CMX Sectional Controls - EATON VICKERS fileCMX Sectional Controls Application Guide Revised 3/95 536...

74
CMX Sectional Controls Application Guide 536 Revised 3/95 Vickers ® Directional Controls

Transcript of CMX Sectional Controls - EATON VICKERS fileCMX Sectional Controls Application Guide Revised 3/95 536...

CMX Sectional ControlsApplication Guide

536Revised 3/95

Vickers®

Directional Controls

Third generation closed center load sensing is here...today

���������������� ������������

����������������������������������

������������������������������

������������� ��������������

������������� ������ �!����������

���������� ��� ��������

��������������� ��������

����� �����������������

������������������

"��������������� ����

���#��#���#���������������

�������$�������������� ��%������

�����&�������������������������

����������������������������

�� ������������'������������

�����������������������������������

�� ��� ���������������������������

�������� (

�� �!��� ����������������

����������� ��������������

��������)����������������

������!��� �������������

�����������������������

�����������������)����� ���

������ �������������

*������$�������������������

�������������������������

���������������������

���)��� ������������������

����������������� ��

���������������������������

��)������������� �������������

����������������������

�����������������������������

������������ ���)����������+����

��������������������� ������

�� ��� �����������$��������������

��������

��������������������� �����

����������������������������������

������������������� ������� �

������������� �����������

�����������$��������������

������ ��������������������������

,�������������� ������������

������������� ��� �����������

��� ������������������ ������

�������������������������

������������ ������-�#����������

�������.���+�������� �

��� �������������������������

����������� ��� �

/� ����������$���!���������� �

���������������������� ��������

������������$�0�������������

��������*� ��������

��������� �������������$��� #�����$

� ����� ������������������

0���������������������� ��

��������������

����������������� ��������

������� �������������������

�������������� ���� ���������

������������)���������

Additional assistance with your CMX valve requirements is as nearas your local Vickers distributor.With Vickers EZSpec CMXProgram, which incorporates the

use of pre-engineered components,he can quickly design, price,assemble, test, and ship valvebanks that satisfy the requirementsof most applications.

���������������������

�����������������������������1

����� �����������������

��������������1���� ���� �

2

��������������

���������������� 3

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������� 4

������������������������������������������������������������������������������������������������������������������������������������������������������������������

5�������6������� 4

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

+��������.� 7

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

8���� 7

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����#���������� 9

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

5�����������������#���������� 9

��������������������������������������������������������������������������������������������������������������������������������������������������������

,�������������������#���������� :4

��������������������������������������������������������������������������������������������������������������������������������������������������

,�������������� �������������������� :9

������������������������������������������������������������������������������������������������������������������������������

5��������������������� �;

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������

<� ����������������� ��

��������������������������������������������������������������������������������������������������������������������������������������������������������������������

<� � ���������������1��� � �3

����������������������������������������������������������������������������������������������������������������������������������������������������

<� � ������������������������ �������� �3

������������������������������������������������������������������������������������������������������������������������������������������

�����#����������� �=

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

/�����������������������1��� � 2:

������������������������������������������������������������������������������������������������������������������������������������������������

/�������������� ��� 22

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

5������������ 24

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����#�������� 2=

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

/����������������������� 27

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������

*� ������������� 32

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

>�������� ������������� 33

����������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������

�����#������������������� 4;

����������������������������������������������������������������������������������������������������������������������������������������������������������������

�����#����������������� 4:

������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����#��������������� 4�

��������������������������������������������������������������������������������������������������������������������������������������������

+����� ������������������ 42

����������������������������������������������������������������������������������������������������������������������������������������������������������������

*������������������������ 42

��������������������������������������������������������������������������������������������������������������������������������������������������������������

+����� �������������������������� ������� 4?

��������������������������������������������������������������������������������������������������������������������������������

5�������������������������� =2

����������������������������������������������������������������������������������������������������������������������������������������������������������

�����������

>� ��������� ��1��� � =4

����������������������������������������������������������������������������������������������������������������������������������������������������������������

>� ��������� ��������� ������������������ ==

����������������������������������������������������������������������������������������������������������������������������������

�� #����� =?

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

+�� � ��� #����� =?

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�� #������������� ������������ ����������������#������� =7

������������������������������������������������������������������������������������������������

������� =9

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������

-������������������� ?;

��������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������� ?:

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������� ������!�� ?2

������������������������������������������������������������������������������������������������������������������������������������������������������

��������"���#����� ?3

��������������������������������������������������������������������������������������������������������������������������������������������������������������������

3

General Description

The CMX sectional valve is a stackable, load sensing, proportionaldirectional control valve, and can beoperated by hydraulic remote control(HRC) or electronic remote control(ERC) via integral electrohydraulicreducing valves.

A characteristic feature of the CMXvalve line is the concept of separatemeter-in and meter-out elements (Figure 1). The meter-in element is apilot operated, flow force, pressurecompensated, proportional sliding spooland controls fluid from the pump to theactuator. The meter-out elements arepilot controlled metering poppets, andcontrol exhaust fluid from the actuator totank. Each meter-out poppet functionsas a variable orifice between one of theactuator’s ports and the tank port, withthe degree of opening proportional tothe pilot signal.

5������:���"��������������

� �

/ � "

,

�����#��� �����#���

�����#��

The separation of the meter-in andmeter-out elements, plus the valve’smodular design, permits a broad rangeof control options to meet a variety ofload requirements. This is especiallydesirable for a stackable mobile valve,where a single valve bank must handlemany different functions.

The CMX sectional valve family consistsof two basic series with different flowratings – the CMX100 and the CMX160.These valves are functionally identical,with most differences being due to thedifferences in their physical size.

A CMX valve bank is made up of aninlet body, from one to eight valvesections, and an end cover (Figure 2).The valve sections are connectedinternally to common pressure, tank,load sense, pilot supply and pilot drainpassages. Face seals between thesections seal the connecting passages,and the sections are held together by tierods and nuts. Threaded mounting boltholes are provided on the inlet body andend cover.

The pump, tank, load sense andelectrohydraulic pilot supply passagesare terminated in the inlet body, and thepilot drain is terminated in the end cover.Connections for the actuator and theHRC are made at each section.Electrical connections for electro-hydraulic valves are made at each coil.HRC and ERC controlled valves can beused in the same valve bank.

Figure 2

4

Operating Valve Section

The CMX valve section consists of threebasic parts: the main valve body, whichcontains the main flow passages andmain control elements, and two controlcaps that contain the pilot circuitry. Theone-piece control cap gaskets (Figure3), which provide a seal between thecontrol caps and the main valve body,are also part of the pilot circuit, providinga passage from the meter-in springchamber to the relief valve pilot stageand the meter-out servo. This formatallows for a wide variety of controloptions from relatively few basic parts;thus the valve can be tailored to theapplication at minimal extra cost. It alsomakes the valve quick and easy to finetune for a specific application.

Flow Path/ActuationHydraulically Actuated(Refer to following page.)

� When pilot pressure is applied to PortC1, pump flow is to Port B.

� When pilot pressure is applied to PortC2, pump flow is to Port A.

Electrohydraulically Actuated

(Click here for illustrations.)

� When Solenoid A is energized, pumpflow is to Port A.

� When Solenoid B is energized, pumpflow is to Port B.

Figure 3

Control Cap Gasket

Pilot relief valve (electrohydraulic models)

Meter-out servo

Drain Pilot relief valve (hydraulic models)

Restriction (orifice)

Pilot supply passage(electrohydraulic models)

Electrohydraulic pilot spool

Meter-in spring chamber

=

Operating Valve SectionCutaway views of the hydraulic andelectrohydraulic versions of the CMXare shown in Figures 4 and 5, along

with schematic diagrams. The reliefvalve pilot stages are shown in detail inthe schematic diagrams used in this

discussion to promote a betterunderstanding of the valve’s operation.

