Coalescent Theory & Population Genetics applications Frantz Depaulis [email protected]@ens.fr ...

76
Coalescent Theory & Population Genetics applications Frantz Depaulis [email protected] http://www.biologie.ens.fr/eceem/ frantz_depaulis Pwd: M1ENSCOAL Laboratoire Ecologie et Evolution, CNRS-UMR 7625 Université Paris 6- ENS room 426

Transcript of Coalescent Theory & Population Genetics applications Frantz Depaulis [email protected]@ens.fr ...

Page 1: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Coalescent Theory &

Population Genetics

applications

Frantz Depaulis [email protected]://www.biologie.ens.fr/eceem/frantz_depaulisPwd: M1ENSCOALLaboratoire Ecologie et Evolution, CNRS-UMR 7625 Université Paris 6- ENS room 426

Page 2: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Outline

• Reminder• Coalescence • Mutations/models• Perturbations, applications

Page 3: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Neutral theory of molecular evolution (Kimura 1969):

the neutral model as a reference

Mutations Occurrence Fate

avantageous rare fixed

deleterious frequent eliminated

neutral frequent drift until fixation or

loss

-reminder-

Page 4: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Wright Fisher Neutral model

Assumptions• Selective neutrality (Ne s <<1)

• Demography - Isolated panmictic Population, - Constant size N- Poisson Distribution of offspring P (1)

-reminder-

Page 5: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Effectif efficace : définition• On définit la taille efficace (notée Ne) d’une population comme étant la taille d’une population « idéale » de Wright-Fisher où la dérive génétique aurait la même intensité (**) que dans la population (ou bien le modèle de population) qui nous intéresse

** même taux de dérive, même augmentation de consanguinité, même augmentation de variance de fréquences alléliques entre populations, etc.

-reminder-

Page 6: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Relationships among 10 individuals over 15 generations

Generations

individuals # genes

-Coalescence-

Page 7: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

the same, but permuted

Generations

individuals # genes

-Coalescence-

Page 8: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Descent and extinction of a lineage

Generations

individuals # genes

-Coalescence-

Page 9: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Genealogy of 3 individuals: Regarder le processus de dérive en « remontant le temps » jusqu’à l’ancêtre commun d’un échantillon de gènes

Generations

individuals#genes

-Coalescence-

Page 10: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Genealogy of a gene sample

gene sample

ancestral lineage

coalescence= common ancestor

Most recent common ancestor (MRCA)

-Coalescence-

Page 11: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Kingman (1980, 1982)

Page 12: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 13: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 14: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 15: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Coalescent Tree

a b c d e f

Most recent common ancestor of the

sample(MRCA)

sample of “genes” /

of individual

s

Common ancestor

(CA)

neutral mutati

ons

TC

C

G

CG

A

A

-Coalescence-

Page 16: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 17: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 18: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 19: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 20: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 21: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 22: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 23: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 24: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 25: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 26: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Coalescent times

2 genesp2=P( common ancestry in t -1)= 1/2N

n genespn =P ( common ancestry at t -1)= (n x (n -1)/2) x

1/2N

P ( common ancestry t generations ago ) = (1-p)t -1 x p

Geometric distribution (discrete generations)#p e(-pt )

Exponential distribution (continuous time)

p small,

t large

t

t-11/2N

1 2 3 4 5 ... 2N...

...

-Coalescence-

Diploïde (2n) => 2N genes

Page 27: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 28: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 29: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Coalescence-

Page 30: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Effectif efficace de consanguinité

• Dans le modèle de Wright-Fisher, la probabilité de coalescence en une génération est égale à 1/N. On peut donc définir une taille efficace comme l’inverse de la probabilité de coalescence en une génération (Ewens, 1982). C’est une taille efficace de consanguinité, et qui est instantanée.

