COLIBIO: Controlled Lifetime Biocomposites MatetPro 2006 · Poly(L -lactic acid) photo degradation...

1
CONTACT: [email protected] Context and initial constraints Composite based on biosourced/biodegradable polymers and biosoluble glass, degradable (or recyclable) in conventional industrial conditions. Performances and cost close to current thermoplastic composites (PP). Patents WO 2011024021A1 / EP 09736484A1 Sizing composition containing a biodegradable polymer WO 2012001449A1 / EP 10747264A1 Controlled lifetime glasses WO 2011024023A1 / EP 09786285A1 Process for preparing aqueous emulsions of biodegradable polyesters WO 2012001448A1 / EP10744998A1 Controlled lifetime glasses Publication V. Berthé, L. Ferry, J.C. Benezet, A. Bergeret (Mines School of Alès) ; Ageing of different biodegradable polyesters blends. Mechanical and hydrothermal behavior, Polymer Degradation and Stability, 95, 262-269, 2010 N. Pons, A. Bergeret, J.C. Benezet, L. Ferry, F. Fesquet (Mines School of Alès and Materiau Ingenierie); An Environmental Stress Cracking (ESC) test to study the ageing of biopolymers and biocomposites, Polymer Testing, 30, 310-317, 2011 Theses Développement de Biocomposites à base de Poly(Acide Lactique) et de Fibres de Verre Altérables Etudes des mécanismes interfaciaux, Nicolas PONS, 2009, CMGD - Ecole des Mines d’Alès OCV Développement de mélanges à base de polylactide à durée de vie contrôlée. Etude des relations microstructure / propriétés / mise en œuvre, Vincent BERTHE, CMGD Ecole des Mines d’Alès Patrick MOIREAU, OCV Chambéry International COLIBIO: Controlled Lifetime Biocomposites MatetPro 2006 Colloque Bilan MAT ET PRO Nantes 2013 Controlled (Bio)dégradation Time End of life Not controlled Life time (not at scale) Degradation start (initiation) Constraint Elongation Resilience After 24h of hydrothermal test Research of a compromise process (fiberizing) / mechanical properties of the glasses / control of the degradation kinetic on a wide range of composition glasses containing important levels of alkaline oxides two formulation domains adapted to silica based glasses (F1 et F2) Interdiffusion Hydrolysis Gel formation Reactive diffusion of the glass movable elements in the solution Precipitation of the secondary phases Time Alteration Initial speed V 0 Speed drop V(t) Residual speed V r (Potential alteration restart) The biosoluble glasses globally follow this degradation model. 14 days 21 days 71 days 85 days The epoxy silane gives the better aging resistance among the monofunctional silanes (amine, methacryloxy) probably of his hydrophobic characteristic. Organosilane coupling agent / composite PLA 30 % F2 glass Biotic medium Abiotic medium Lactates producing (mg/l) in enzymatic medium Lactates producing (mg/l) in abiotic medium (37°C) Desized Amine Epoxy Methacryloxy Di-Sulfide Bridged amine The degradation of the PHB copolymers seems driven by the PHB one. PHB leads to higher acidification of the degradation products but it is still acceptable. Initial pH : 6,5 Final pH PHB-co-PCL PHB PLA PHBV Time (days) Composition: PLA / PCL and PLA/PBS Initial properties Choice of the best mixture depending on the mechanical performances mix PLA/PCL 80/20 mix PLA/PBS 40/60 Young’s modulus (Mpa) Content of PBS or PCL (wt%) Tensile strength (Mpa) Content of PBS or PCL (wt%) Elongation at break (%) Resilience (kJ/m²) > 20%: no break > 30%: no break Effect PLA/PCl Compatibility on Charpy choc Important effect on initial mechanical properties in all conditions in comparison with the reference. SMGA improves aging properties (Hydrophobic component that reacts as a crosslinker). Composition: compatibilization of the mixtures PLA / PCL Aging resistance Polycondensation agents PMAH poly(maleic anhydride -alt-1-octadecene) 1 and 3% SMGA poly(styrene-co-acrylic-co-glycidyl methacrylate) 1% Creep trial in aging medium (Environmental Accelerated Creep Test - EAC) Principle: follow up of the mechanical properties in flexural stress in a specific environment Used to evaluate the loss of the mechanical properties of a biocomposite in different degradation environments. Degradation trial in aqueous and enzymatic medium by chemical luminescence Principle : follow up of the glasses alteration kinetic (by titration of the silicates) or the matrix degradation (by titration of the lactates) in hydrothermal aging conditions and/or in biomimetic biodegradation conditions. Material in use Mimetic conditions : Hygrometric test immersion in pure water 37°C (T<Tg) et 65°C (T>Tg) Material at end of life Mimetic conditions : Enzymatic hydrolysis immersion in a buffer medium containing biodegrading agents 37°C and 65°C Ultra pure water Silicate Lactate + 37°C Buffer medium Lactate material « biodegradant » PLA + enzyme lactic acid + lactic acid oligomers Lactic acid + lactate oxydase pyruvate + H 2 O 2 H 2 O 2 + luminescent reactant Measurement by luminometry (bio)chimiluminescence Photons Allows a quicker answer and a better follow-up than the conventional methods on the degradation advancement of a composite without destruction of the medium. Knee orthesis (Javaux) PLA / F1 glass Composite manufacturing (model system): Conventional equipment (extrusion/injection), Conditions set up according to the physico-chemical characteristics of the used matrix. Composting test in laboratory (National Institute for Research in Agronomy): influence of the glass composition M1: modified matrix base on PLA E: Reference standard glass (E type) e: F3 type glass C4: F2 type glass IIId: F4 type glass 0 50 100 150 200 250 300 350 400 450 0 20 40 60 80 100 120 mg C / g product time (days) degradation at 60°C of the M1 matrix based composites M1 M1-E M1-e M1-C4 M1-IIId The degradation speed can be very quick (40 days M1-IIId) or close to the reference (90 days M1-e) but with a destruction of both glass and matrix. Accelerated degradation with the biosoluble glasses. No toxicity observed in the compost. Good quality of the product Practically completely degraded after 30 days of treatment PLA/ E glass composite sample treated in the same conditions No major problem detected during the destruction with an industrial composting method; Products like M1-IIId and M1C4 are practically completely degraded after 30 days. October 2006 March 2009 Comparative mechanical performances Reference: Polypropylene 30% glass fiber Recycling: Close to PP composite recycling process, More sensitive to moisture and temperature condition Cost: +30% in comparison to PP composite (2010-2011 values) Interest of the solution: - very dependant to oil price - currently driven by green marketing, subsidies and regulations V. Berthé, A. Bergeret, L. Ferry, J.C. Benezet, N. Pons Morphology and mechanical properties of physical blends of different biodegradable polyesters to broaden their area of application Oral communication, 24 th Conference on Polymer Progress Society (PPS-24), Salerno (Italie), 2008 V. Berthé, A. Bergeret, L. Ferry, J.C. Benezet, N. Pons Ageing of different biodegradable polyesters blends : mechanical and hydrothermal behavior Oral communication oral, 5 th International Conference on Polymer Modification, Degradation and Stabilisation (MODEST2008), Liège (Belgiuml) September 2008 N. Pons, A. Bergeret, J.C. Benezet, L. Ferry Ageing of biopolymers reinforced by alterable glass fibers Oral communication, 17 th International Conference on Composite Materials (ICCM-17), Edimburg (England), 2009 N. Pons, J.C. Benezet, A. Bergeret, L. Ferry Biodegradation kinetics of biopolymers and bio-composites Oral communication, 17 th International Conference on Composite Materials (ICCM-17), Edimburg (England), 2009 V. Berthé, A. Bergeret, L. Ferry, J.C. Benezet Morphology and mechanical properties of physical blends of PLLA and PBS biodegradable polyesters Oral communication, 26 th Conference on Polymer Progress Society (PPS-2-), Banff (Canada), 2010 V. Berthé, A. Bergeret, L. Ferry, J.C. Benezet Poly(L-lactic-acid) photo-degradation : effects of pro-oxidant transition metal complexes Poster communication, 6 th International Conference on Polymer Modification, Degradation and Stabilization (MODEST2010), Athena (Greece), 2010 V. Berthé, A. Bergeret, L. Ferry, J.C. Benezet Hydrothermal behavior of gamma irradiated P(L)LA/PCL blends Oral communication, 6 th International Conference on Polymer Modification, Degradation and Stabilization (MODEST2010), Athena (Greece), 2010 N. Pons, J.C. Benezet, L. Ferry, A. Bergeret Improvement of the durability of PLA reinforced by alterable glass fibers bio-composites: influence of silane nature used as coupling agents in the fiber surface treatment Oral communication, 9 th International Conference on Durability of Composite Systems (DURACOSYS-2010), Patras (Greece), 2010 A. Bergeret, V. Berthé, N. Pons, L. Ferry, J.C. Benezet Ageing of different bio-polyester blends based on poly(L-lactic acid) and of glass fiber reinforced bio-composites Invited communication , 9 th International Conference on Durability of Composite Systems (DURACOSYS-2010), Patras (Greece), 2010 V. Berthé, A. Bergeret, L. Ferry, J.C. Benezet, N. Pons, L. Paternostre, J. Cayuela Morphologie et propriétés mécaniques de mélanges de différents polyesters biodégradables afin d’élargir leur domaine d’application Poster communication, Colloque National du GFP 2007, Strasbourg (France), 2007 V. Berthé, A; Bergeret, J.C. Benezet, L. Ferry Etude de la morphologie et des propriétés mécaniques de mélanges de bio-polyesters Oral communication, 8 ème journée GFP Méditerranée, Sophia Antipolis (France), 2008 V. Berthé, A; Bergeret, L. Ferry, J.C. Benezet Polyesters biodégradables à propriétés améliorées : tenue au choc et résistance au vieillissement hygrothermique Poster communication, Colloque National du GFP 2008, Lyon (France), 2008 N. Pons, A. Bergeret, L. Ferry, J.C. Benezet Développement de nouveaux bio-composites poly(acide lactique)/fibres de verre Poster communication, Colloque National du GFP 2008, Lyon (France), 2008 N. Pons, A. Bergeret, L. Ferry, J.C. Benezet Development of bio-composites poly(lactic acid)/alterable glass fiber Oral communication, SAMPE France, Poitiers (France), 2009 N. Pons, A. Bergeret, L. Ferry, J.C. Benezet Development of bio-composites poly(lactic acid)/alterable glass fiber Oral communication, SAMPE Europe, Paris (France), 2009 N. Pons, A. Bergeret, L. Ferry, J.C. Benezet Development of bio-composites poly(lactic acid)/alterable glass fiber Oral communication, JEC Students Conference, Paris (France), 2009 N. Pons, A. Bergeret, L. Ferry, J.C. Benezet Development of bio-composites poly(lactic acid)/alterable glass fiber Oral communication, SAMPE Europe, Le Havre (France), 2009 A. Bergeret Biodégradabilité de bio-composites PLA/fibres minérales altérables : une technique originale de suivi de la biodégradation, Oral communication, Journée Technique PEP, Oyonnax, 2009 L. Ferry, V. Berthé, N. Pons, J.C. Benezet, A. Bergeret Innovative glass fiber based bio-composites with controlled properties during ageing Technical Conference MateriaNova, Ghislenghien (Belgique), 2011 Communications

Transcript of COLIBIO: Controlled Lifetime Biocomposites MatetPro 2006 · Poly(L -lactic acid) photo degradation...

Page 1: COLIBIO: Controlled Lifetime Biocomposites MatetPro 2006 · Poly(L -lactic acid) photo degradation : effects of pro oxidant transition metal complexes Poster communication, th6 International

[email protected]

CONTACT:

[email protected]

Context and initial constraints

Composite based on biosourced/biodegradable polymers and biosoluble glass, degradable (or recyclable) in conventional industrial conditions.

Performances and cost close to current thermoplastic composites (PP).

Patents WO 2011024021A1 / EP 09736484A1 Sizing composition containing a biodegradable polymer

WO 2012001449A1 / EP 10747264A1 Controlled lifetime glasses

WO 2011024023A1 / EP 09786285A1 Process for preparing aqueous emulsions of biodegradable polyesters

WO 2012001448A1 / EP10744998A1 Controlled lifetime glasses

Publication V. Berthé, L. Ferry, J.C. Benezet, A. Bergeret (Mines School of Alès) ; Ageing of different biodegradable polyesters blends. Mechanical and hydrothermal behavior, Polymer Degradation and Stability, 95, 262-269, 2010

N. Pons, A. Bergeret, J.C. Benezet, L. Ferry, F. Fesquet (Mines School of Alès and Materiau Ingenierie); An Environmental Stress Cracking (ESC) test to study the ageing of biopolymers and biocomposites, Polymer Testing, 30, 310-317, 2011

Theses Développement de Biocomposites à base de Poly(Acide Lactique) et de Fibres de Verre Altérables – Etudes des mécanismes interfaciaux, Nicolas PONS, 2009, CMGD - Ecole des Mines d’Alès – OCV

Développement de mélanges à base de polylactide à durée de vie contrôlée. Etude des relations microstructure / propriétés / mise en œuvre, Vincent BERTHE, CMGD – Ecole des Mines d’Alès

Patrick MOIREAU, OCV Chambéry International

COLIBIO: Controlled Lifetime Biocomposites

MatetPro 2006

Colloque Bilan MAT ET PRO – Nantes 2013

Controlled

(Bio

)dég

rad

atio

n

Time

End of life

Not controlled

Life time (not at scale)

Degradation start (initiation)

Constraint

Elongation

Resilience

After 24h of hydrothermal test

Research of a compromise process (fiberizing) / mechanical properties of the glasses / control of the degradation kinetic on a wide range of composition glasses containing important levels of alkaline oxides two formulation domains adapted to silica based glasses (F1 et F2)

Interdiffusion

Hydrolysis

Gel formation

Reactive diffusion of the glass movable elements in the

solution

Precipitation of the secondary

phases

Time

Alt

erat

ion

Initial speed V0

Speed drop V(t)

Residual speed Vr

(Potential alteration

restart)

The biosoluble glasses globally follow this degradation model.

14 days 21 days

71 days 85 days

The epoxy silane gives the better aging resistance among the monofunctional silanes (amine, methacryloxy) probably of his hydrophobic characteristic.

Organosilane coupling agent / composite PLA – 30 % F2 glass

Biotic medium Abiotic medium

Lact

ates

pro

du

cin

g (m

g/l)

in e

nzy

mat

ic m

ediu

m

Lactates pro

du

cing (m

g/l) in ab

iotic m

ediu

m (3

7°C

)

Desized Amine Epoxy Methacryloxy Di-Sulfide Bridged amine

•The degradation of the PHB copolymers seems driven by the PHB one. •PHB leads to higher

acidification of the degradation products but it is still acceptable.

Initial pH : 6,5

Final pH

PHB-co-PCL

PHB

PLA

PHBV

Time (days)

Composition: PLA / PCL and PLA/PBS – Initial properties

Choice of the best mixture depending on the mechanical performances mix PLA/PCL 80/20 mix PLA/PBS 40/60

Yo

un

g’s

mo

du

lus

(Mp

a)

Content of PBS or PCL (wt%)

Tensile stren

gth (M

pa)

Content of PBS or PCL (wt%)

E

lon

gati

on

at

bre

ak (

%)

R

esilien

ce (kJ/m²)

> 20%: no break

> 30%: no break

Effect PLA/PCl Compatibility on Charpy choc • Important effect on initial

mechanical properties in all conditions in comparison with the reference. •SMGA improves aging properties

(Hydrophobic component that reacts as a crosslinker).

Composition: compatibilization of the mixtures PLA / PCL – Aging resistance Polycondensation agents

PMAH poly(maleic anhydride -alt-1-octadecene) 1 and 3%

SMGA poly(styrene-co-acrylic-co-glycidyl methacrylate) 1%

Creep trial in aging medium (Environmental Accelerated Creep Test - EAC)

Principle: follow up of the mechanical properties in flexural stress in a specific environment

Used to evaluate the loss of the mechanical properties of a biocomposite in different degradation environments.

Degradation trial in aqueous and enzymatic medium by chemical luminescence

Principle : follow up of the glasses alteration kinetic (by titration of the silicates) or the matrix degradation (by

titration of the lactates) in hydrothermal aging conditions and/or in biomimetic biodegradation conditions.

Material in use

Mimetic conditions : Hygrometric test

immersion in pure water 37°C (T<Tg) et 65°C (T>Tg)

Material at end of life

Mimetic conditions : Enzymatic hydrolysis immersion in a buffer

medium containing biodegrading agents

37°C and 65°C Ultra pure water

Silicate Lactate +

37°C Buffer medium

Lactate

material

« biodegradant »

PLA + enzyme lactic acid + lactic acid oligomers

Lactic acid + lactate oxydase pyruvate + H2O2

H2O2 + luminescent reactant

Measurement by luminometry (bio)chimiluminescence

Photons

Allows a quicker answer and a better follow-up than the conventional methods on the degradation advancement of a composite without destruction of the medium.

Knee orthesis (Javaux) PLA / F1 glass

Composite manufacturing (model system): • Conventional equipment (extrusion/injection), • Conditions set up according to the physico-chemical characteristics of the used matrix.

Composting test in laboratory (National Institute for Research in Agronomy): influence of the glass composition M1: modified matrix base on PLA E: Reference standard glass (E type) e: F3 type glass C4: F2 type glass IIId: F4 type glass

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

mg

C / g

pro

du

ct

time (days)

degradation at 60°C of the M1 matrix based composites

M1

M1-E

M1-e

M1-C4

M1-IIId

The degradation speed can be very quick (40 days M1-IIId) or close to the reference (90 days M1-e) but with a destruction of both glass and matrix.

• Accelerated degradation with the biosoluble glasses.

• No toxicity observed in the compost. Good quality of the product

• Practically completely degraded after 30 days of treatment

PLA/ E glass composite sample treated in the same conditions

No major problem detected during the destruction with an industrial composting method; Products like M1-IIId and M1C4 are practically completely degraded after 30 days.

October 2006 March 2009

Comparative mechanical performances Reference: Polypropylene 30% glass fiber

Recycling: Close to PP composite recycling process, More sensitive to moisture and temperature condition Cost: +30% in comparison to PP composite (2010-2011 values) Interest of the solution: - very dependant to oil price - currently driven by green marketing, subsidies and regulations

V. Berthé, A. Bergeret, L. Ferry, J.C. Benezet, N. Pons

Morphology and mechanical properties of physical blends of different biodegradable polyesters to broaden their area of application

Oral communication, 24th Conference on Polymer Progress Society (PPS-24), Salerno (Italie), 2008

V. Berthé, A. Bergeret, L. Ferry, J.C. Benezet, N. Pons

Ageing of different biodegradable polyesters blends : mechanical and hydrothermal behavior

Oral communication oral, 5th International Conference on Polymer Modification, Degradation and Stabilisation (MODEST2008), Liège (Belgiuml) September 2008

N. Pons, A. Bergeret, J.C. Benezet, L. Ferry

Ageing of biopolymers reinforced by alterable glass fibers

Oral communication, 17th International Conference on Composite Materials (ICCM-17), Edimburg (England), 2009

N. Pons, J.C. Benezet, A. Bergeret, L. Ferry

Biodegradation kinetics of biopolymers and bio-composites

Oral communication, 17th International Conference on Composite Materials (ICCM-17), Edimburg (England), 2009