Actuator Port “A” Actuator Port “B”

Meter-outPoppet

LoadSensingCheckValves

PilotPressurePort “C1”

Meter-inSpool

Meter-inChambers

Return Port

ControlCap

Load DropCheck

PilotRelief

PilotPressurePort “C2”

GasketVent ValveInlet Port

Hydraulic Valve Section

C1

DR T LS P DR

C2

AB

Figure 4

?

“B” Solenoid

Electrohydraulic Valve Section

PLST

B

A

PSDR PS DR

Load SensingCheck Valves

Vent Meter-inSpool

Meter-in Chambers

Valve InletPort

Gasket

Pilot SupplyPassages

“A” Solenoid

Pilot Relief(As shown inFigure 4,precedingpage.)

Load Drop Check

Actuator Port “B”

Actuator Port “A”

Return PortMeter-out Poppet

Electro-hydraulicReducingValveSpool

Figure 5

Adjustable Relief (optional)

Sol. ASol. B

7

Operating Valve Section

The main valve body is available as anarrow body with an actuator portpressure rating of 290 bar (4200 psi)and an inlet port pressure rating 250 bar(3625 psi), or as a wide body with anactuator port pressure rating of 380 bar(5510 psi) and an inlet port pressurerating of 350 bar (5075 psi). Valvesections with different pressure ratingscan be used in the same valve bank.Valve section sizes and ratings areshown below.

Click here for port and mounting hole sizes.

Valve Section Sizes

CMX100-S2 (narrow body and290 bar (4200 psi) rating)Hydraulic Actuation -Dimensions: 201 mm (7.9 in) long x 47,0 mm (1.85 in) wide x 149 mm (5.87 in) high.Weight: 7,3 kg (16.2 lbs)

Electrohydraulic Actuation -Dimensions: 366 mm (14.4 in) long x 47,0 mm (1.85 in) wide x 149 mm (5.87 in) high.Weight: 9,0 kg (19.8 lbs)

CMX100-F2 (wide body and380 bar (5510 psi) rating)Hydraulic Actuation -Dimensions: 201 mm (7.9 in) long x 59,0 mm (2.32 in) wide x 144 mm (5.67 in) high.Weight: 8,7 kg (19.2 lbs)

Electrohydraulic Actuation -Dimensions: 366 mm (14.4 in) long x 59,0 mm (2.32 in) wide x 144 mm (5.67 in) high.Weight: 10,4 kg (22.8 lbs)

CMX160-S2 (narrow body and290 bar (4200 psi) rating)Hydraulic Actuation -Dimensions: 243 mm (9.6 in) long x 51,0 mm (2.01 in) wide x 172 mm (6.77 in) high.Weight: 10,2 kg (22.5 lbs)

Electrohydraulic Actuation -Dimensions: 386 mm (15.2 in) long x 51,0 mm (2.01 in) wide x 172 mm (6.77 in) high.Weight: 11,8 kg (26.1 lbs)

CMX160-F2 (wide body and380 bar (5510 psi) rating)Hydraulic Actuation -Dimensions: 243 mm (9.6 in) long x 75,0 mm (2.95 in) wide x 165 mm (6.50 in) high.Weight: 13,4 kg (29.6 lbs)

Electrohydraulic Actuation -Dimensions: 386 mm (15.2 in) long x 75,0 mm (2.95 in) wide x 165 mm (6.50 in) high.Weight: 15,1 kg (33.2 lbs)

Notes: Dimensions and weights for “G” and “W”sections are identical to “F” sections.

Click here for port dimensions.

Click here for valve bank dimensions.

$�����

������������

$��������%�&

�'#��()���#*

+�������

������%��

�������������

$��������������

����(���*

,������������

$��������������

����(���*

�����-���"������������$������������������(���*

���:;;156@6A :;;�B�=C ?? 24;�B4;?4C 27;�B44:;C 24�B4;7C

���:;;1+ :;;�B�=C 44 �4;�B2=�4C �9;�B3�;;C 24�B4;7C

���:=;156@6A :=;�B3�C :�3 24;�B4;?4C 27;�B44:;C 24�B4;7C

���:=;1+ :=;�B3�C 79 �4;�B2=�4C �9;�B3�;;C 24�B4;7C

* At 14 bar (200 psi) load-sensing pressure drop.

9

The operating elements in the CMXsectional valve can be divided into fivefunctional groups: meter-in, meter-out,load drop check valves, load sensecheck valves and relief valve pilotstages. The electrohydraulic versionincludes additional solenoid operatedproportional reducing valves to provide pilot control pressure. Eachfunctional group is described in thefollowing pages.

Meter-in element

The meter-in element ports fluid fromthe valve inlet port to the “A” or “B”meter-in chamber. The meter-in elementis a pilot operated, spring centered,proportional sliding spool. The inlet portis closed in neutral. Two differentsprings are available to provide differentmeter-in cracking pressures (the pilotpressure required to begin flow from theinlet to an actuator port). The area gain(or slope of the metering curve) is thesame for both springs. The meter-inelement is available as a flow controltype (S*0**) or a pressure control type(S***).

Low flow spool options are available forboth the flow control meter-in element(L*0**) and the pressure control meter-inelement (L***). The low flow optionprovides finer metering and lower flowcapability than the standard S*** spoolfor functions where the full flowcapability of the valve is not desired.Low flow spools are available for theCMX100 only.

Flow control meter-in elements

“S*0” and “L*0”

The flow control element (shown on thefollowing page) provides nearly constantflow for a given command signal,independent of pressure drop across themeter-in spool and independent of loadpressure. Flow is proportional tocommand pilot pressure differential.Pressure compensation, which isachieved by utilizing flow forces,minimizes load interaction caused bythe simultaneous operation of more thanone function.

��������$��������������������������

���������������������������������

�����0������������������

��)�����������������������������

����������������� ����������

��������������� ��� �����������

������������������������������������

�� ����������� ������ ������������������

� ���������������� � �����������

������� ���������� ������������������

��������������� ��������� ����

In the standard vented spool, fluidpasses through an orifice to the centerof the spool to the pilot pressure ports,where it is drained to tank via the HRC (hydraulic pilot models) or thereducing valve (electrohydraulicmodels). Ball check valves preventreverse flow through the vent when pilotpressure is applied to spools.

��������������������#���5������

����� �,������������

������������������:;;������#��

,�����������������������

������������������:;;�<���5�����#

,�����������������������

������������������:=;������#��

,�����������������������

'��#����� ������#����������

����������� ���������#���������

��������������������������������

�����������������������������B�;;DDC

� �';;DDC�

:;

Operating Valve Section

Command Port “C1”

Figure 6

PLST

BA

PSDR PS DR

PLST

BA

PSDR PS DR

Meter-in Spool Inlet

Spring Meter-in Chambers

Vent

Ball Check

Standard (SD) Model

Non-vented (SN) Model

CommandPort “C2”

Meter-inElement

Check ValvesFor VentedMeter-in Spool

C1 C2

C1 C2

Pilot Supply Thru Holes

::

5������?

