Coarsening versus selection of a lenghtscale Chaouqi Misbah, LIPHy (Laboratoire Interdisciplinaire...

49
rsening versus selection of a lenghtsca Misbah, Laboratoire Interdisciplinaire de Physique) J. Fourier, Grenoble and CNRS, France P. Politi, Florence, Italy Errachidia 2011

Transcript of Coarsening versus selection of a lenghtscale Chaouqi Misbah, LIPHy (Laboratoire Interdisciplinaire...

Errachidia 2011

Coarsening versus selection of a lenghtscale

Chaouqi Misbah,LIPHy (Laboratoire Interdisciplinaire de Physique) Univ. J. Fourier, Grenoble and CNRS, France

with P. Politi, Florence, Italy

Errachidia 2011

2 general classes of evolution

1) Length scale selection

Time

Errachidia 2011

2 general classes of evolution

1) Length scale selection

Time

2) Coarsening

Time

Errachidia 2011

Questions

• Can one say if coarsening takes place in advance?• What is the main idea?• How can this be exploited?• Can one say something about coarsening exponent?• Is this possible beyond one dimension?• How general are the results?

A. Bray, Adv. Phys. 1994: necessity for vartiaional eqs.

Non variational eqs. are the rule in nonequilibrium systems P. Politi et C.M. PRL (2004), PRE(2006,2007,2009)

Errachidia 2011

Some examples of coarsening

Errachidia 2011Andreotti et al. Nature, 457 (2009)

Errachidia 2011

That’s not me!

Errachidia 2011

Myriad of pattern forming systems

1) Finite wavenumber bifurcation

2)( cQQA QC Q

W

Lengthscale(no room for complex dynamics, generically )

Amplitude equation (one or two modes)

0

0

Errachidia 2011

Q

W2) Zero wavenumber bifurcation

42 QQ

Errachidia 2011

Q

W2) Zero wavenumber bifurcation

42 QQ

W

Q

Far from threshold

Complex dynamics expected

Errachidia 2011

Can one say in advance if coarsening takes place ?

Yes, analytically, for a certain class of equationsand more generally …….

Errachidia 2011

Coarsening is due to phaseinstability (wavelength fluctuations)

Phase modes are the relevant ones!

Eckhaus

What is the main idea?

q

stable

unstable

Errachidia 2011

][ ])([)()( uuCuGuBu xxxxt

])([)()( uuCuGuBu xxt

)(),(),( uCuGuB

General class of equations (step flow, sand ripples….)

Arbitrary functions

Errachidia 2011

How can this be exploited?

Errachidia 2011

Example:Generalized Landau-Ginzburg equation

)()( uLuBuu xxt

(trivial solution is supposed unstable)

uB 3u)exp( tiqxu 21 q

1 cqqUnstable if 2 cor

Example of LG eq.:

q

Errachidia 2011

)()( uLuBuu xxt

)(0 xu steady solution

0)( 00 uBu xx

Patricle subjected to a force B

)()( uduBuV

Example42

42 uuV

ECteVu x

2

20

Errachidia 2011

Coarsening

42

42 uuV

U=-1 U=1

time

-1

+1

Kink-Antikink anihilation

Errachidia 2011

Amplitude

Wavelength

Stable

Unstable

U=0

U=0

Lambda c 0D

A

A

Errachidia 2011

Stability vs phase fluctuations?

),( tx : Fast phase ),( TX :slow phase

Xxq Local wavenumber:

xX tT 2

Errachidia 2011

Full branch unstable vs phase fluctuations

),( tx : Fast phase ),( TX :slow phase

Xxq Local wavenumber:

xX tT 2

Xx q XTt 2

10 uuu

Errachidia 2011

Full branch unstable vs phase fluctuations

),( tx : Fast phase ),( TX :slow phase

Xxq Local wavenumber:

xX tT 2

Xx q XTt 2

10 uuu

Sovability condition: XXT D

Derivation possible for any nonlinear equation

Errachidia 2011

Full branch unstable vs phase fluctuations

),( tx : Fast phase ),( TX :slow phase

Xxq Local wavenumber:

xX tT 2

Xx q XTt 2

10 uuu

Sovability condition: XXT D

20

20

)(

)(

u

uqD

q ...)2(...

