Coercivity and Domains in Sm2 Co17 based magnets · 2020. 6. 13. · Coercivity and Domains in. Sm....

18
Coercivity and Domains in Sm 2 Co 17 based magnets - dedicated to I. R. Harris - K.-H. Müller, O. Gutfleisch and L.Schultz IFW Dresden, Germany

Transcript of Coercivity and Domains in Sm2 Co17 based magnets · 2020. 6. 13. · Coercivity and Domains in. Sm....

  • Coercivity and Domains inSm2

    Co17

    based magnets

    - dedicated to I. R.Harris -

    K.-H. Müller, O. Gutfleisch and L.SchultzIFW Dresden, Germany

  • The year 1989⇒

    Hanau, Erlangen, Stuttgart, Vienna, Birmingham, Grenoble, Dublin, Berlin,Sheffield, Madrid, Parma, Athens,

    Nd2

    Fe14

    B → sintered, melt

    spun, mechanically

    alloyed,remanence

    enhanced

    Sm2

    Fe17 → interstitially

    modified

    by

    N or

    C

    SmCo5 → well established

    Sm2

    Co17 → well established

    (Ba,Sr)Fe12

    O19 → well established

  • 400OC*1h

    slow cooling 0.7°C/min

    Isothermal aging at 750OC~850OCfor 12~24h

    1100~1200OC*4~10 h

    Tem

    pera

    ture

    Time

    100nm

    100nm

    c-axis

    e.g. Sm(Co0.784

    Fe0.1

    Cu0.088

    Zr0.028

    )7.19

    Precipitation hardeningof 2:17 magnets

    3 μm

  • 400OC*1h

    slow cooling 0.7°C/min

    Isothermal aging at 750OC~850OCfor 12~24h

    1100~1200OC*4~10 h

    Tem

    pera

    ture

    Time

    100nm

    100nm

    c-axis

    e.g. Sm(Co0.784

    Fe0.1

    Cu0.088

    Zr0.028

    )7.19

    Precipitation hardeningof 2:17 magnets

    3 μm

    same

    microstructures

    forsintered

    magnets,

    ingots,melt-spun

    samples

    microstructure

    unchangedafter

    slow

    cooling

    ⇒ what

    happens

    during

    slow

    cooling

    ?

  • Overview of Sm2Co17 Compositions

    0

    2

    4

    6

    8

    10

    0 5 10 15 20 25

    Fe wt%

    Cu

    wt%

    High Temperature

    Current Industrial

    EU- HITEMAG

    Composition

    of Sm(Co,Fe,Cu,Zr)z

    magnets

  • A. Yan et al., J. Appl. Phys. 93 (2003) 7975 / Appl. Phys. Lett. 83 (2003) 2208

    EDX profiles of Cu across the cell boundary

    0,00

    0,25

    0,50

    0,75

    1,00

    0,00

    0,25

    0,50

    0,75

    1,00

    (a)

    1:5 phase

    Cu

    (at%

    )/Cum

    ax

    (b)

    2:17 phase

    Cu

    (at%

    )/Cum

    ax

    0 2 4 6 8 10Position (nm)

    850ºC*3h, slowly

    cooled

    to 400ºC high Hc at RT

    850ºC*3hquenched

    low Hc at RT

    0 2 4 6 8 100,00

    0,25

    0,50

    0,75

    1,00

    Cu

    (at%

    )/Cum

    ax

    Position (nm)

    subsequently850ºC*5 min, quenched

    ⇒ ⇒

    low Hc at RT

    high coercivity large gradient of Cu within the 1:5 cell boundary

  • Physics

    of permanent magnetism●

    Continuum

    theory

    (micromagnetism)

    using

    material properties

    such as: Ms

    (r;T), A(r;T), K(r;T), …-

    nonlinear

    relations

    -

    non-local

    relation

    Ms

    (T;r) → H(r)-

    long-range

    (mgnetostatic) interactions

    ⇒ sample-size

    and sample-shape

    dependent

    phenomena⇒ no thermodynamic

    limit

    metastability⇒ no equilibrium

    thermodynamics

    ⇒ non-single

    valued

    relation

    M(H)⇒ single

    crystals

    are

    useless

  • - multiphase, texture, grain

    boundaries, concentration

    gradients, ….⇒ much

    larger variety

    of magnetic

    structures

    („domains“)

    ⇒ hard

    to observe- simplified

    pictures: nucleation

    type

    magnets, pinning

    type

    magnets, …

    non-homogeneous

    materials:

    Dc

    70 (AK)1/2/μ0

    Ms2

    Db

    15

    DcWb

    D1/2

    …D2/3

    (bulk-domain

    width) Ws

    3 Dc

    (surface-domain

    width) δ

    π

    (A/K)1/2

    (domain-wall

    width)1.260.45Sm2

    Co17

    0.630.24Nd2

    Fe14

    B

    Ws

    [μm]Db

    [μm]Dc

    [μm]δ[nm]