90

80

70

60

50

40

30

20

10

0

300

250

200

150

100

50

0

CMX160 S*O**

CMX100 S*O**

CMX100 L*O**

“06” SPRING

“12” SPRING

0 100 200 300 400

0 5 10 15 20 25 30

2000 400 600 800 1000 1200 1400

0 100 200 300 400 500 600 700

Command Pressure, bar

CommandCurrrent,

mA

(12V coil)

(24V coil)

psi

gpm

lpm

CMX Meter-In Flow vs. Commandat 20 bar P-LS Pressure Differential

:�

Operating Valve Section

CMX100 Meter-In Pressure CompensationModel “S006” Meter-in Element

Pressure Drop (P–LS), bar

gpm

lpm

200

150

100

50

0

50

40

30

20

10

00 50 100 150 200 250 300 350

0 1000 2000 3000 4000 5000psi

22 bar (319 psi)

20 bar (290 psi)

18 bar (261 psi)

16 bar (232 psi)

14 bar (203 psi)

12 bar (174 psi)

10 bar (145 psi)

8 bar (116 psi)

Pressure Drop (P–LS), bar

gpm

lpm

200

150

100

50

0

50

40

30

20

10

00 50 100 150 200 250 300 350

0 1000 2000 3000 4000 5000psi

Command Pressure28 bar (406 psi)

26 bar (377 psi)

24 bar (348 psi)

22 bar (319 psi)

20 bar (290 psi)

18 bar (261 psi)

16 bar (232 psi)

14 bar (203 psi)

Figure 8a

Figure 8b

CMX100 Meter-In Pressure CompensationModel “S012” Meter-in Element

Command Pressure

:2

Operating Valve Section

Figure 8c

200

150

100

50

0

50

40

30

20

10

0

Command Pressure

20 bar (290 psi)

10 bar (145 psi)

0 50 100 150 200 250 300 350

0 1000 2000 3000 4000 5000

CMX100 Low Flow M-I Pressure CompensationModel “L006” Meter-in Element

psi

Pressure Drop (P-LS), bar

lpm

gpm

:3

Operating Valve Section

5������9�

CMX160 Meter-In Pressure Compensation(Flow Force Compensation)Model “S006” Meter-in Element

CMX160 Meter-In Pressure Compensation(Flow Force Compensation)Model “S012” Meter-in Element

5������9

0 1000 2000 3000 4000 5000

0 50 100 150 200 250 300 350Pressure Drop (P–LS), bar

gpm

lpm

100

80

60

40

0

100

200

300

400

psi

0 1000 2000 3000 4000 5000

0 50 100 150 200 250 300 350Pressure Drop (P–LS), bar

Command Pressuregpm

lpm

100

80

60

40

20

00

100

200

300

400

20 bar (290 psi)

psi

16 bar (232 psi)

26 bar (377 psi)

12 bar (174 psi)

Command Pressure

18 bar (261 psi)

16 bar (232 psi)

14 bar (203 psi)

12 bar (174 psi)2010 bar (145 psi)

0

8 bar (116 psi)

20 bar (290 psi)

24 bar (348 psi)

22 bar (319 psi)

:4

Operating Valve Section

Pressure control meter-inelement S****

This element (Figure 10) is similar to theflow control element, except thepressure control spool has a feedbackpiston on each end. The meter-inchamber pressure acts on the area ofthe piston and opposes the pilotpressure opening the spool. The result is that, for a given input signal(pilot pressure), the flow decreases asthe load pressure increases until themaximum pressure is reached at zero flow. By changing the input signal, the maximum load pressure canbe changed.

For a constant load pressure, changingthe input signal will change the velocityof the load. This feature provides the operator with a good “feel” for the

system by responding to changes inload pressure. For example, whendriving a load at a given speed, if anobstacle is encountered, the load willslow or even stop. This response,which is typical of traditional open centerbypass control valves, gives theoperator better control of the system.

The pressure control spool alsoincreases the system damping ratio,which affects system stability andresponse. By selecting the appropriatefeedback piston size (diameter), thesystem damping ratio can be tailored tothe application.

(Click here for feedback pistondiameters in the model code.)The larger the feedback piston, thegreater the increase in the damping ratiodue to the pressure control spool.

The pressure-flow relationship is shownin the Q-P diagrams on the followingthree pages. The slope of theconstant-pilot-pressure lines isdependent on feedback piston diameter.The flow is independent of loadpressure at zero load pressure, so aconstant pilot pressure line will interceptthe Q axis at the same point, regardlessof its slope.

The meter-in chambers are drained byan orifice to the pilot pressure ports in amanner similar to the S*0** flow control spool.

�������� ������������ $�����������

�������������������������� ����

������� ������������������ ������

���������

Command port“C1”

SpringFeedback piston

VentMeter–inspool

Command port“C2”

Meter–in chambers

Inlet

C1 C2

P

Figure 10

:=

Operating Valve Section

5������::�

5������::

CMX100 Meter-In Pressure Control SpoolPressure vs. FlowModel “S206” Meter-in Element

CMX100 Meter-In Pressure Control SpoolPressure vs. FlowModel “S406” Meter-in Element

CommandPressure

22 bar(319 psi)

350

300

250

200

150

100

50

0

5

4

3

2

1

0

kpsi

bar

Flow, lpm0

0 10 20 30 40

50 100 150

Command Pressure

24 bar(348 psi)

20 bar(290 psi)

16 bar (232 psi)

12 bar (174 psi)

8 bar (116 psi)

350

300

250

200

150

100

50

0

bar

Flow, lpm0

0 10 20 30 40

50 100 150

28 bar(408 psi)

32 bar(464 psi)

34 bar(MAX.)

gpm

gpm

20 bar(290 psi)

18 bar(261 psi)

16 bar(232 psi)

12 bar(174 psi)

8 bar(116 psi)

5

4

3

2

1

0

kpsi

:?

Operating Valve Section

5������:�

CMX160 Meter-In Pressure Control SpoolPressure vs. FlowModel “S206” Meter-in Element

CMX160 Meter-In Pressure Control SpoolPressure vs. FlowModel “S406” Meter-in Element

gpm

Flow, lpm

350

300

250

200

150

100

50

0

bar

Flow, lpm0 50 100 150

gpm0 10 20 30 40 50 60

32 bar(464 psi)

28 bar(406 psi)

24 bar(348 psi)

20 bar(290 psi)

16 bar(232 psi)

12 bar(174 psi)

8 bar(116 psi)

200 250

5

4

3

2

1

0

kpsi

Command Pressure

5������:��

350

300

250

200

150

100

50

0

bar

0 50 100 150

0 10 20 30 40 50 60

200 250

5

4

3

2

1

0

kpsi

20 bar(290 psi)

16 bar(232 psi)

12 bar(174 psi)

8 bar(116 psi)

22 bar(319 psi)

Command Pressure

:7

Operating Valve Section

CMX160 Meter-In Pressure Control ElementPressure vs. FlowModel “S506” meter-in element

bar

gpm

5

4

3

2

1

0

350

300

250

200

150

100

50

00 50 100 150 200 250

Flow, lpm

kpsi

12 bar(174 psi)

20 bar(290 psi)

24 bar(348 psi)

28 bar(406 psi)

28 bar(406 psi)

34 bar(Max.)

Command Pressure

Figure 12c

0 10 20 30 40 50 60

16 bar(232 psi)

8 bar(116 psi)

:9

Operating Valve Section

“S***” spool pressurecompensation

The pressure control spool is pressurecompensated by flow forces to provide

constant flow independent of supplypressure, to minimize functioninterference. Since the spool doesrespond to load pressure and thepressure compensation curve is not

perfectly flat, changes in load pressurewill cause slight changes in the pressureflow relationship, as shown below(Figure 13).

Pressure Drop (P–LS), bar

5������:2

CMX100 Meter-In Pressure CompensationModel “S406” meter-in element

CMX100 Meter-In Pressure Control SpoolModel “S406” meter-in element

(40 bar P–LS diff.)

(200 bar P–LS diff.)

(20 bar P–LS diff.)

gpm

lpm

200

150

100

50

0

50

45

40

35

30

25

20

15

10

5

0

0 1000 2000 3000 4000 5000

0 50 100 150 200 250 300 350

psi

350

300

250

200

150

100

50

0

5

4

3

2

1

0

0

0 50 100 150

10 20 30 40

Command Pressure20 bar(290 psi)

gpm

Flow, lpm

bar

kpsi

Command Pressure20 bar(290 psi)

(200 bar P–LS diff.)

(20 bar P–LS diff.)

(40 bar P–LS diff.)

�;

Operating Valve Section

Flow limitation orifice

Flow to a work function can be limitedby the installation of a restricting orificein the pump supply port of the valvesection. Since the orifice will restrict flow

to all sections downstream, its use isnormally limited to the last valve in abank. The orifice is only effective if thelimited flow function is the highestpressure function for the pump. Theorifice reduces the pressure drop across

the meter-in element, while the pumpmaintains a constant pressuredifferential between pressure and loadsensing. The flow limitation orifice isavailable as a special order only.

5������:3

CMX160 Meter-In Pressure Control Element5.5 Dia. Flow Limitation OrificeModel “S506” Meter-in Element

350

300

250

200

150

100

50

0

5

4

3

2

1

0

0

0 5 10 15

5 10 15 20 25 30 35 40 45 50 55 60 65 70

28 bar(406 psi)

24 bar(348 psi)

16 bar(232 psi)

12 bar(174psi)

Flow, lpmP–LS Pressure Differential = 20 bar constant

kpsi

bar

gpm

Command Pressure

8 bar(116 psi)

20 bar(290 psi)

�:

Operating Valve Section

Meter-In Flow LimitationOrifice Selection ChartMaximum Flow vs. Inlet Orifice Diameter

5������:3�

,

5��������������������

5������:3�

12

11

10

9

8

7

6

5

40 50 100 150 200 250

0 10 20 30 40 50 60

CMX100

CMX160

gpm

in

mm

Maximum Flow, lpm

10 bar15 bar

20 bar25 bar

.200

.250

.300

.350

.400

.450

��

Operating Valve Section

Load sensing check valves– standard design

The -25 design CMX sectional valvesare equipped with load sense checkvalves (Figure 15) that are different fromthe load sense shuttle valves providedon earlier models. The function of theload sense check valves is to supply thehighest active load pressure to the loadsense passage, while isolating lowerpressure meter-in chambers from theload sense passage. The load dropcheck valves prevent the load pressure

from overrunning loads or inactive(neutral) sections from reaching themeter-in chambers. When one or moreof the sections in a valve bank isenergized, the highest meter-in pressureis presented to the load sense port, which in turn controls the pump output pressure.

The load sensing pumps supplied byVickers normally produce an outputpressure between 13.8 bar (200 psi)and 41.4 bar (600 psi) above the loadsense pressure. When all the sections

are centered (or whenever the meter-inload sense signal decreases), all theload sense check valves close, trappingfluid in the load sense passage. Aprovision to vent this trapped fluid mustbe provided to allow the load sensesignal to decay and the pump outputpressure to return to standby. Valvebank end covers are available with aprovision to vent the load sense port to drain.

Click here to see model code.

5������:4

�.��

�,

���$ �� �$

+����� ,�����

<+�,���B,����� ����������� �� ���������������C

�����#���������

<� ��������������

,�����+�����

�2

Operating Valve Section

On systems which utilize the 0.5 mmbleed orifice, it is recommended foroptimum performance that the orifice belocated at the end of the valve bankopposite the pump connection. Onmultiple valve bank systems, the loadsense connections should be made inseries, with the orifice located as farfrom the pump as possible. Onmid–inlet valve banks, the loadsense-to-pump connection should bemade at one end cover, and the bleedorifice located at the opposite end cover.The reasons for the aboverecommendations are as follows:

Flow in the load sense passage to theload sense bleed orifice causes a

pressure drop through each section.The cumulative effect of the pressuredrop through each section can besignificant, especially at higher loadsense pressures, higher fluid viscosities,and when many sections are present.The higher load sense pressures causea higher bleed flow rate, and higher fluidviscosities (such as cold oil) cause ahigher pressure drop. If the bleed flowis toward the pump load sense port(Figure 16b), the pressure dropsubtracts from the load sense signal.For example, assume a 200 bar (2900psi) load, and a pump load sense settingof 13.8 bar (200 psi). When the valve isenergized, the 200 bar is presented to

the load sense passage. If flow to thebleed orifice causes a pressure loss of0.7 bar (10 psi) per section, and thereare eight sections between the valveand the pump, then the pump will sensea load sense signal of 194.4 bar (2820psi), and maintain an output pressure of194.4 + 13.8 = 208.2 bar, which is only 8.2 bar (119 psi) above the loadpressure. The result will be sloweroperation for that function. If the bleedflow is away from the pump load sense(Figure 16a), then the actual load sensepressure is supplied to the pump without flow induced pressurelosses, and consistent performance canbe achieved.

/������������

/������������

'-��8>�-��>'E>E

$�����/����.�,���/���������$�����/��$����

5����%/&�����������#�����

5����%/&�����������#������

5����%"&�����������#������

5����%"&�����������#������

5������:=

5������:=�

E������������������

<� ����������

<� ����������

E�������#�����������

�3

Operating Valve Section

Load drop check valves –standard

The load drop check valves (Figure 17)isolate the meter–in spool and the loadsense check valves from the actuatorports. This feature makes it possible tomaintain very low cylinder port leakageindependent of meter-in spool-to-bore

clearance. Therefore, meter-inspool-to-bore clearances are relativelylarge, minimizing hysteresis and makingmeter-in spools fully interchangeable.

Bleed orifice

Certain applications, such as brakerelease circuits and counterbalance

circuits, require low actuator portpressure to be maintained in neutral.Load drop check valves with a bleedorifice are available to vent fluid trappedin the actuator ports to the meter-inchambers. This feature requires ameter-in element with drain orifices andis available as a special order only.

�.��

BA

���$ �� �$

Passage to actuator port ASpring

Retainer

Load drop check valve poppetMeter–in chamber

Bleed orifice(when req’d)

5������:?

Load dropcheck valve

Passage to actuator port B

Meter–in spool

Load sensecheck valve

Meter–in chamber

�4

Operating Valve Section

5������:7

0 10 20 30 40 50 60 70 80

0 50 100 150 200 250 300Flow, lpm

250

200

150

100

50

0

15

10

5

0

bar

psi

d

gpm

CMX100

CMX160

CMX Sectional Valve Load Drop CheckFlow vs. Pressure Drop

�=

Operating Valve Section

Meter-out elements

Meter-out control is achieved by using apilot poppet-stem along with amodulating meter-out poppet to form asimple hydromechanical bleed servo(Figure 19). Actuator port pressure actson the annular differential area betweenthe major outside diameter of themeter-out poppet and the meter-outpoppet skirt (or seat) diameter, andtends to push the meter-out poppetopen. The pressure in the springchamber acts on the full major O.D.area of the meter-out poppet, and tendsto close the meter-out poppet. Whenthe meter-out element is closed, thepressure in the spring chamber isequalized to actuator port pressure via a

0.75 mm (.030 in.) orifice in themeter-out poppet. Since the pressure inthe spring chamber is only partiallyoffset by the actuator port pressureacting on the annular area, themeter-out poppet remains closedprovided tank pressure is below actuatorport pressure.

To open the meter-out poppet, pilotpressure applied to the meter-in springchamber is transmitted by a passage inthe control cap gasket to the meter-outpiston. The force against the meter–outpiston moves the poppet-stem from itsseat and against the opposing spring,opening a passage from the meter-outspring chamber to the tank passage.Fluid then passes from the actuator port

through the orifice in the meter-outpoppet to the spring chamber and thento tank. This flow develops a pressuredifferential across the orifice in themeter-out poppet, which subtracts fromthe actuator port pressure, reducing themeter-out spring chamber pressure.When the pressure in the meter-outspring chamber falls low enough, theactuator port pressure acting on theannular area will overcome themeter-out spring chamber pressure andopen the meter-out poppet, moving ittoward the poppet stem. This motion willtend to close the poppet-stem against itsseat, reducing the flow-inducedpressure drop across the orifice andincreasing the pressure in the meter-outspring chamber.

PLST

BA

PSDR PS DR

*� ,����

�����#���������� ��������

/�����������-������+�����

,������#����

Figure 19. The meter-out element is not pressure compensated,so interaction problems with the meter-in element are avoided.

Meter-out element

�?

Operating Valve Section

The meter-out poppet will assume aposition where the poppet stem-to-seatrestriction is such that the reducedpressure in the meter-out springchamber balances the forces on themeter-out poppet. The net effect is thatthe meter-out poppet follows thepoppet-stem position. The movement ofthe poppet-stem is controlled only by thepilot signal and the spring it movesagainst. The position feedback gain ofthe meter-out poppet is high, so a smallchange in position of the meter-outpoppet away from the balanced-force

position results in a large increase inforces acting to return the meter-outpoppet to the balanced-force position.These forces are high compared to flowforces, so the meter-out poppet will notclose prematurely due to flow forces.

Several different meter-out poppets areavailable which provide different areagains. A high gain poppet (low �P atrated flow) provides better control whenlowering a light load. A low gain poppet(high �P at rated flow) provides bettercontrol when lowering heavy loads.

Meter-out poppets are rated accordingto the actuator port to tank pressuredrop in bar across the poppet at thevalve’s rated flow with the poppet fullyopened. Performance data is shownbelow and on the following three pages.

5�������;

250

200

150

100

50

0

60

50

40

30

20

10

0

0 20 40 60 80 200180160140120100

0 2 4 6 8 10 12 14Command Pressure, bar

gpm

psi

100 bar(1450 psi)

20 bar(290 psi)

10 bar(145 psi)

CMX100 Meter-out Flow vs. Command“S03” (3 bar) Meter-out High Gain Poppet

Pressure Drop (actuator port to tank)

50 bar(725 psi)

lpm

�7

Operating Valve Section

Figure 20c

Figure 20b

CMX100 Meter-out Flow vs. Command“S14” (14 bar) Meter-out Medium Gain Poppet

CMX100 Meter-out Flow vs. Command“S90” (90 bar) Meter-out Low Gain Poppet

250

200

150

100

50

0

60

50

40

30

20

10

0

0 20 40 60 80 100 120 140 160 180 200

0 2 4 6 8 10 12 14

Pressure Drop (actuator port to tank)200 bar

(2900 psi)100 bar

(1450 psi)

50 bar(725 psi)

20 bar(290 psi)

10 bar(145 psi)

gpm

lpm

Command Pressure, bar

psi

250

200

150

100

50

0

60

50

40

30

20

10

0

0 20 40 60 80 100 120 140 160 180 200

0 2 4 6 8 10 12 14Command Pressure, bar

gpm

lpm

psi

350 bar(5075 psi)

200 bar(2900 psi)

100 bar(1450 psi)

50 bar(725 psi)

Pressure Drop (actuator port to tank)

20 bar(290 psi)

10 bar(145 psi)

�9

Operating Valve Section

Figure 21b

Figure 21a

CMX160 Meter-out Flow vs. Command“S04” (4 bar) Meter-out High Gain Poppet

CMX160 Meter-out Flow vs. Command“S07” (7 bar) Meter-out High Gain Poppet

Command Pressure, bar

Command Pressure, bar

110

100

90

80

70

60

50

40

30

20

10

0

0 20 40 60 80 100 120 140 160 180 200psi

110

100

90

80

70

60

50

40

30

20

10

0

gpm

400

300

200

100

00 2 4 6 8 10 12 14

Pressure Drop(actuator port to tank)

100 bar(1450 psi)

50 bar(725 psi) 20 bar

(290 psi)

10 bar(145 psi)

lpm

0 20 40 60 80 100 120 140 160 180 200psi

gpm

400

300

200

100

00 2 4 6 8 10 12 14

Pressure Drop(actuator port to tank)

200 bar(2900 psi)

20 bar(290 psi)

10 bar(145 psi)

lpm

50 bar(725 psi)

100 bar(1450 psi)

2;

Operating Valve Section

Command Pressure, bar

5�������:�

5�������:

CMX160 Meter-out Flow vs. Command“S14” (14 bar) Meter-out Medium Gain Poppet

CMX160 Meter-out Flow vs. Command“S56” (56 bar) Meter-out Low Gain Poppet

110

100

90

80

70

60

50

40

30

20

10

0

110

100

90

80

70

60

50

40

30

20

10

0

0 20 40 60 80 100 120 140 160 180 200psi

gpm

400

300

200

100

00 2 4 6 8 10 12 14

Pressure Drop(actuator port to tank)

200 bar(2900 psi)

50 bar(725 psi)

20 bar(290 psi)

10 bar(145 psi)

lpm

Command Pressure, bar

100 bar(1450 psi)

0 20 40 60 80 100 120 140 160 180 200psi

gpm

400

300

200

100

00 2 4 6 8 10 12 14

Pressure Drop(actuator port to tank)

50 bar(725 psi)

20 bar(290 psi)

10 bar(145 psi)

lpm

100 bar(1450 psi)

200 bar(2900 psi)

350 bar(5075 psi)

5��������

30

28

26

24

22

20

18

16

14

12

10

8

6\

4

2

0

400

300

200

100

0

“S90” Poppet

“S03” Poppet

“S14” Poppet

0 50 100 150 200

0 10 20 30 40 50gpm

Flow, lpm

bar

psi

CMX100 Anti-Cavitation Check ValvesStandard (Reverse Flow Thru M–O Poppets)Flow vs. Pressure Drop (T � A)

2:

Operating Valve Section

Anticavitation check valves– standard

Cavitation protection is normallyprovided by reverse flow through themeter-out poppets. In this mode, tankpressure above the actuator portpressure, acting on the meter-outpoppet skirt area, opens the meter-outpoppet. Tank pressure is maintained by a back pressure check in the tankline. Performance (flow vs. pressuredrop) is shown in Figure 22 below andon the following page.

For meter-out load pressures above 70bar sufficient momentum exchangeoccurs, due to the high velocity jet froman actuator port exhausting fluidimpinging upon the opposite meter-outpoppet, to cause the opposite actuatorport pressure to be higher than the tankpressure. This phenomenon is fairlycomplex, since the opposite portpressure is a function of the loadpressure, load speed (or flow rate), thetank port pressure, the area gains ofboth meter-out poppets (poppet types)and the cylinder area ratio.