• Au contraire, une taille efficace asymptotique peut être définie, qui décrit le taux de coalescence de lignées de gènes dans un passé lointain (égale à 1/N dans le modèle de Wright-Fisher)

Cette taille efficace asymptotique (de consanguinité, de coalescence) est équivalente à la taille efficace de valeur propre, qui repose sur une description complète des fréquences alléliques dans une population (la valeur propre de la matrice qui décrit les changements de fréquence détermine l’approche de l’état d’équilibre)

-Coalescence-

Page 31: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

1°)Ages of the nodes

Constructing coalescents,

cd e fba

t3

p =1/2NExp( p )

t1

t2

t4

t5:

additional assumption: n << N

-Coalescence-

Page 32: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

gene sample

Topologyof the tree

2°)

a b cd e f

MRCA

common ancestor (CA)

t1

t2

t3

t4

t5:

Constructing-deconstructing coalescents

-Coalescence-

http://www.coalescent.dk/

Hudson’s animator:

Page 33: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Mutations

and associated models

-Mutations-

Page 34: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Mutations-

Page 35: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

A AA

A

neutral mutati

ons G

TC

C

G

CA

3°) uniform distribution of

mutations

gene sample

Topologyof the tree

2°)

T

C

GA

C

G

C

T

neutral distribution of sequence polymorphis

m

a b cd e f

MRCA

common ancestor (CA)

t1

t2

t3

t4

t5:

100 000 times

Constructing-deconstructing coalescents

S : P ( TTot x )=4Ne

µ

-Mutations-

Page 36: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

• Mutational, sequence data: infinite site model (ISM)- No recombination- Independent mutations- Constant mutation rate µ

Along the sequenceAcross time

- Each mutation affects a new nucleotide site

Infinite(ly many) site model: sequences, SNP’s

-Mutations-

Page 37: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

GCCCGCGAATCCATTGCGTGCGATCCGATTGCGTACAATCCCGTCGTGTACAATCTCGACGTGTACAATCTCGACGCGTGGAATCCCGTTCCGCGCGGTCCCATT

f 121531416121423

T C

TACT

G

AT

GC

Alignment of polymorphic sites:

GT

G

n =7

S =15

-Mutations-

Page 38: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Frequency spectrum of mutations

fi :

Number of

polymorphic sites

Number of occurrences in a sample

Neutral predictions

-Mutations-

sityheterozygo

S

i

ii

nn

fnf

1 )1(

)(2̂

1

1

1ˆn

iS iSWatterson’s (1975)

estimator

=4Ne

*

*: Tajima (1983)

1

1 1 )1(

2n

j

n

jk

kj

nn

d

ifE i /1)(

Page 39: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

f 121531416621423f 121531416121423

GCCCGCGAATCCATTGCGTGCGATCCGATTGCGTACAATCCCGTCGTGTACAATCTCGACGTGTACAATCTCGACGCGTGGAATCCCGTTCCGCGCGGTCCCATT

GCCCGCGAATCCATTGCGTGCGATCCGATTGCGTACAATCCCGTCGTGTACAATCTCGACGTGTACAATCTCGACGCGTGGAATCCCGTTCCGCGCGGTCCCATT

C

T

→TC

T C

TACT

G

AT

GC

Alignment of polymorphic sites: non

oriented mutations

GT

G

n =7

S =15

-Mutations-

Page 40: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Frequency spectrum of mutations

fi : number of occurrences in a

sample

Number of

polymorphic sites

-Mutations-

Page 41: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

GCCCGCGAATCCATTGCGTGCGATCCGATTGCGTACAATCCCGTCGTGTACAATCTCGACGTGTACAATCTCGACGCGTGGAATCCCGTTCCGCGCGGTCCCATT

f 121531416121423

C

T

Alignment of polymorphic sites: orienting mutations with

an outgroup

f 121531416621423

T

C

GCCCGCGAATCCATTGCGTGCGATCCGATTGCGTACAATCCCGTCGTGTACAATCTCGACGTGTACAATCTCGACGCGTGGAATCCCGTTCCGCGCGGTCCCATT

T

C

o.g.GCGCGCGAACCCATT

C

-Mutations-

Page 42: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Infinite(ly many) allele model: allozymes, one site (locus)

(microsatellites)• Each mutation gives rise to a new type/allele on a locus

T

A

C

C

G

CG

T

G

G G

CC

A

A

A

T CC

A

T

-Mutations-

Page 43: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

The “stepwise mutation” model (SMM) is appropriate for microsatellites. When a mutation occurs, the new mutation length depends on the existing length. In the simplest case of the “single” SMM, illustrated in the next slide, the new length = old length +/- 1.