2

0

1

d

Errachidia 2011

20

20

)(

)(

u

uqD

q 0)( 00

2 uBuq

Errachidia 2011

20

20

)(

)(

u

uqD

q 0)( 00

2 uFuq

Errachidia 2011

20

20

)(

)(

u

uqD

q 0)( 00

2 uBuq

Particle with mass unity in time q/ Subject to a force B

Errachidia 2011

20

20

)(

)(

u

uqD

q 0)( 00

2 uBuq

Particle with mass unity in time q/ Subject to a force B

Juduqq

1/2

0

20

120 )2()()2()(

J is the action

Errachidia 2011

20

20

)(

)(

u

uqD

q 0)( 00

2 uFuq

Particle with mass unity in time q/ Subject to a force F

Juduqq

1/2

0

20

120 )2()()2()(

J is the action But remind that E

J

E:energy

Errachidia 2011

20

20

)(

)(

u

uqD

q 0)( 00

2 uFuq

Particle with mass unity in time q/ Subject to a force F

Juduqq

1/2

0

20

120 )2()()2()(

J is the action But remind that E

J

E:energy

12

312

0 )(4

)2()(

Eq

Juqq

Errachidia 2011

Dhas sign of

A

A: amplitude : wavelength

Errachidia 2011

wavelength

amplitude

No coarseningcu

Errachidia 2011

wavelength

amplitude

No coarseningcoarseningc

cu

u

Errachidia 2011

wavelength

amplitude

No coarseningcoarsening

Interruptedcoarsening

cc

c

uu

u

Errachidia 2011

wavelength

amplitude

No coarseningCoarsening

CoarseningInterruptedcoarsening

cc

c c

uu

u u

C.M., O. Pierre-Louis, Y. Saito, Review of Modern Physics (sous press)

P. Politi, C.M., Phys. Rev. Lett. (2004)

Errachidia 2011

][ ])([)()( uuCuGuBu xxxxt

])([)()( uuCuGuBu xxt

)(),(),( uCuGuB

General class of equations (step flow, sand ripples….)

Arbitrary functions

Errachidia 2011

Sand Ripples, Csahok, Misbah, Rioual,Valance EPJE (1999).

Errachidia 2011

Wavelength

amplitude

cu

frozen Example: meandering of stepson vicinal surfaces

branch stops

O. Pierre-Louis et al. Phys. Rev. Lett. 80, 4221 (1998) and many other examples , See :C.M., O. Pierre-Louis, Y. Saito, Review of Modern Physics (sous press)

Errachidia 2011Andreotti et al. Nature, 457 (2009)

Errachidia 2011

Dunes (Andreotti et al. Nature, 457 (2009))

Errachidia 2011

tD

2

)(

Can one say something about coarsening exponent?

P. Politi, C.M., Phys. Rev. E (2006)

Errachidia 2011

Coarsening exponent

t

20

20

)(

)()(

u

uqD

q

tD

2

)(

LG

GL and CH in 1d )ln(t

Other types of equations t

q/2

Errachidia 2011

Some illustrations

])([ xxxxt uuBu

If non conserved: remove xx

AI

ABD

)()(

2

dxuI2

0

If non conserved dxuJI x2

0 )(

tD

2

)( Use of

duuBuV )()(

Errachidia 2011

Coarsening

42

42 uuV

U=-1 U=1

time

)1ln()(/)/(00

AuVduududxAA

x

eAAB 23

AJ

ABD

)()(

2

dxuJ x2

0 )( Finite (order 1)

eA

teD /)( 222 )ln(t

Errachidia 2011

Remark: what really matters is the behaviour of V closeto maximum; if it is quadratic, then ln(t)

1)1( uaVV )(1)( xuxQ AQ 10

2/10

1

00

Q

QQ

dQ

Q

10

2/0A , , ,1 QBQIJ

AJ

ABD

)()(

2

Conserved:

Nonconservednt

23

2

n

44

2

n

Errachidia 2011

Other scenarios (which arise in MBE)

B(u) (the force) vanishes at infinity only )1()(

2u

uuB

nt 4

1nConserved

Non conserved2 ,

2

1 n

2 ,23

nBenlahsen, Guedda(Univ. Picardie, Amiens)

Errachidia 2011

][ ])([)()( uuCuGuBu xxxxt

])([)()( uuCuGuBu xxt

)(),(),( uCuGuB

General class of equations (step flow, sand ripples….)

Arbitrary functions

Errachidia 2011

Transition from coarsening to selection of a length scale

xxxxxt uuuuuu ][ 3

Golovin et al. Phys. Rev. Lett. 86, 1550 (2001).

0 Cahn-Hilliard equation

Kuramoto-Sivashinsky /uu After rescaling

coarsening

no coarseningFor a critical 47.0 Fold singularity of the steady branch

Amplitude

Wavelength

47.047.0

Errachidia 2011

)( xxxxxxxxxt uGuuuuu

If 0 KS equation

If not stability depends on sign of v

New class of eqs: new criterion ; P. Politi and C.M., PRE (2007)

solutionssteady periodic

for interface theofvelocity v

0 Steady-state periodic solutions exist only if G is odd

Errachidia 2011

Extension to higher dimension possible

Analogy with mechanics is not possible

Phase diffusion equation can be derived

A link between sign of D and slope of a certain quantity (not the amplitude itself like in 1D)

The exploitation of

tD

2

)(

allows extraction of coarsening exponent

C.M., and P. Politi, Phys. Rev. E (2009)

Errachidia 2011

Summary

4) Coarsening exponent can be extracted for any equation and at any dimension from steady considerations, using

1)

3) Which type of criterion holds for other classes of equations? But D can be computed in any case.

Phase diffusion eq. provides the key for coarsening, D is a function of steady-state solutions (e.g. fluctuations-dissipation theorem).

tD

2

)(

2) D has sign of for a certain class of eqs

A