The following example is illustrative: fora CMX160 lowering A to T a load of 138bar (2000 psi), 160 lpm (42 USgpm), 1:1area ratio, open tank (no back pressurecheck valve), a type “56” meter-outpoppet in the A port, and a type “07”poppet in the “B” port; the “B” portpressure is 12.9 bar (187 psi) and thetank port pressure is 0.5 bar (7 psi). Forthe same conditions with a 2:1 arearatio, the “B” port pressure would be 7.6bar (110 psi) and the tank pressurewould be 0.7 bar (10 psi).

2�

Operating Valve Section

5���������

CMX160 Anti-Cavitation Check ValvesStandard (Reverse Flow Thru M–O Poppets)Flow vs. Pressure Drop (T � A)

40

30

20

10

0

500

400

300

200

100

0

0 10 20 30 40 50 60 70

0 50 100 150 200 250 300Flow, lpm

bar

psi

gpm

“S14” Poppet

“S56” Poppet

“S04” Poppet

“S07” Poppet

22

Operating Valve Section

The meter-out poppet will remain closedwhen the tank pressure is above theactuator port pressure and the meter-outservo is piloted open. In this case, thepoppet-stem opens and fluid enters thespring chamber from tank. The orifice inthe meter-out poppet restricts the flowleaving the spring chamber, so thespring chamber pressure is nearly equalto the tank pressure. Since the actuatorport pressure is lower than tank, theforce on the annular area of themeter-out poppet due to actuator portpressure is less than the opposing force

due to tank pressure in the springchamber, and the meter-out poppetcloses and remains closed. Cavitationcan occur under these conditions, whichnormally occur only if the “float” featureis used, or when reversing the directionof a moving load.

(Click here for float feature.)Special meter-out poppets are availablewith check valves which prevent reverseflow into the meter-out spring chamberand subsequent uncontrolled closing ofthe meter-out poppet. (Not available forCMX160 “07” and “56” M-O poppets.)

Anticavitation module

For applications that require minimalback pressure in the tank port, a bolt-onmodule (Figure 23) is available thatprovides anticavitation performancesuperior to the meter-out poppet. Thismodule is only available on models with the SAE 4-bolt flange. Modules are available with single and dualanti-cavitation check valves. Figure 24,on th folloeing page, shows typicalperformance data.

PLST

B

A

PSDR PS DR

Figure 23

Poppet Spring

Tank Actuator port “B”Actuator port “A”

Module

23

Operating Valve Section

3.0

2.0

1.0

0.0

0 10 20 30 40 50gpm

40

30

20

10

0

psid

bar

Flow, lpm

CMX100

CMX160

0 50 100 150 200

Figure 24

CMX Anti-Cavitation Check ModuleFlow vs. Pressure Differential (T � A)

24

Operating Valve Section

������������

/����������������������������������

����������������������������������

��������������������������������

���������������������������������

���������������������������������

��������$���������������������

������.� ����������������������

��������������������������������

����������#�����������$����������

�����#��������������������� � �����

��������� ����������������,�����

�������������������������������

���������� ���� �������������#���

������������������� �� ����

����� �����������

����������������������� �������

������� � ��������������������#���

������$������#�������������������

���������������������������

���#����������� �������� ������ �

����������������������������

���#��������������������

��������������������������������

���#����������� ����

5�������4����������������� �����

�����������������

CMX160 “Float” PerformanceFlow vs. Pressure Drop (B � A)Flow B � T � A (T Blocked)

500

400

300

200

100

0

40

30

20

10

0

0 10 20 30 40 50

gpm

“A” Port “B” PortPoppet Poppet

“S14” “S14”

“S14” “S04”

“S04” “S04”

60 70

psi

bar

Flow, lpm0 50 100 150 200 250 300

Figure 25

2=

Operating Valve Section

Meter-out spool

A version of the CMX that replaces themeter-out poppets with a spool isavailable.

(Click here to see model code.) This version does not provide meter-outmetering, load holding or relief valveprotection. This version can be usedwith counterbalance valve circuits. Two

meter-out spool versions are available;one is open in neutral, the otherprovides restricted flow to tank inneutral. The restriction is equivalent to a0.75 mm (.030 in.) orifice.

Figure 26

PLST

B

A

PSDR PS DR

Port “A” Port “B”

Meter–out spool

2?

Operating Valve Section

Figure 27b

Figure 27a

CMX100 Meter-out Spool PerformanceFlow vs. Pressure Differential A-TFlow A � T

CMX100 Meter-out Spool PerformanceFlow vs. Pressure Differential A-BFlow A � T � B (T Blocked)

0 50 100 150 200

140

120

100

80

60

40

20

0

“M00” Spool (Center)

“M00” Spool (Shift)

“N00” Spool (Shift)

10

9

8

7

6

5

4

3

2

1

0

psi

bar

Flow, lpm0 50 100 150 200

10

9

8

7

6

5

4

3

2

1

0

0 10 20 30 40 50

bar

“M00” Spool (Center)

140

120

100

80

60

40

20

0

psi

0 10 20 30 40 50

NOTE: Centered spool malfunctions at flows above 200 lpm.

gpm

gpm

Flow, lpm

NOTE: Centered spool malfunctions at flows above 200 lpm.

27

Operating Valve Section

Actuator port relief valve

The actuator port relief valve uses apilot stage to provide a pilot signal to themeter-out servo that, in turn, opens themeter-out poppet to relieve fluid to tank.

The relief valve pilot stage consists of apoppet, seat and spring (Figure 28).When actuator port pressure overcomesthe relief valve spring force, the reliefvalve poppet moves off its seat and fluidflows into the passage in the control capgasket (on hydraulic models, the reliefvalve poppet seat is incorporated intothe load drop check retainer).

This is the same passage thatcommunicates the meter-in springchamber to the meter-out piston. Arestriction in the control cap gasket islocated in this passage between therelief valve poppet and the meter-inspring chamber (between the reliefvalve poppet and reducing valve onelectrohydraulic models). Flow from the relief valve through the restrictioncauses pressure to build on the reliefvalve side of the restriction and istransmitted directly to the meter-outpiston, which in turn opens the

meter-out servo and meter-out poppet,relieving pressure in the actuator port.The relief valve setting is adjustable byshimming the pilot poppet spring, or byusing an optional adjustable relief valve.Relief valve override characteristics aregiven in Figures 29 and 30 on thefollowing four pages.

Adjustable relief valves are factorypreset at 210 bar (3000 psi). Theadjustment range is from 100 to 290 bar(1450 to 4200 psi). Adjustmentsensitivity is 45 bar (650 psi) per turn ofthe adjusting screw.

Meter-in spring chamber

5�������7

Actuator port AActuator port B

Meter–outpoppet

Meter-in spool

Control cap

Load drop check retainer

Adjustable relief(optional)

Gasket

C1

DR T LS P DR

C2

AB

Restriction incontrol cap gasket

Actuator portrelief valve

Actuator portrelief valve

Relief valve pilot stage poppet

Meter–outpiston

Spring

Shims

Tank passage

,�����������

PSPS

29

Operating Valve Section

5�������9�

5�������9

CMX100 Sectional ValveRelief Valve Override“S03” Meter-out Poppet

CMX100 Sectional ValveRelief Valve Override“S14” Meter-out Poppet

5

4

3

2

1

0

400

300

200

100

00 50 100 150 200

5

4

3

2

1

0

kpsi

bar

Flow, lpm

0 10 20 30 40 50 60

Minimum Setting

gpm

400

300

200

100

00 50 100 150 200

kpsi

bar

Flow, lpm

0 10 20 30 40 50 60

gpm

Minimum Setting

3;

Operating Valve Section

CMX100 Sectional ValveRelief Valve Override“S90” Meter-out Poppet

0 50 100 150 200

0 10 20 30 40 50

Minimum Setting

400

300

200

100

0

bar

5

4

3

2

1

0

kpsi

60

Flow, lpm

gpm

Figure 29c

3:

Operating Valve Section

5������2;�

5������2;

CMX160 Sectional ValveRelief Valve Override“S04” Meter-out Poppet

CMX160 Sectional ValveRelief Valve Override“S07” Meter-out Poppet

5

4

3

2

1

0

5

4

3

2

1

0

400

300

200

100

0

kpsi

bar

Flow, lpm

0 10 20 30 40 50 60

gpm

Minimum Setting

gpm

0 50 100 150 200Flow, lpm

250 300

0 50 100 150 200 250 300

400

300

200

100

0Minimum Setting

kpsi

bar

70 80

0 10 20 30 40 50 60 70 80

3�

Operating Valve Section

5������2;

5������2;�

CMX160 Sectional ValveRelief Valve Override“S14” Meter-out Poppet

CMX160 Sectional ValveRelief Valve Override“S56” Meter-out Poppet

5

4

3

2

1

0

400

300

200

100

0

kpsi

bar

Flow, lpm

0 10 20 30 40 50 60

gpm

0 50 100 150 200 250 300

70 80

0 10 20 30 40 50 60

gpm

70 80400

300

200

100

0

bar

Flow, lpm0 50 100 150 200 250 300

5

4

3

2

1

0

kpsi

5������2:

200

150

100

150

0

lpm

Command pressure, bar0 5 10 15 20 25 30

50

40

30

20

10

0

gpm

Test Conditions:

� “S006” Meter-in Element� 20 bar (290 psi) LS Pressure Differential� 21 cSt (100 SUS) Fluid

0 435

psi

CMX160 Valve (Hydraulic Actuation)Typical Meter-in Hysteresis

145 290

32

Operating Valve Section

Hydraulic actuation

Pilot pressure is supplied to eachsection via two #6 SAE O-ring bossports located on each control cap. Pilotdrain connections must be madeexternal to the reservoir. External drainis always the preferred configurationand MUST be used if tank pressure ishigh due to the installation or a backpressure check valve, or if high pressuretransients (“spikes”) are likely.

It is important to note that the meter-outservo is referenced to the valve bankdrain, while the meter-in spool isreferenced to the opposite portcommand pressure. This requires theHRC drain pressures to be considered,since different drain pressures for thevalve bank and the HRC will altermeter-in and meter-out phasing. Ideally,both the HRC and the CMX valve bankshould be drained directly to thereservoir via generously sized lines.

Hydraulic actuation data is given below.

,����,��#���

�6-��B��C

�6 %;=&+�������B��C

�6 %:�&+�������B��C

����3��B=:C

=��B9;C

::�3B:=4C

8�� ����

:2�7B�;;C

:4�4B��4C

�;�?B2;;C

Tolerance: �1 bar

Pilot Requirements:

Pressure: 34 bar (500 psi) max.Flow: 12 lpm (3 USgpm) recom.Filtration: 25 microns or finer

Required shift volume (displacement):

�������� ���:;; ���:=;

�6 B�������������������C

:�=2��� ��4=���

�6- :�;:��� ��4=���

33

Operating Valve Section

5������2:�

CMX160 Valve (Hydraulic Actuation)Typical Meter-out HysteresisCommand Pressure vs. M-O Flow

50

40

30

20

10

0

200

150

100

50

0

0

Test Conditions:

� “S14” Meter-out Poppet� 40 bar (580 psi) Load Pressure� 21 cSt (100 SUS) Fluid

gpm

0 2 4 6 8 10 12 14

lpm

Command Pressure, bar

0 20 40 60 80 100 120 140 160 180 200

psi

Electrohydraulic actuation

Electrohydraulic CMX sectional valvesoperate on the same principles as thehydraulic valves, with the addition of anelectrohydraulic proportional reducingvalve (Figure 32) to convert an electricalinput signal to a proportional commandpressure signal that operates the valve.The solenoid provides an output forceproportional to the input current that actson the solenoid end of the pilot spool.

When the solenoid is energized, thepilot spool is moved away from thesolenoid, closing the command port totank and opening the pilot supply to thecommand port. Command portpressure is supplied to the feedback endof the pilot spool through the passage inthe end cap gasket. When the feedbackpressure begins to balance the solenoidforce, the pilot spool closes the pilotsupply passage.

As the command pressure rises (due toleakage), the feedback pressureovercomes the solenoid, and the pilotspool moves to open the control port totank. The pilot spool modulates tobalance the feedback pressure againstthe solenoid output force, thus providingan output pressure proportional to thesolenoid input current. The pilot spooland bore are designed for zero overlap,so deadband is minimized.

The pressure output serves as thecommand pressure to actuate the CMXmeter-in and meter-out elements. Thesignal to the solenoid should beconditioned to a pulse width modulatedvoltage or current signal. DC power, upto the coil rating, may also be used for“on-off” operation.

Supply Voltages: 12/24 VDCMaximum Current: 1.4/.7 AMPRecommended PWM Freq. : 100 Hz

Solenoids are available with DINstandard 43650 plugs, Metri-Pack�connector, or flying leads.

Valves are available with either internalor external pilot supply. On models withthe internal pilot option, pilot pressure issupplied to the proportional reducingvalve by an internal passage that isconnected to the system supplypassage in the inlet body. These modelsrequire that the minimum systempressure be maintained to the specifiedlimits to assure proper valve actuation.

Electrohydraulic CMX valves may beoperated manually in the event ofelectrical control failure by depressingthe manual override pin, located on theend of each solenoid, with a screwdriveror similar tool.

34

Operating Valve Section

5������2�

PLST

B

A

PSDR PS DR

Electrohydraulicproportional reducing valve

Command pressure passage

Pilot supplygallery

Pilot supply passage

Drain Coil

Pole face

Armature

Manual override

Pilot spool

>� ��������

Push pin

3=

Operating Valve Section

Electrohydraulic actuation

Internal pilot supplyMinimum system pressure:

Valves with Type “06” meter-in spring –19 bar (275 psi)

Valves with Type “12” meter-in spring –24 bar (350 psi)

External pilot supplyMinimum pressure:

Valves with Type “06” meter-in spring –19 bar (275 psi)

Valves with Type “12” meter-in spring –24 bar (350 psi)

Since both electrohydraulic reducingvalves are referenced to a commondrain via the end cover, drain pressureis not critical. Either an internal drain to tank or an external drain (preferred) is available.

(Click here to see model code.).

If high pressure transients are present inthe tank line, an external drain shouldbe used to avoid function interaction. Ifthe tank pressure is above 8.6 bar (125psi), an external drain should be used toavoid exceeding the pressure rating forthe pilot passages (35 bar [500 psi]).

Under certain operating conditions (highinlet pressure, fully shifted, and openrelief valve), pilot drain flow can be ashigh as 4 lpm (1 USgpm) for each activesection. Total anticipated drain flow mustbe considered when sizing drain lines.

5������22

400

300

200

100

0

Test Conditions:

� Vickers EMVP-**-10 Controller� 2.5 V Dither� 34 bar (500 psi) External Pilot Pressure� 21 cSt (100 SUS) Fluid

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

00 100 200 300 400 500 600 700

0 200 400 600 800 1000 1200 1400

psi

bar

Command Current, mA (24V solenoid)

Electrohydraulic Reducing Valve for CMX Control PressureOutput Pressure vs. Command Current

Command Current, mA (12V solenoid)

3?

