Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden...

30
Zoomplitudes @ Brown Combinatorial Geometries for Scattering Amplitudes based on collaborations w. Nima Arkani-Hamed, Thomas Lam, Giulio Salvatori, Hugh Thomas 1912.08707, 1912.11764, 1912.12948, 2005.xxxx + w. Zhenjie Li, Prashanth Raman, Chi Zhang: 2005.xxxx Song He (ITP, Beijing)

Transcript of Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden...

Page 1: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

Zoomplitudes @ Brown

Combinatorial Geometries for Scattering Amplitudes

based on collaborations w. Nima Arkani-Hamed, Thomas Lam, Giulio Salvatori, Hugh Thomas

1912.08707, 1912.11764, 1912.12948, 2005.xxxx

+ w. Zhenjie Li, Prashanth Raman, Chi Zhang: 2005.xxxx

Song He (ITP, Beijing)

Page 2: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

motivationscombinatorial geometries (w. factorizing bd.) underlying scattering amps in config. space & kinematic space

• kinematic associahedron (bi-adjoint in Mandelstam space) & worldsheet assoc. [Arkani-Hamed, Bai, SH, Yan]

• cluster polytopes, ABCDs of amps through 1-loop & beyond (clusterhedra?) [lectures & talk by Arkani-Hamed]

• gen. string amplitudes, cluster configuration space, binary geometries (old & new)… this talk!

• positive config. space/tropical grassmannian & N=4 SYM clusterology [talks by Cachazo, Drummond, Guevara, Lam, Spradlin …]

ϕ3

ϕ3

• moduli space for conventional & (ambi-)twistor strings [Witten, Berkovits; Cachazo, SH, Yuan; Mason, Skinner; …]

• positive grassmannian , on-shell diagrams etc. for planar N=4 SYM [Postnikov; Arkani-Hamed et al]

ℳg,n

G+(k, n)

• amplituhedron: map from canonical forms in momentum twistor space [Hodges; Arkani-Hamed, Trnka + Thomas;…]

• helicity amps as differential form in momentum space [SH, Zhang] momentum amplituhedron [talk by Ferro]

G+(k, n) →

Page 3: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

kinematic associahedra

hidden symmetry of amps (invisible in FD's), analog of dual conformal symmetry, manifest by geometry!ϕ3

geometric picture: FD expansion = a special triangulation, others new formula & recursion for amps→ ϕ3

canonical form =pullback of scattering form=bi-adjoint tree amps

e.g.

Ω(𝒜n−3) ϕ3

Ω(𝒜1) = (dss

−dtt

) |s+t=c = ds(1s

+1t

)

Xi,j + Xi+1,j+1 − Xi,j+1 − Xi+1,j = ci,j > 0

: subspace [ABHY]𝒜n−3 {Xi,j ≥ 0} ∩

associahedra (vertices planar cubic trees) in ↔ 𝒦n

a family of (n-3)-dim subspaces: e.g. for 1 ≤ i < j − 1 < n

Page 4: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

wave equation & causal diamondsABHY: discrete wave eq in (1+1)-d “kin. spacetime” (mesh):

causal diamond (in-)compatible propagators/diagonals

∂u∂vX(u, v) = c(u, v)

Gauss law:

continuum limit of : space of positive sol. with positive source in a region

factorizing bd. ensured by causal structure!

𝒜n−3

∂(ij)𝒜n−3 = 𝒜L × 𝒜R

Page 5: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

cluster polytopes & amplitudes ϕ3

only finite polytopes for Dynkin diagrams gen. associahedra of finite type [Bazier-Matte et al ] (cluster polytopes)

classical: bi-adjoint through 1-loop; higher loops infinite type [talk by Arkani-Hamed]

ϕ3 ↔

1-loop bd.: (tree x 1-loop & forward limit)

cut in halves ; new formulas for 1-loop amps!

∂𝒟n = 𝒜 × 𝒟 & 𝒜n−1

→ 𝒟n Ω(𝒟n) → ϕ3

time evolution = “walk” on quiver (mutation on source) v → v′� : X′ �v + Xv − ∑w←v

Xw = cv

new facet ; new vector must lie outside convex hull, stop when span full spaceX′�v ≥ 0

Page 6: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

outline

• stringy canonical forms

• binary cluster polytopes & generalized string amplitudes

• (more) binary geometries from gen. permutohedra

• grassmannian stringy integrals & config. spaces [see also SH, Lecheng Ren, Yong Zhang, 2001.09603]

Page 7: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

stringy canonical forms [w. N. Arkani-Hamed, T. Lam]

Page 8: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

stringy canonical formsvast generalizations of (open-)string amplitudes

• leading order , residues on “massless poles” (+ convergence): controlled by polytope P

• “stringy” properties: meromorphic with“massive poles”, exponential UV softness, “channel duality”

• scattering (saddle-point) equations & twisted (co-)homology

• dual u variables, tropical compactifications, (complex) closed-stringy integrals …

(α′� → 0)

In({s}) = (α′�)n−3 ∫ℳ+0,n

dn−3zz1,2⋯zn,1 ∏

a<b

(za,b)α′�sa,b

positive parametrization, e.g. z3 = 1 + x2 , z4 = 1 + x2 + x3, …, zn−1 = 1 + x2 + ⋯ + xn−2 ⟹

ℐ{p}(X, {c}) = α′�d ∫ℝd>0

d

∏i

dxi

xixα′�Xi

i ∏I

pI(x)−α′�cIintegral of the form w. positive polynomials:

long history (“Euler-Mellin”…) a diff. form exhibits geometries & remarkable properties→ ddXℐ (X)

Page 9: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

Minkowski sum

converges iff is inside Newton polytope ,X c N(p)

single polynomial: ℐp(X, c) = α′�d ∫∞

0

d

∏i=1

dxi

xixα′ �Xi

i p(x)−α′�c

limα′�→0

ℐp(X, c) = Ω(c N[p(x)]; X)

trivial to gen. to

converges iff is inside Minkowski sumX

ℐ{p}(X, {c}) = α′�d ∫ℝd>0

d

∏i=1

dxi

xixα′�Xi

i

m

∏I=1

pI(x)−α′ �cI

𝒫 := ∑I

cIN[pI(x)]

equivalently: leading order = volume of dual polytope = tropical function (c.f. [Panzer] on Hepp bound)

limα′�→0

ddXℐ{p}(X, {c}) = Ω(𝒫; X) -deformations of canonical form of any (rational) polytope α′�

(also see [Nilsson, Passare; Berkesch et al] )

Page 10: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

string integrals from associahedraABHY assoc. is rigid: shape independent of ; decompose as Minkowski sum ci,j > 0 𝒜n−3 = ∑

1≤i<j−1<n

ci,j 𝒜i,jXi,j + Xi+1,j+1 − Xi,j+1 − Xi+1,j = ci,j

p13 = 1 + y2, p24 = 1 + y3, p14 = 1 + y2 + y2y3 .

I5 = ∫dy2

y2

dy3

y3yα′�X25

2 yα′�X353 (1 + y2)−α′�c13(1 + y2 + y2y3)−α′�c14(1 + y3)−α′�c24

re-discover open-string integrals & moduli space from ABHY! In = ℐ𝒜n−3= ∫

n−2

∏i=2

dyi

yiyα′ �Xi,n

i ∏1≤i<j−1<n

pij(y)−α′�ci, j

Newton polynomial for 𝒜i,j : pij = 1 + yi+1 + yi+1yi+2 + ⋯ + yi+1⋯yj−1 ⟹

Page 11: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

two classes of examples(1). stringy integral for gen. associahedra of finite type: 𝒫(Φ) ℐΦ({S}) = (α′�)d ∫A(Φ)+/T

(ω/T ) ∏γ∈Γ

xα′�Sγγ

leading order ABHY cluster polytopes:→ limα′�→0

ddXℐΦ(X, {c}) = Ω(𝒫(Φ∨, c); X)

ABCD: -extension of amps w. factorization at finite e.g. α′� ϕ3 α′� ℐDn→ ℐAm

× ℐDn−m−1, ℐAn−3

× ℐA1× ℐA1

, ℐAn−1

independent ; higher-k gen. of string integrals ( ), non-trivial to compute

[Arkani-Hamed, Lam, Spradlin] tropical [Speyer, Williams] [talks by Cachazo, Drummond, Guevara]

D = (nk) − n SI ℳ+

0,n ∼ G+(2,n)/T

𝒫k,n = ∑I

SIN[ΔI] ↔ G+(k, n)

(2). stringy integral over : G+(k, n)/T ℐk,n({S}) := (α′�)d ∫G+(k,n)/T(ωk,n/T )∏

I

Δα′�sII d := (k − 1)(n − k − 1)

Page 12: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

generalized scattering equations for any , “scattering eqs” (saddle points) a diffeomorphism from int. domain to Mink. sum ℐ ⟹ 𝒫

SE : d log (d

∏i=1

xα′ �Xii

m

∏I=1

pI(x)−α′�cI) = 0 ⟹ map ℝd≥0 → 𝒫 : X =

m

∑I=1

cI∂ log pI(x)

∂ log x

theorem: [Arkani-Hamed, Bai, Thomas]y = f(x) diff . 𝒳 → 𝒴 ⟹ pushforward Ω(𝒴; y) = ∑x=f −1(y)

Ω(𝒳; x)

general phenomenon: field-theory limit = pushforward via saddle points @ high-energy limit [Gross, Mende]

limits deeply connected: α′� → 0 & α′� → ∞ Ω(𝒫) = limα′�→0ddX ℐ = ∑sol.

∏i

dxi

xi

gen. CHY formula: limα′�→0

ℐ = Ω(𝒫) = ∫d

∏i=1

dxi

xiδ (Xi − ∑

I

cI∂ log pI

∂ log xi )

Page 13: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

e.g. n=5, X2,5 = x (c1,3

1 + x+

c1,4(1 + y)1 + x + xy ), X3,5 = y ( c2,4

1 + y+

c1,4x1 + x + xy ) ⟹ ∑

sol.

dxdyxy

= Ω(𝒜2) = d2X m5

apply to string integral geometric origin of CHY formulas→

string integrals very special: # of sol. (huge) reduction: the smallest # for assoc. (CHY most efficient!)(n − 3)!

theorem: # of saddle points=dim of space of integral functions: twisted homology (cycles) cohomology (forms) ↔

∫d

∏i=1

dxi

xiQ(x) exp(α′�F(x)), F(x) := − ∑

I

cI log pI(x) with , = # of saddle pointsα′� → ∞ dim Hd((ℂ×)d, dF∧)

e.g. cluster case: #(ℬn) = nn, #(𝒞n) = (2n)!!/2, #(𝒢2) = 13, #(𝒟4) = 55Gr. case: #(3,6)=26, #(3,7)=1272, #(3,8)=188112 [Cachazo, Early, Guevara, Mizera; …] higher-k gen. of SE & bi-adjoint amps

all these closely related to intersection theory [Mizera; …] Feynman integrals? [c.f. Lee, Pomeransky; Mastrolia, Mizera; Frellesvig et al;…] [also see talks by Britto, Caron-Huot, Duhr, …]

pullback of : diffeomorphism {∑b≠a

sa,b

za − zb= 0} ℳ+

0,n → 𝒜n−3

Page 14: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

complex stringy integralsℐ|⋅|2

{p}(X, {c}) = α′�d ∫ℂd

d

∏i=1

dzidzi

|zi |2 |zi |

2α′�Xi ∏I

|pI(z) |−2α′ �cIclosed strings? first mod-squared integrals:

for , convergence & leading order again controlled by 0 < α′� < ϵ 𝒫 := ∑I

cI N[pI]

more general with non-negative integer shifts ℐ|⋅|2

{p}(X, {c, n}) := ⋯ ∏i

znii ∏

I

pI(z)−nI

Minkowski sum : unbounded polyhedron ( ), canonical form/dual volume still finite!𝒫 n/α′� → ∞

similar unbounded polyhedron for bi-color amps [Herderschee, SH, Teng, Zhang]ϕ3

apply to closed & open string amps w. two orderings: [Carrasco, Mafra, Schlotterer;…]Iclosedn (α |β) & Iopen

n (α |β)

unbounded with facets @ infinity: (both) leading orders = 𝒜n−3 m(α |β)

Page 15: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

dual u variables bounded by N facets with defines (d+m)-dim

big polyhedron ; point inside = positive comb. of vertices :

𝒫 WJaSJ ≥ 0 S := (X1, …, Xd, − c1, …, − cm) ∈ ℝd+m →

ℬ S ∈ ℬ Vα SJ = ∑α

VαJ Fα

converges iff , rewrite w. dual variables ( ) ℐ Fα > 0 uα := ∏J pVαJ

J pJ := (x1, ⋯, xd, p1, ⋯, pm)

ℐ(S) = ∫ℝd+

d

∏i=1

dxi

xi

d+m

∏J

pα′�SJJ = ∫ℝd

+

d

∏i=1

dxi

xi

Nv

∏α

uα′�Fαα := ℐ(F)

special case: = simplex ( ), , u variables multiplicative independent

each facet : true for , not for ( c.f. vs. )

ℬ N = Nv = d + m V = W−1

Fα → 0 ⟺ uα → 0 ℐΦ ℐn,k>2 𝒟4 𝒫3,6

configuration space : by u eqs, “curvy polytope” [talk by Lam] Uo, U, U≥0 {uα}1≤α≤N U≥0 := {uα ≥ 0}

Page 16: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

binary cluster polytopes & generalized string amplitudes [w. N. Arkani-Hamed, T. Lam, H. Thomas]

Page 17: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

cluster config. space & integrals cluster polytopes [Chapton, Fomin, Zelevinsky] Dynkin diagram

ABHY more rigid, canonical realization?

U space has same bd. as cluster polytope (algebraically)

binary geometry: all incompatible ( )

gen. of to finite-type cluster algebra

ua → 0 ub → 1 b | |a > 0

ℳ0,n

ua + ∏all b

ub||ab = 1, ∀a

ℐΦ(X) = α′�n ∫U+(Φ)Ω(U+(Φ))

N

∏a=1

uα′�Xaa , etc .cluster stringy integrals over (positive & complex)

binary geometries: gen. open & closed string amps

Page 18: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

binary associahedra & string integrals

ask defines positive part

it has (curvy) shape of assoc. , e.g. is a pentagon

ui,j > 0 ⟹ 0 < ui,j < 1 U+n ∼ ℳ+

0,n

𝒜n−3 U+5

for , open-string integrals (in u variables): U+n In = ∫U+

n

Ω(U+n ) ∏

(a,b)

uα′�Xa,ba,b , Ω(U+

n ) =n−3

∏(i,j)

d logui,j

1 − ui,j

here in a triangulation without internal triangle (acyclic quiver) Parke-Taylor form!(n − 3) ui,j ⟹

u eqs: (deg.=0,1): (n-3)-dim solution space configuration space of type A {1 − ui,j = ∏(k,l) cross (i,j)

uk,l} →

any , all incompatible (binary) uk,l → 0 ui,j → 1 ⟹ ∂ui,j→0Un = U(i, i + 1,⋯, j) × U( j, j + 1,⋯, i) [see F. Brown]: algebraically same boundary structure as (holds in )Uo

n = ℳ0,n ⊂ Un ⊂ ℳ0,n 𝒜n−3 ℂ

Page 19: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

worldsheet from U space : gauge-inv. description of (u’s cross-ratios of n points) emergence of worldsheet!Un ℳ0,n →

extended u eqs [see also F. Brown]: [a, b |c, d] + [b, c |d, a] = 1, w . [a, b |c, d] := ∏a≤i<b,c≤ j<d

ui,j

(in total eqs, follow from u eqs, which are special case w. ) (n4) ui,j = [i, i + 1 | j, j + 1]

& : all constraints satisfied by cross-ratios [a, b |c, e][a, b |e, d] = [a, b |c, d] ⟹ [a, b |c, d] =(ad)(bc)(ac)(bd)

n points ordered; how to see other orderings from u’s? sign patternsU+n : 0 < [a, b |c, d] < 1 ⟹

extended eqs forbid sign patterns w. both terms <0: exactly connected components of ∏u + ∏u = 1 (n − 1)!/2 Un(ℝ)

identical extended u eqs by monomial transf. of u’s hidden symmetry (automorphism for ) → Sn Un(ℂ)

Page 20: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

gen. u eqs from “walk”gen. to any finite-type cluster algebra: only new ingredient compatibility degree (N by N matrix, beyond 0,1)

𝒟4

non-simply laced also by folding: 𝒜2n−3 → 𝒞n−1, 𝒟n → ℬn−1, ℬ3 → 𝒢2, ℰ6 → ℱ4

u eqs equiv. to “local” eqs (Y system [Fomin, Zelevinsky] ): each step (N eqs).YvYv′� = ∏w←v

(1 + Yw)nw, Y :=u

1 − u

concise new def. from “walk” picture (each step ): integer “Green’s function”v → v′�, X′ �v + Xv − ∑w←v

nwXw = cv b | |a := Xa

for all & a given source in initial quiver (all initial , all except ) a b X = 0 c = 0 cb = 1

Page 21: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

cluster conf. space (N-n independent) n-dim ; algebraically same bd. structure as {ua + ∏

all b

ub||ab = 1} → Uo(Φ) & U(Φ) 𝒫(Φ)

canonical form for in any acyclic quiver: rationally solve all N u’s by Ω(U+) =n

∏α

d loguα

1 − uαα {uα}

ask all cuts out curvy polytope , e.g. “curvy” cyclohedra ua > 0 U+(Φ) ∼ 𝒫(Φ) U+(ℬ/𝒞)

binary geometries: any , incompatible (in ), factorize by removing node in Dynkin diagramub → 0 ua → 1 ℂe.g. , U(ℬ/𝒞) → U(𝒜) × U(ℬ/𝒞) U(𝒟n) → U(𝒜m) × U(𝒟n−m−1), U(𝒟n−3) × U(𝒜1)2, & U(𝒜n−1)

what about “orderings”? conjecture: connected comp. of sign patterns by extended eqs U(ℝ) ↔ UI + VI = 1

1:1 with mutation relations: for , ; eqs for , etc.𝒜n−3 I : (a, c) → (b, d) n(n − 1)(n2 + 4n − 6)/6 𝒟n

monomial transf. & beyond: new shapes for other orderings, e.g. for , tiled by 4 hexagons + 12 pentagonsℬ2 = 𝒞2

Page 22: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

cluster string integralsU space (type A) manifest factorization @ finite : α′� ResXa,b=0In = I(a, a + 1,⋯, b) × I(b, b + 1,⋯, a)

as , : not only , (all incompatible u’s decouple)Xa,b → 0 ua,b → 0 Ω → ΩL × ΩR ∏uα′�X → ∏L

uα′ �X × ∏R

uα′�X

for , closed-string integrals (w. orderings ): Un(ℂ) α & β Icn(α |β) = ∫Un(ℂ)

Ω(α)∏uα′�X (Ω(β)∏uα′ �X)*

for any finite-type :Φ ℐΦ(X) = ∫U+(Φ)Ω(U+(Φ)) ∏

a

uα′ �Xaa , Ω(U+(Φ)) := ∏

α

d loguα

1 − uα

factorization by removing node of Dynkin diagram: factorize nicely!Ω(U+) & ∏uα′�X

factorize as 1-loop tadpoles, as 1-loop amp; exotic ones e.g. ℬn−1/𝒞n−1 𝒟n ℰ6 → 𝒟5, 𝒜5, 𝒜4 × 𝒜1 & 𝒜22 × 𝒜1

“closed stringy” integrals over well-defined for related by monomial transf.UΦ(ℂ) α & β

physical meaning of these integrals (contain string integrals)? e.g. is -deformation of 1-loop integrand for 𝒟n α′� ϕ3

Page 23: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

arithmetic geometry for Ucount # of points in : topological prop. of Un(𝔽p) N(p) = (p − 2)(p − 3)⋯(p − n + 2) ⟹ ℳ0,n

• # of connected components/orderings:

• # of saddle points = dim of half-dim twisted cohomology: [BCJ; CHY; Mizera …]

• coef. of # of forms # of top form: [Kleiss, Kuijf]

|N(−1) | = (n − 1)!/2

|N(1) | = |χ | = (n − 3)!

N(p) ↔ d log ⟹ |N(0) | = d log (n − 2)!

for for N(p) = (p − n + −1)n ℬn, N(p) = (p − n − 1)(p − 3)(p − 5)⋯(p − 2n + 1) 𝒞n ⟹

(type : hyperplane arrangements, unknown for )𝒜 & ℬ 𝒞

beyond: (conjecture) quasi-polynomial, e.g. for , 𝒢2 N(p) = (p − 4)2 + 4δp, δp = 0 (p = 2 mod 3) or 1 (p = 1 mod 3)

25 orderings & 13 saddle points; 547 orderings, 55 saddle points for ; similarly for (some) ⟹ 𝒟4 G+(k, n)/T

Page 24: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

(more) binary geometries from gen. permutohedra [w. Z. Li, P. Raman, C. Zhang]

Page 25: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

stringy integrals for gen. perm.building set = collection of subsets (w. conditions) [Postnikov] d-dim as Minkowski sum of

coordinate simplices for beg for stringy canonical forms w. sum for each

B I ⊂ [0,d] → 𝒫B

ΔI I ∈ B → xI := ∑i∈I

xi ΔI

ℐB(S) := ∫ℝd+

1vol GL(1)

d

∏i=0

dxi

xi ∏I∈B

xα′�SII = ∫ℝd

+

d

∏i=1

dxi

xixα′ �Xi

i

m

∏I

x−α′�CII

projective: (fix e.g. ); leading order of , some examples:∑I∈B SI = 0 x0 = 1 ℐB = Ω(𝒫B; X)

• simplex: all singletons + [0,d], gen. beta function

• associahedron: , open-string integral (type )

• cyclohedron: all cyclic intervals, stringy integral of type !

• permutohedron: all subsets, (rigid) stringy integral for perm. !

B = ℐB = ∏i

Γ(Xi)/Γ(∑i

Xi)

B = {[i, j] | 0 ≤ i ≤ j ≤ d} Ad

B = Bd

B = ℐd := 𝒫d

Page 26: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

remarkably, facets of labelled by subsets (factorize as ) 𝒫B I ≠ [0,d] 𝒫BI× 𝒫BI

⟹ N = d + m

d

∏i=1

xα′�Xii

m

∏I

x−α′�CII =

N=d+m

∏I

uα′�XII

ABHY realization of : (for J=1,…,m) u variables: (for I=1,…,N)𝒫B −CJ = VIJ XI ↔ uI = ∏

J

(xJ)VIJ

e.g. simplex : Δd −C[0,d] = ∑i

Xi ↔ ui =xi

∑i xi

permutohedron : (alternating sum) 𝒫d −CJ = ∑I⊂J

( − )|J|−|I|XI ↔ uI = ∏J⊂I

x(−)|J|−|I|

J

any degeneration of with some , e.g. ℐB & 𝒫B ℐd & 𝒫d CI → 0 𝒫2 |C02→0 = 𝒜2

for d=2 ( ):𝒫2 = ℬ2 u0 =x0x012

x01x02, u1 =

x1x012

x01x12, u2 =

x2x012

x02x12, u01 =

x01

x012, u02 =

x02

x012, u12 =

x12

x012

Page 27: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

binary geometries revisitedQ: what type of u-eqs needed for binary geometries, i.e. any , all incompatible ?ua → 0 ub → 1

trivial ex: u eqs for simplex ; , no (all compatible) u eqs for (facet)Δd ∑i

ui = 1 ui → 0 u → 1 → Δd−1

d-dim polytope with N facets: binary geometry for d-dim solution space of u eqs of the form