Stepwise mutation model

-Mutations-

Page 44: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Microsatellites

GAGGCGTAGTAGTAGTAGTAGTAGTAGGCTCTA

GAGGCGTAGTAGTAGTAGTAGTAGGCTCTAor

GAGGCGTAGTAGTAGTAGTAGTAGTAGTAGGCTCTA

• Microsatellites mutate very fast (~1 change every 500 generations)

• Mutation events usually involve a gain or a loss of a single repeat unit

-Mutations-

Page 45: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Mutations-

Page 46: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Mutations-

Page 47: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Recombination« simple » case: 2 haplotypes with 2 locus

One possible Genealogy outcome

Recombination

Coalescence

Coalescence

MRCA1

MRCA2

Past

-Perturbations-

Page 48: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Ancestral Recombination Graph : example

coalescence rate : n(n-1)/2

recombination rate : R n

Recombination

Recombination

Coalescence

Coalescence

n =2

n =3

n =2

n =2

n =2 ?

MRCA

Tim

e

Past

-Perturbations-

Page 49: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Recombination Histories: Non-ancestral bridges-Perturbations-

Page 50: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

systematic effects

Genealogy Demographic Selective

Extinction-recolonisation,

severe bottlenecks, populationexpansion

severe hitchhiking

Migration, population structure, moderate

bottlenecks

balanced polymorphism,moderate hitchhiking

-Perturbations-

Page 51: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

The neutral model, application = inference

Applications Molecular phylogeography

Molecular ecology:

• Selective effects

- balancing selection

- directional selection, hitchhiking • Demographic effects

- Dispersion

- bottlenecks/expansion

- Distribution of the number of offsprings

Tool= the coalescent

-Coalescence-

Page 52: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Perturbations-

Demographic change

Page 53: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Perturbations-

Page 54: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Perturbations-

Page 55: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

40 30 20 10 0Time before present (in mutational units)

Po

pu

latio

n s

ize

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 101112 131415No. of repeat units pairwise differences

Fre

qu

en

cy

SimulationModel estimate

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10 111213 1415No. of repeat units pairwise differences

Fre

qu

en

cy

SimulationModel estimate

001.0)(

551.0)SSD(

837.1ˆ

SFp

p

308.0)(

007.0)SSD(

351.0ˆ

SFp

p

(a) Constant population size (simulation case 3)

(b) Population expansion, = 3 (simulation case 2)

4 3 2 1 0Time before present (in mutational units)

Po

pu

latio

n s

ize

K K

KNt

K

Nr

tt

t

eNN11

1

-Perturbations-

Page 56: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Coalescent and bottlenecks

t

N Pt = 1/2Nt

-Perturbations-

Page 57: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Time

Coalescence

Coalescence

Migration

Coalescence

Coalescence

Pop 1 Pop 2

-Perturbations-Population structure

Coalescence

1/m

Migration

Page 58: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Perturbations-

Page 59: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Perturbations-

Page 60: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

______T_____*___C__

_G______A________G_

_G______A________G_

ACGTTTATGCAACGTCGAC 1°) an advantageo

us mutation appears

2°) Selection

_G_______________G__________________G_

______T__________________T_____*___C__

ACGTTTATGCAACGTCGAC______T_____*___C________T_____*___C__

______T_____*___C________T_____*___C__

3°) Hitch-hiking effect:

the advantageous mutation is fixed and

variability is swept

ACGTTTATGCAACGTCGACReference

chromosomespopulation of chromosomes

neutral mutations

_G_______________G__________________G_

______T__________________T_________C__

Selection:Hitch-hiking without

recombination

-Perturbations-

Page 61: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

A

Hitch-hiking without recombination: genealogy

apparition of an

advantageous

mutation

Few mutations at low

frequency

common

ancestor

T

**** **

T

*

A

After hitch-hiking

Neutral distribution of

mutations in the sample

T

A

C

C

G

CG

CC

GA A

C

T T

G

A

A

neutral coalescent

-Perturbations-

Page 62: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

The effect of a selective sweep on the shape of the

coalescent tree

-Perturbations-

Page 63: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

_G______A________G_

_G______A________G_

ACGTTTATGCAACGTCGAC1°) an

advantageous mutation

appears

2°) Selection

_G_______________G__________________G_

______T__________________T_____*___C__

ACGTTTATGCAACGTCGAC_G______A___*___C__

______T_____*___C________T_____*___C________T_____*___C__

3°) Hitchhiking

effect: several

haplotypes remain

ACGTTTATGCAACGTCGACReference

chromosomespopulation ofchromosomes

neutral mutations

_G_______________G__________________G_

______T__________________T_________C__

hitchhiking with

recombination

_G______A___*___C__

-Perturbations-

Page 64: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

hitchhiking with recombination: genealogy

apparition of an

advantageous

mutation

substantial number ofhigh frequency mutations

commonancestor

**** **

*

After hitchhiking

T

A

CC

G

CG

CC

GA A

C

T T

G

A

A

Neutral coalescent

C

G

C

G

C

G

*

recombination

G G G G

G

Neutral distribution of

mutations in the sample

-Perturbations-

Page 65: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Frequency spectrum of mutations

fi :

Number of

polymorphic sites

Number of

occurrences in a sample

Neutral predictionsSelective predictions

-Perturbations-

Page 66: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Perturbations-

Page 67: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

-Perturbations-

Page 68: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

/Background selection

Charlesworth et al. 1993

Page 69: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Alternative hypotheses, overview

S 15 9 9 2

Neutral

Moderate bottleneck /population structureBalanced selection

hitchhiking with

recombination Severe

bottleneck, population expansion

/local hitchhiking

number of mutations

perturbation

-Perturbations-

frequency class in excess

intermediate high lowNone

Page 70: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Gene genealogies / Coalescent theory

•Based on the standard Wright-Fisher neutral model

•Genealogical trees– backward– Intuitive– Economic

*Sampling theory

*Only generations where « events » occurred are considered

-Coalescence-

• The coalescent= a simple and efficient framework to build make inference about selective and demographic history of populations

Page 71: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Acknowledgements

–R. Vitalis–V. Castric–L. Chikki–S. Billiard–M. Schierup

Oxf. Surv Evol Biol 1990. 7:1-44

http://home.uchicago.edu/~rhudson1/popgen356/OxfordSurveysEvolBiol7_1-44.pdf

Page 72: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:
Page 73: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

Frequency spectrum of mutations

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Observed

Neutral

Selection

fi :

Number of

polymorphic sites=4Ne

H=-H

== 00= 0.05

== -3.01 -3.01 **

Number of

occurrences in a sample

(Fay and Wu Genetics 2000)

sityheterozygostate derived the

ofty homozygosi

-Misorientation-

S

i

ii

nn

fnf

1 )1(

)(2̂

S

i

iH nn

f

1

2

)1(

Page 74: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

f 121531416621423f 121531416121423

C

C

T

GCCCGCGAATCCATTGCGTGCGATCCGATTGCGTACAATCCCGTCGTGTACAATCTCGACGTGTACAATCTCGACGCGTGGAATCCCGTTCCGCGCGGTCCCATT

GCCCGCGAATCCATTGCGTGCGATCCGATTGCGTACAATCCCGTCGTGTACAATCTCGACGTGTACAATCTCGACGCGTGGAATCCCGTTCCGCGCGGTCCCATT

o.g.GCGCGCGAACCCATTo.g.GCGCGCGAATCCATTo.g.GCGCGCGAATCCATT

T

C

T

T

C

T

T

C

pM

Alignment of polymorphic sites: multiple hits and

misorientation

-Misorientation-

Page 75: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd:

T

A

C

C

G

CG

CC

GA A

C

T T

G

A

AT

A

A

C

G

T

C

CT

CA A

T

T

G

A

T

C

T

A

C

C

G

CG

C

TG

G G

CC

C

G

A

A

A

A

T

Neutrality tests: simulationsparameters‡ : S =8 n =6

H = 2.13H = 2.13H = -1.06

... 10 000 simulations

H {

CC

A

T

-tests-

‡ Hudson 1993

-3 -2 -1 0 1 2 3 4 H

density

observed H : P = 0.03 *

Distribution of simulated

H

Page 76: Coalescent Theory & Population Genetics applications Frantz Depaulis depaulis@ens.frdepaulis@ens.fr  Pwd: