometer commissioning status

air coil installation

mm precision positioning

UHV compatibility

voltages successfully applied

no wires damaged

getter only partly activated

vacuum: 9·10-11 mbar

earth field compensated

full flexibility of field shaping

Major milestones achieved:

26 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer background studies

transmission of ß-electrons:

magnetic guiding &

electrostatic retardation

B [T]

e

e e

q [°]

trapping of electrons:

spectrometer acts as

a magnetic bottle,

long storage (h)

Commissioning measurements:

27 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer background studies

getter material contains radon progenitors

huge getter surface (porous material)

radon (noble gas) escapes into spectrometer volume

Stored electrons: source

28 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer background studies

Rn-219 half-life: 3.92 s

pump-out time: ~ 360 s

radon undergoes α-decay in the spectrometer volume

Eα = 6.8 MeV

recoiling Po and α absorbed at spectrometer wall

Stored electrons: source

29 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer background studies

radon undergoes α-decay in the spectrometer volume

electrons are created by: shake-off, internal conversion, Auger effect

implementation of model into simulation software KASSIOPEIA

Stored electrons: background model

30 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer background studies

F. Fränkle et al, Astropart. Phys. 35, 128 (2011), arXiv:1103.6238

F. Fränkle, PhD thesis at KIT (2010)

S. Mertens et al, Astropart. Phys. 41, 52 (2013) , arXiv:1204.6213

S. Mertens, PhD thesis at KIT (2012)

stored electrons scatter off residual gas → ionization → secondary electrons

high primary energies → thousands of secondary electrons

ring pattern on detector

Stored electrons: background model

pre-spectrometer

31 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer background studies

calculations for expected

rate of radon decays

@ main spectrometer

model for electron

emission in α-decay

Stored electrons: expectations for main spectrometer

32 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer background studies

calculations for expected

rate of radon decays

@ main spectrometer

model for electron

emission in α-decay

Stored electrons: expectations for main spectrometer

33 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer background studies

Monte Carlo results: 6·10-2 cps expected, non-poissonian distribution

sensitivity reduction by a factor ~ 2

S. Mertens et al, Astropart. Phys. 41, 52 (2013)

S. Mertens, PhD thesis at KIT (2012)

Stored electrons: influence on neutrino mass sensitivity

design value

34 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer background studies

electric dipole Electron Cyclotron Resonance

sensitivity reduction not acceptable

active background reduction methods needed

Stored electrons: reduction methods

magnetic pulse

35 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer background studies

electric dipole cryo-baffle

sensitivity reduction not acceptable

active and passive background reduction methods needed

Stored electrons: reduction methods

36 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer background studies

B

E

vdrift

vdrift

vdrift

vdrift

e-

𝑣 =𝑐

𝐵2 ∙ 𝐸 ⨯ 𝐵

100 V/m → radial drift of electron

electron drifted onto the spectrometer wall

Stored electrons: electric dipole

37 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer background studies

NEG-Pump

LN2 cooled

baffle

spectrometer

vessel

219Rn

Stored electrons: cryo-baffle

38 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer background studies

electric dipole Electron Cyclotron Resonance

Stored electrons: reduction methods

magnetic pulse cryo-baffle

39 N. Wandkowsky - Commissioning of the KATRIN main spectrometer

Spectrometer background studies

electric dipole Electron Cyclotron Resonance

Stored electrons: reduction methods

magnetic pulse cryo-baffle

40 N. Wandkowsky - Commissioning of the KATRIN experiment

Summary and Outlook

KATRIN: determination of mν <0.2 eV (90% CL)

Successful wire electrode and air coil installation

Successful bake-out of spectrometer

ToDo: attach detector system

Commissioning measurements for >1 year

Electron transmission

Background:

Cosmic muon induced

Radon induced

Passive & active background reduction methods

Prepare main spectrometer for tritium measurements

41

Thanks for your attention!