Coherent cooling: a momentum state quantum computer Tim Freegarde Dipartimento di Fisica,...

1
Tim Freegarde Dipartimento di Fisica, Università di Trento, 38050 Povo, Italy Quantum Optics & Laser Science, Imperial College, London SW7 2BZ, UK Danny Segal Matrices Non-zero elements cluster around leading diagonal m i,j and m i+2n,j+2n differ only through momentum dependence Matrices therefore summarized as 4x4 elements: G(t) leve l name description sequence basi c G(t/) W - (,0) . FG(t/4) . W - (,0) . FG(t/4) . W + (,0) . FG(t/4) . W + (,0) . FG(t/4) 1 qubi t NOT(0) invert lsb F(/2) . W + (/2,0) . F(/2) CP1(0) if state=0, invert phase F() . W + (,0) HAD(0) Hadamard on Q 0 W + (/4, /4) . F() W + (,0) 2 qubi t EX(1,0) exchange Q 1 , Q 0 F(/2) . W - (/4, ) . G(/4) . W - (/4, /4) . F(5/4) XOR(1,0 ) CNOT Q 1 , Q 0 F(/2) . W + (/4, ) . G(/4) . W + (/4, /4) . F(5/4) CP2(0) if state=0, invert phase F(3/4) . G(/4) . W + (, ) Laser cooling may be achieved through the coherent manipulation of two-level atoms between discrete one- dimensional momentum states This is formally equivalent to a 'momentum state quantum computer‘ Qubits form the binary representation of the momentum state Operations are combinations of laser pulses with kinetic energy dependent free phase evolution The logical invert, exchange, XOR and Walsh-Hadamard operations can be performed on any qubits, as well as conditional phase inversion These allow a binary right-rotation, which halves the width of the ground state momentum distribution in a single coherent process The problem of field design for the coherent control of atomic momenta may thus be tackled using techniques from quantum information processing Bloch vectors g e mixture pure stat e pure stat e radiative interaction free evolution Candidate ‘toy’ system Size scales with number of states, so number of qubits limited Practical implementation using stimulated Raman transitions between hyperfine levels Extension to 2-D for parallel computing QUANTUM COMPUTING COHERENT COOLING Offers maximum narrowing of momentum distribution within coherent process Imperfect application nonetheless cools non-integer momenta Complex optical pulse sequences related to ‘coherent control’ fields FUTURE ALGORITHMS Grover-type search for cold states More complex entanglement (>2 states) cos i e - i sin 0 0 0 0 0 0 i e i sin cos 0 0 0 0 0 0 0 0 cos i e - i sin 0 0 0 0 0 0 i e i sin cos 0 0 0 0 0 0 0 0 cos i e - i sin 0 0 0 0 0 0 i e i sin cos 0 0 0 0 0 0 0 0 cos i e - i sin 0 0 0 0 0 0 i e i sin cos p 0 + 4k p 0 + 3k p 0 + 2k p 0 + k p 0 p 0 - k p 0 - 2k p 0 - 3k

Transcript of Coherent cooling: a momentum state quantum computer Tim Freegarde Dipartimento di Fisica,...

Page 1: Coherent cooling: a momentum state quantum computer Tim Freegarde Dipartimento di Fisica, Università di Trento, 38050 Povo, ItalyQuantum Optics & Laser.

Tim Freegarde

Dipartimento di Fisica, Università di Trento, 38050 Povo, Italy

Quantum Optics & Laser Science, Imperial College, London SW7 2BZ, UK

Danny Segal

Matrices

• Non-zero elements cluster around leading diagonal

• mi,j and mi+2n,j+2n differ only through momentum dependence

• Matrices therefore summarized as 4x4 elements:

G(t)

level name description sequence

basic G(t/) W-(,0) . FG(t/4) . W-(,0) . FG(t/4) . W+(,0) . FG(t/4) . W+(,0) . FG(t/4)

1 qubit NOT(0) invert lsb F(/2) . W+(/2,0) . F(/2)

CP1(0) if state=0, invert phase F() . W+(,0)

HAD(0) Hadamard on Q0 W+(/4, /4) . F() W+(,0)

2 qubit EX(1,0) exchange Q1, Q0 F(/2) . W-(/4, ) . G(/4) . W-(/4, /4) . F(5/4)

XOR(1,0)

CNOT Q1, Q0 F(/2) . W+(/4, ) . G(/4) . W+(/4, /4) . F(5/4)

CP2(0) if state=0, invert phase F(3/4) . G(/4) . W+(, )

HAD(1,0)

Hadamard on Q1, Q0 EX(1,0) . HAD(0) . EX(1,0) . HAD(0)

• Laser cooling may be achieved through the coherent manipulation of two-level atoms between discrete one-dimensional momentum states

• This is formally equivalent to a 'momentum state quantum computer‘

• Qubits form the binary representation of the momentum state

• Operations are combinations of laser pulses with kinetic energy dependent free phase evolution

• The logical invert, exchange, XOR and Walsh-Hadamard operations can be performed on any qubits, as well as conditional phase inversion

• These allow a binary right-rotation, which halves the width of the ground state momentum distribution in a single coherent process

• The problem of field design for the coherent control of atomic momenta may thus be tackled using techniques from quantum information processing

Bloch vectorsg

e

mixture

pure state

pure state

radiative interaction

free evolution

• •

• Candidate ‘toy’ system• Size scales with number of states, so number

of qubits limited• Practical implementation using stimulated

Raman transitions between hyperfine levels• Extension to 2-D for parallel computing

QUANTUM COMPUTING

COHERENT COOLING

• Offers maximum narrowing of momentum distribution within coherent process

• Imperfect application nonetheless cools non-integer momenta

• Complex optical pulse sequences related to ‘coherent control’ fields

FUTURE ALGORITHMS

• Grover-type search for cold states• More complex entanglement (>2 states)

cos i e-isin 0 0 0 0 0 0

i eisin cos 0 0 0 0 0 0

0 0 cos i e-isin 0 0 0 0

0 0 i eisin cos 0 0 0 0

0 0 0 0 cos i e-isin 0 0

0 0 0 0 i eisin cos 0 0

0 0 0 0 0 0 cos i e-isin0 0 0 0 0 0 i eisin cos

p0 + 4k

p0 + 3k

p0 + 2k

p0 + k

p0

p0 - k

p0 - 2k

p0 - 3k