Coherent defocused orientation imaging of nano-crystals in ...

20
Coherent defocused orientation imaging of nano-crystals in second harmonic generation microscopy Laboratoire de Photonique Quantique et Moléculaire - UMR CNRS 8537 Institut d'Alembert - IFR 121 École Normale Supérieure de Cachan 61 avenue du président Wilson F-94235 Cachan France Nicolas Sandeau*, Loc Le Xuan, Dominique Chauvat, Jean- François Roch, Joseph Zyss, Sophie Brasselet [email protected]

Transcript of Coherent defocused orientation imaging of nano-crystals in ...

Page 1: Coherent defocused orientation imaging of nano-crystals in ...

Coherent defocused orientation imaging of nano-crystals in second harmonic generation microscopy

Laboratoire de Photonique Quantique et Moléculaire - UMR CNRS 8537Institut d'Alembert - IFR 121

École Normale Supérieure de Cachan61 avenue du président Wilson F-94235 Cachan France

Nicolas Sandeau*, Loc Le Xuan, Dominique Chauvat, Jean-François Roch, Joseph Zyss, Sophie Brasselet

[email protected]

Page 2: Coherent defocused orientation imaging of nano-crystals in ...

Aims & applications

Measurement of the 3D orientation of single nonlinear nano-emitters:

• To understand physical and chemical properties of nano-structures;

• To probe local environment of this nonlinear tag;

• To probe local electromagnetic field;

⇒ We use 2-photon excitation microscopy

Page 3: Coherent defocused orientation imaging of nano-crystals in ...

Polarized nonlinear microscopy

IXIY

APD2

APD1

X

YZ

Analysis directionIY IX

Laser 100fs 80Mhz 690 – 1020 nm

Rotation of the linear polarization of the excitation beam

ω2ω

SHG or 2PF

High numerical aperture objective

SHG mapping and localorientation information2-photon confocal ellipsometer

C. Anceau et al., Chem Phys Lett (2005)

XY

SHG

φ0 ~ 18°

φ0 ~ 6°-8° a

b

5 μm

abAnalysis direction

IX IY

Page 4: Coherent defocused orientation imaging of nano-crystals in ...

Polarized 2PE-microscopy in nano-crystals

Diagnostics of the crystallinenature of nano-crystals (2PF)

S. Brasselet et al., Phys Rev Lett (2004)

150

Y

X IXIY

2-photon Fluorescence

Same polar plot for each analysis direction ⇒ mono-crystallinity

Second Harmonic Generation

Optical axis

Projection of the nonlinear induced

dipole in the focal plane

2D or 3D orientation of thecrystalline structure (SHG)

Non-centrosymetricstructure

Bad precision on one of the 3 Euler angles

Page 5: Coherent defocused orientation imaging of nano-crystals in ...

Defocused imaging helps to read this information!

emission

excitation

camerafocal plane

« Defocused image » of the dipole

10 mmx

z

emission

excitation

camera-40

-20

0

20

40

Y (μ

m)

-40 -20 0 20 40X (μm)

30

20

10

0

(U.A

.)

-40

-20

0

20

40

Y (μ

m)

-40 -20 0 20 40X (μm)

121086420

(A.U

.)

Defocused orientation imaging

-40

-20

0

20

40

Y (μ

m)

-40 -20 0 20 40X (μm)

60

40

20

0

(A.U

.)

dipole

Image of the dipole

focal plane

Information about the source orientation

is conserved across the microscope!

M. Böhmer & J. Enderlein, JOSA B 20 (2003)

x

z

150

100

50

0

-50

-100

-150

Y (μ

m)

1000-100X (μm)

1.21.00.80.60.40.20.0

(A.U

.)

150

100

50

0

-50

-100

-150

Y (μ

m)

1000-100X (μm)

0.8

0.6

0.4

0.2

0.0

(A.U

.)

150

100

50

0

-50

-100

-150

Y (μ

m)

1000-100X (μm)

0.4

0.3

0.2

0.10.0

(A.U

.)

Page 6: Coherent defocused orientation imaging of nano-crystals in ...

Defocused orientation imaging

100

0

-100

Y (μ

m)

-150 150X (μm)

1.2

0.8

0.4

0.0

(A.U

.)

x

z

dipole 100

0

-100

Y (μ

m)

-150 150X (μm)

43210

(A.U

.)

100

0

-100

Y (μ

m)

-150 150X (μm)

6040200

(A.U

.)

defocusedimaging 10 mm

defocusedimaging 5 mm

100

0

-100

Y (μ

m)

-150 150X (μm)

3.02.01.00.0

(A.U

.)

x

z

dipole100

0

-100

Y (μ

m)

-150 150X (μm)

0.80.60.40.20.0

(A.U

.)

100

0

-100

Y (μ

m)

-150 150X (μm)

3020100

(A.U

.)

Image in the focal plane

No visible structure

Visible structures

Visible sub-structures

Enhancement of the defocus

Improvement of the precision of the orientation measurement

Page 7: Coherent defocused orientation imaging of nano-crystals in ...

ApplicationDefocused orientation & position imaging (DOPI)

A

A D. Patra, I. Gregor, J. Enderlein, J. Phys. Chem. A 108 (33) p. 6836-6841 (2004)

B E. Toprak et al., PNAS 103 (17) p. 6495-6499 (2006)

DOPI of myosin V along an actin fiber

Page 8: Coherent defocused orientation imaging of nano-crystals in ...

SHG microscopy in nano-crystals

SHG 2ω

Excitation ω

camerafocal plane

15 mmx

zy

Nano-crystal

Objective NA=1.4 in oil

m=100

ParametersMicroscope: Numerical aperture (NA=1.4), index of immersion liquid

(n=1.518), magnification (m=100), Camera position (15 mm)

Excitation: Wavelength (λ=945 nm), polarization (linear), shape (Gaussian)

Sample: Orientation (Euler angles), χ(2), size (~77 nm)

Tube lens

Page 9: Coherent defocused orientation imaging of nano-crystals in ...

Induced non-linear dipoles

Epi Forward

The nano-crystal is smaller than the Excitation Efficiency Volume and it is centered on the focus

Page 10: Coherent defocused orientation imaging of nano-crystals in ...

Coherent induced dipoles

Local excitation field

Nano-crystal

( )zyxE ,,ω

( )zyxPNL ,,2ω

( ) ( ) ( )zyxEzyxEzyxPNL ,,:,,:,, )2(22 ωωωω χ=

For KTP

Vpm

Vpm

Vpm

Vpm

Vpm

/9.16

/4.4

/5.2

/6.3

/9.1

)2(33

)2(32

)2(31

)2(24

)2(15

χ

χ

χ

χ

χ

We define the KTP orientation by the

Euler angles (θ, ϕ, ψ)

Potassium TitanylPhosphase - KTiOPO4

Induced non-linear dipoles

ψθ

ϕ

1

2

X

Y

Z

x y

z

3

χ(2) of massive KTP

Page 11: Coherent defocused orientation imaging of nano-crystals in ...

Far field intensity radiation pattern

10 nm long side 70 nm long side 100 nm long side

-40

-20

0

20

40

x nm

-40 -20 0 20 40z nm

250200150100500

-40

-20

0

20

40

y nm

-40 -20 0 20 40z nm

250200150100500

200

100

0

-100

-200

x nm

2000-200z nm

600

400

200

0

x103

200

100

0

-100

-200

y nm

2000-200z nm

6005004003002001000

x103

-200

-100

0

100

200

x nm

-200 0 200z nm

2.01.51.00.50.0

x106

200

100

0

-100

-200

y nm

2000-200z nm

2.01.51.00.50.0

x106

1.0

0.8

0.6

0.4

0.2

0.0

Inte

nsity

(A.U

.)

400300200100sides length (nm)

ForwardEpi x 100Epi/ForwardKTP along X axis

Euler angles:

θ=90°, ϕ=0°, ψ=0°

Page 12: Coherent defocused orientation imaging of nano-crystals in ...

Coherent defocused orientation imaging

-300

-200

-100

0

100

200

300x

μ m

-200 0 200y μm

120010008006004002000

-300

-200

-100

0

100

200

300

x μ m

-200 0 200y μm

6000

4000

2000

0

Polarization of the pump laser beam:

α=0° / X axis

α=90° / X axis

Experimental images

3 points to determine the KTP 3D-orientation:

Structure & Sub-structures;

Intensity;

rotation of the symmetry axis;

for the 2 polarizations of excitation.

NA=1.45, n=1.518, m=100, λp=945 nm d=15 mm

Aquisition time = 10s

Page 13: Coherent defocused orientation imaging of nano-crystals in ...

Coherent defocused orientation imaging

-300

-200

-100

0

100

200

300x

μ m

-200 0 200y μm

120010008006004002000

-300

-200

-100

0

100

200

300

x μ m

-200 0 200y μm

6000

4000

2000

0

Polarization of the pump laser beam:

α=0° / X axis

α=90° / X axis

Experimental images

•Structures give information about the angle (θ ) between the optical axis and the axis ‘3’ of the crystal.

•The variation of the intensity and the direction of the symmetry axis allows to determine the 2 other Euler angles.

Page 14: Coherent defocused orientation imaging of nano-crystals in ...

Example of image structure Vs θ angle

-200

0

200x

μ m

300-300y μm

2520151050 -200

0

200

x μ m

300-300y μm

60

40

20

0 -200

0

200

x μ m

300-300y μm

12080400

-200

0

200

x μ m

300-300y μm

2000150010005000

-200

0

200

x μ m

300-300y μm

300

200

100

0 -200

0

200

x μ m

300-300y μm

5004003002001000 -200

0

200

x μ m

300-300y μm

10008006004002000

-200

0

200

x μ m

300-300y μm

12008004000 -200

0

200

x μ m

300-300y μm

150010005000 -200

0

200

x μ m

300-300y μm

2000150010005000

0° 10° 20°

30° 40° 50°

60° 70° 80°

90°

x

zAxis ‘3’θ

Page 15: Coherent defocused orientation imaging of nano-crystals in ...

Coherent defocused orientation imaging

-300

-200

-100

0

100

200

300x

μ m

-200 0 200y μm

120010008006004002000

-300

-200

-100

0

100

200

300

x μ m

-200 0 200y μm

6000

4000

2000

0

Polarization of the pump laser beam:

α=0° / X axis

α=90° / X axis

Experimental images

300

200

100

0

-100

-200

-300

x μ m

-200 0 200y μm

800

600

400

200

0

300

200

100

0

-100

-200

-300

x μ m

-200 0 200y μm

4000

3000

2000

1000

0

Calculated images

⇒ KTP orientation: θ=30°±5° ϕ=115°±5° ψ=90°±15°

Page 16: Coherent defocused orientation imaging of nano-crystals in ...

Verification

Polarization of the pump laser beam:

α=120° / X axis

α=150° / X axis

Experimental images

Calculated images

⇒ orientation:θ=30°±5°ϕ=115°±5°ψ=90°±15°

-300

-200

-100

0

100

200

300

x μ m

-200 0 200y μm

300025002000150010005000

-300

-200

-100

0

100

200

300

x μ m

-200 0 200y μm

6000500040003000200010000

-300

-200

-100

0

100

200

300

x μ m

-200 0 200y μm

25002000150010005000

α=60° / X axis

300

200

100

0

-100

-200

-300

x μ m

-200 0 200y μm

1200

800

400

0

300

200

100

0

-100

-200

-300

x μ m

-200 0 200y μm

500040003000200010000

300

200

100

0

-100

-200

-300

x μ m

-200 0 200y μm

300025002000150010005000

Page 17: Coherent defocused orientation imaging of nano-crystals in ...

4.744 103.

133

B Iytot aπ

180. b

π

180., c

π

180., αi, δ, γ,.

dataY j

α i angle j,

834

106

A Ixtot aπ

180. b

π

180., c

π

180., αi, δ, γ,.

dataX j

α i angle j,

Agreement with ellipsometric measurement

IXIY

APD2

APD1

X

YZ

Analysis directionIY IX

Laser 100fs 80Mhz 690 – 1020 nm

Rotation of the linear polarization of the excitation beam

ω2ω

SHG or 2PF

High numerical aperture objective 0 10002000300040005000

1000

2000

3000

4000

5000

0

45

90

135

180

225

270

315

polarXpolarY

Experimental SHG polarimetric analysis

Comparison with the modeling for a KTP orientation (θ=30° ϕ=115° ψ=90°)

Page 18: Coherent defocused orientation imaging of nano-crystals in ...

100

80

60

40

20

0

100806040200

14121086420

x103

Diagnostic of mono-crystallinity

Excitation beam polarisedalong X axis (α=0°)

100

80

60

40

20

0

100806040200

5000

4000

3000

2000

1000

0

Excitation beam polarisedalong Y axis (α=90°) No symmetry axis

⇒ There is more than 1 nano-KTP in the excitation area.

One has an orientation close to the direction of the polarization of the exciting beam.

These nano-KTPs radiate coherently ⇒ Images are results of an interference phenomenon.

Page 19: Coherent defocused orientation imaging of nano-crystals in ...

Conclusion

Non-linear defocused imaging is a simply tool to determine crystalline nature and 3D-orientation of single nano-crystals with a good precision.

⇒ these nano-crystals can be used as nano-probes of local fields.

⇒ to study rotational diffusion

⇒ to know radiation pattern of unknown nano-emitters…

( ) ( ) ( )zyxEzyxEzyxPNL ,,:,,:,, )2(22 ωωωω χ=

known To probe

Page 20: Coherent defocused orientation imaging of nano-crystals in ...

Acknowledgements

For samples:Cédric Tard, Sandrine Perruchas, Thierry GacoinLaboratoire de Physique de la Matière Condensé, UMR CNRS 7643,École Polytechnique, 91128 Palaiseau cedex

Financing:Ministère de la Recherche, FranceCNRSInstitut D’AlembertÉcole Normale Supérieure de Cachan

And all members of LPQM…

Thanks for your attention.