1 − ua = pa({u}) ∏b

ub||ab , for a = 1,⋯, N, w. polynomial satisfying pa({u}) |ua→0 = 1

cluster polytopes (& products) : “perfect” u eqs with ; more (non-trivial) binary geometries?pa({u}) ≡ 1

claim: configuration space of for any gen. permutohedron* (nestohdra & products) is binary!

(generally , but infinite families with perfect u eqs)

ℐB

pa({u}) ≠ 1

Page 28: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

config. space of 𝒫d

we prove for : as , all incompatible , remaining u’s satisfy eqs for 𝒫d uI → 0 uJ → 1 𝒫|I|−1 × 𝒫d−|I|

the u eqs for take the form: , with 𝒫d 1 − uI = pI({u})∏J⊅I

uJ||IJ pI({u}) |uI→0 = 1

“compatibility degree”: for (0 for )J | | I = |J | − | I ∩ J | I ⊄ J I ⊂ J

for , e.g. for d=3, pI ≠ 1 | I | < d − 1 1 − u0 = u1u2u3u212u

223u

213u

3123 (1 + u0u023u013u012u03u01u02)

proof: (recall compatible iff or ) as , all for , easy to show

for (1). or (2). ; other u fall into either ( ) or ( ).

uI & uJ I ⊂ J J ⊂ I uI → 0 xi → 0 i ∈ I uJ → 1

I ∩ J = ∅ I ∩ J ≠ ∅, I, J 𝒫|I|−1 J ⊂ I 𝒫d−|I| I ⊂ J

stringy integral for factorizes at finite : ! ⟹ 𝒫d α′� ResXI→0ℐd = ℐ|I|−1 × ℐd−|I|

the proof can be extended to all gen. perm. considered: all binary, always factorizes at finite ℐB α′�

Page 29: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

perfect u eqs from 𝒜d & ℬddegenerations of with perfect u eqs: some , new (new eqs from old ones)𝒜d = ℳ+

0,d+3 C → 0 u = ∏u

(1). for , new Ck,l = 0 i ≤ k < l ≤ n u[k,k] = ∏i≤p≤k≤q≤n

u[p,q]

1 − u[k,k] =i−1

∏j=0

u[ j,k−1]

(2). for , new Ck,l = 0 l − k > i u[0,l] =l−i+1

∏j=0

u[ j,l], u[k,n] =n

∏j=k+i−1

u[k,j]

1 − u[0,l] =l+1

∏a=l−i+2

u[a,n] ⋅l+1

∏a=l−i+2

a+i−2

∏b=l+1

u[a,b], 1 − u[k,n] =k+i−2

∏b=k−1

u[0,b] ⋅k+i−2

∏b=k−1

k−1

∏a=max(b−i+2,1)

u[a,b] .

include products of s; similar degenerations of & more examples with etc. 𝒜 ℬd 𝒜 × ℬ

Q: binary geometries/perfect u eqs from degenerating type etc. (no longer linear factors)? 𝒟

Page 30: Combinatorial Geometries for Scattering Amplitudes · 2020-06-03 · kinematic associahedra hidden symmetry of ϕ3 amps (invisible in FD's), analog of dual conformal symmetry, manifest

Thank you!

• integral Qs: apply to Feynman integrals? recurrence & residues at “massive” poles? beyond polytopes?

• cluster algebra Qs: taming infinity (higher loops, )? U space for infinity? “kinematic spacetime”?

• binary geometry Qs: meaning of config. space & integrals? orderings & complex integrals? classifications?

• physics Qs: geometries for YM/NLSM forms, BCJ vs. projectivity & gravity, 4d amplitude forms, loops? ……

n ≥ 8

outlook