V. Berthé, A. Bergeret, L. Ferry, J.C. Benezet

Morphology and mechanical properties of physical blends of PLLA and PBS biodegradable polyesters

Oral communication, 26th Conference on Polymer Progress Society (PPS-2-), Banff (Canada), 2010

V. Berthé, A. Bergeret, L. Ferry, J.C. Benezet

Poly(L-lactic-acid) photo-degradation : effects of pro-oxidant transition metal complexes

Poster communication, 6th International Conference on Polymer Modification, Degradation and Stabilization (MODEST2010), Athena (Greece), 2010

V. Berthé, A. Bergeret, L. Ferry, J.C. Benezet

Hydrothermal behavior of gamma irradiated P(L)LA/PCL blends

Oral communication, 6th International Conference on Polymer Modification, Degradation and Stabilization (MODEST2010), Athena (Greece), 2010

N. Pons, J.C. Benezet, L. Ferry, A. Bergeret

Improvement of the durability of PLA reinforced by alterable glass fibers bio-composites: influence of silane nature used as coupling agents in the fiber

surface treatment

Oral communication, 9th International Conference on Durability of Composite Systems (DURACOSYS-2010), Patras (Greece), 2010

A. Bergeret, V. Berthé, N. Pons, L. Ferry, J.C. Benezet

Ageing of different bio-polyester blends based on poly(L-lactic acid) and of glass fiber reinforced bio-composites

Invited communication , 9th International Conference on Durability of Composite Systems (DURACOSYS-2010), Patras (Greece), 2010

V. Berthé, A. Bergeret, L. Ferry, J.C. Benezet, N. Pons, L. Paternostre, J. Cayuela

Morphologie et propriétés mécaniques de mélanges de différents polyesters biodégradables afin d’élargir leur domaine d’application

Poster communication, Colloque National du GFP 2007, Strasbourg (France), 2007

V. Berthé, A; Bergeret, J.C. Benezet, L. Ferry

Etude de la morphologie et des propriétés mécaniques de mélanges de bio-polyesters

Oral communication, 8ème journée GFP Méditerranée, Sophia Antipolis (France), 2008

V. Berthé, A; Bergeret, L. Ferry, J.C. Benezet

Polyesters biodégradables à propriétés améliorées : tenue au choc et résistance au vieillissement hygrothermique

Poster communication, Colloque National du GFP 2008, Lyon (France), 2008

N. Pons, A. Bergeret, L. Ferry, J.C. Benezet

Développement de nouveaux bio-composites poly(acide lactique)/fibres de verre

Poster communication, Colloque National du GFP 2008, Lyon (France), 2008

N. Pons, A. Bergeret, L. Ferry, J.C. Benezet

Development of bio-composites poly(lactic acid)/alterable glass fiber

Oral communication, SAMPE France, Poitiers (France), 2009

N. Pons, A. Bergeret, L. Ferry, J.C. Benezet

Development of bio-composites poly(lactic acid)/alterable glass fiber

Oral communication, SAMPE Europe, Paris (France), 2009

N. Pons, A. Bergeret, L. Ferry, J.C. Benezet

Development of bio-composites poly(lactic acid)/alterable glass fiber

Oral communication, JEC Students Conference, Paris (France), 2009

N. Pons, A. Bergeret, L. Ferry, J.C. Benezet

Development of bio-composites poly(lactic acid)/alterable glass fiber

Oral communication, SAMPE Europe, Le Havre (France), 2009

A. Bergeret

Biodégradabilité de bio-composites PLA/fibres minérales altérables : une technique originale de suivi de la biodégradation,

Oral communication, Journée Technique PEP, Oyonnax, 2009

L. Ferry, V. Berthé, N. Pons, J.C. Benezet, A. Bergeret

Innovative glass fiber based bio-composites with controlled properties during ageing

Technical Conference MateriaNova, Ghislenghien (Belgique), 2011

Communications