    10 μm

    Db

    < Ddomain

    branching

    D < Dcsingle-domain

    particles

    Dc

    < D < Dbmultidomain

    particle

    2 μm0.1 μm 0.1 μm

    homogeneous

    material (single

    crystals):

    Magnetic

    domains-

    in easy-axis

    materials

    -

  • Magnetic domain structure by Kerr microscopy

    domains as typical for coarse grained materials with easy-axis-type magnetic anisotropy

    as-cast Sm2

    Co17 Sm(Co0.784

    Fe0.100

    Cu0.088

    Zr0.028

    )7.19 -

    solid-solution treated -

  • The

    influence

    of slow

    cooling

    900 800 700 600 500 400

    0

    1

    2

    3

    4 high temperature grade

    coer

    civi

    ty μ

    0iH

    c (T)

    quenching temperature Tque (oC)

    coercivity

    at room

    temperature

    ⇒ refinement

    of the

    domain

    structure

    400 °Cµ0i

    Hc

    =3.8 T600 °C

    µ0i

    Hc

    =2.54 T700 °C

    µ0i

    Hc

    =0.92 T850 °C

    µ0i

    Hc

    =0.08 T800 °C

    µ0i

    Hc

    =0.12 T750 °C

    µ0i

    Hc

    =0.23 T

    10µm

    MFM: c-axis

    perpendicular

    to the

    imaging

    plane; thermally demagnetised

    400OC*1h

    slow cooling 0.7°C/min

    Isothermal aging at 750OC~850OCfor 12~24h

    1100~1200OC*4~10 h

    Tem

    pera

    ture

    Time

    ⇒ increase

    of j

    Hc

  • 0 1 2 30

    1

    2

    3

    4

    Tq=850°C800

    700

    725 750

    600

    400

    C

    oerc

    ivity

    μ0i

    Hc

    (T)

    Domain width W (μm)

    coercivity i

    Hc

    ↔ domain

    width

    W

    Acta

    Mat. 54 (2006) 997

  • High-resolution MFM

    ⇒ Interaction domains

    in both

    cases

    High-coercivity

    2:17 magnet

    coarser

    than

    cell

    size

    ( ≈

    100 nm)

    1 μm

    Die-upset

    melt-spun

    Nd-Fe-B

    coarser

    than

    grain

    size

    ( ≈

    300 nm)

    O. Gutfleisch , K.-H. Müller, K. Khlopkov, M. Wolf, A. Yan, R. Schäfer, T. Gemming, L. SchultzActa Materialia

    54 (2006) 997

  • ConclusionsSlow cooling of 2:17 magnets down to 400 oC

    large gradient of Cu concentration in the 1:5 boundaries

    strong refinement of domain structure

    no classical domains but interaction domains

    decoupling of the cells by Cu

  • Some more details

  • 2 μm

    1 μm

    400 nm

    Interaction domains by MFM

    2:17 well prepared Die upset

    Nd-Fe-B

  • 400 °Cµ0i

    Hc

    =3.8 T600 °C

    µ0i

    Hc

    =2.54 T700 °C

    µ0i

    Hc

    =0.92 T850 °C

    µ0i

    Hc

    =0.08 T800 °C

    µ0i

    Hc

    =0.12 T750 °C

    µ0i

    Hc

    =0.23 T

    10µm

    KER

    R

    10µm

    MFM

    Sm(Co0.784

    Fe0.1

    Cu0.088

    Zr0.028

    )7.19-

    evolution of domain structure at room temperaturein dependence on quenching temperature from the slow cooling

    ramp- samples thermally demagnetised- c-axis

    perpendicular

    to the

    image plane

    Comparison

    of MFM and Kerr

  • 3-dimensional Atom Probe analysisOrthoslice

    surfaceDepth ~ 7 nm

    2:17 2:17

    1:5

    Depth ~ 7 nm

    Cu

    2:17 2:171:5

    Cu concentration

    850ºC*3h,slowly

    cooled

    to 400ºC

    high coercivity at RT

    cooperation with Prof. Hono, NIMS, TsukubaR. Gopalan et al., Scripta materialia 60 (2009) 764

    40 at%

    4 at%

  • 1:52:172:17

    • Cu concentration: ~20 at% in 1:5 boundary -

    almost uniform; ~4 at% in 2:17

    850ºC*3h, quenched low coercivity at RT

    cooperation with Prof. Hono, NIMS, TsukubaR. Gopalan et al., Scripta materialia 60 (2009) 764

    3-dimensional Atom Probe analysis

    ÜSThe year 892:17-Start2:17-StartcompositionsCu-gradientphysicsDomains-0Kerr-0Hc(Tcool)Domain widthMFM-detailconclusionsSome more detailsMFM-det+MFM/KERRMapping-highMapping-low