Operating Valve Section

5������23

0 100 200 300 400 500 600 700 800 900 1000

5

4

3

2

1

0

kpsi

300

200

100

0

Rise Rate =6500 Bar/Sec (93,000 psi/second)

Test Circuit

100 L/min

CMX100C1 C2

A B

This plot demonstrates the actuator port pressure responsewhich can be expected when a load is abruptly applied to anactuator, such as an excavator bucket hitting a rock while theboom is being lowered. The response is system-dependent,so actual performance may vary.

Elapsed Time, mSec.

CMX100 Relief Valve ResponseActuator Port Pressure vs. Time

bar

Relief Valve Setting: 220 bar (3190 psi)

P T

37

Operating Valve Section

5������23�

CMX100 Relief Valve ResponseActuator Port Pressure vs. Time

0 100 200 300 400 500 600 700 800 900 1000

5

4

3

2

1

0

kpsi

300

200

100

0

Relief Valve Setting: 220 bar (3190 psi)

Rise Rate =6000 Bar/Sec (85,000 psi/second)

Test Circuit

100 L/min

CMX100C1 C2

A B

This plot demonstrates the actuator port pressure response which can be expected when a moving load isabruptly stopped by switching the solenoid off. The response is system-dependent, so actual performancemay vary.

Elapsed Time, mSec.

PP

P T

bar

39

Operating Valve Section

5������23�

CMX100 Relief Valve ResponseActuator Port Pressure vs. Time

0 100 200 300 400 500 600 700 800 900 1000

5

4

3

2

1

0

kpsi

300

200

100

0

Rise Rate =4500 Bar/Sec (64,000 psi/second)

Test Circuit

100 L/min

CMX100C1 C2

A B

This plot demonstrates the actuator port pressure responsewhich can be expected when a moving load is abruptlystopped by rapidly centering the HRC lever. The responseis system-dependent, so actual performance may vary.

Elapsed Time, mSec.

PP

P T

Relief Valve Setting: 200 bar (2900 psi)

bar

*8

4;

Special Features

Meter-in pressure limitation

In this version (Figure 35), the orificerestriction in the control cap gasket isrelocated to the inlet to the meter-inspring chamber.

This feature limits meter-in flow at apreset actuator port pressure.

5������24

�.��

,

���$ �� �$

:�;����B�;3;���C��������

@�������������������

�����#������������������������

@���������������������

�����#������������������������

CMX100 Meter-in Pressure LimitationActuator Port Pressure vs. Inlet Flow“S14” M-O Poppet, Blocked Actuator Ports

50

40

30

20

10

0

200

150

100

50

00 50 100 150 200

Command Current 700 mA

630 mA

560 mA

490 mA

420 mA

350 mA

0 1000 2000psi

Actuator Port Pressure, bar

Actuator Port Relief = 172 bar (2490 psi)

Figure 36

lpm

gpm

4:

Special Features

Meter-in pressure limitation

Meter-out poppet version (withport relief valves)

In valves with meter-out poppets, theport relief functions in the normalmanner. But because the orifice hasbeen relocated, the relief valve pilotstage also applies pilot pressure to themeter-in spool, which tends to opposethe command pressure. For example,assume we are driving a clamp cylinder“P” to “A”. When the cylinder fullyclamps, the “A” port relief setting isreached, and the pilot stage opens andbuilds pilot pressure to open themeter-out element. This pilot pressurealso acts on the meter-in spool opposingthe command pressure and tending toclose the meter-in spool, which reducesthe meter-in flow.

Since a pilot pressure of 4.2 bar (62 psi)is required to open the meter-outpoppet, a significant reduction in flow,equivalent to 4.2 bar (62 psi) commandpressure, through the meter-in spool willoccur before the meter-out poppetopens. From the meter-in command vs.flow diagrams on page 9, the reductionin flow is about 50 lpm (13 USgpm) forthe CMX100, and about 70 lpm (18 USgpm) for the CMX160.

The total amount of closing depends onthe command signal and is limited bythe relief valve override. When themeter-out element is opened enough topass the full meter-in flow, furtherincrease in relief valve pilot signal willnot occur and, in turn, further shutoff ofthe meter-in is not possible. In Figure36 the diagram shows the resulting inletflow as the load pressure changes whilethe command current is fixed.

The meter-in pressure limitation featurelimits horsepower losses through theopen relief valves of a function withrelief settings below the systempressure setting. It is particularlyeffective for swing functions where therelief valves are set to limit maximumtorque. On these applications, with amoving load, meter-in pressurelimitation can prevent any losses overan open port relief valve. The meter-inpressure limitation feature should beused with caution on functions where anoverrunning gravity load is possible.With certain combinations of meter-outpoppets and cylinder area ratios,uncommanded movement may occur. The use of the meter-in pressure limitation feature must beapproved by Vickers SystemsEngineering Department

4�

Special Features

Meter-in pressure limitation

Meter-out spool version (no actuator port relief)

In valves with the meter-out spool option(Figure 37), a relief valve pilot stage isadded (no relief pilot stage is present inthe standard configuration), and theorifice is located in the inlet to the

meter-in spring chamber. When thepilot stage opens, the resulting pilotsignal is applied to both the meter-in andthe meter-out spools, opposing thecommand pilot pressure and tending toclose both spools. Due to the phasingof the meter-in and meter-out spools(the meter-in requires a higher pilotpressure to crack), the meter-in spool

will completely shutoff flow before themeter-out spool will port fluid to tank.Thus, virtually no horsepower is lostwhen the function is stalled. Thisfeature controls the maximum pressureto a function at a setting below thesystem pressure setting. For a profile ofactuator port pressure versus commandpressure, see Figure 38.

5������2?

�.��

,

���$ �� �$

Orifice

42

Special Features

5������27

CMX100 Meter-in Pressure LimitationModel “SP006-M0009” (M-O Spool Version)Actuator Port Pressure vs. Command Pressure

2000

1500

1000

500

0

140

130

120

110

100

90

80

70

60

50

40

30

20

10

00 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Test Conditions:

� Inlet: P–LS Pressure Differential = 14 bar (203 psi)� Blocked Actuator Ports� 90 bar pressure setting� 21 cSt (100 SUS) Fluid

NOTE: The pressure setting is definedas the actuator port pressurewith 14 bar (203 psi) commandpressure applied to the oppositecommand port.

0 100 200 300 400psi

psib

ar

Command Pressure, bar

Swing drive with free coast

This function utilizes a meter-out spooland a pressure controlling meter-inelement. Combining these featuresprovides acceleration control withminimal braking. Typical applicationsinclude swing drives and propelfunctions where braking control is notrequired or is accomplished by amechanical brake.

High flow single acting CMX

This option extends the flow range forthe CMX valve on applications requiringonly a three-way valve (Figure 39,following page). The meter-in spool isspring biased to one end of its bore, andas it is piloted open, it ports fluid first tothe “A” port then to both cylinder portssimultaneously. The meter-out poppetsremain closed when lifting. For lowering,the meter-in spool remains closed.

For superior metering while lowering,different gain meter-out poppets can be selected.

Both actuator ports must be connectedtogether externally by the user or by anoptional bolt-on block. The optionalbolt-on block is available only on theflange port sections. An option isavailable which uses only one meter-outpoppet when a large meter-out flow areais not required.

The dual poppet meter-out version is notavailable for the electrohydraulic narrowbody “S2” sections.

����������������������#�����

����� ��������������

����������������������#���������

�����������������

43

Special Features

5������29

�.��

,

�$ �$

High Flow, Single Acting CMX

44

Special Features

CMX Single Acting Meter-in Flow vs. Commandat 20 bar P-LS Pressure Differential

Command Pressure, bar

CMX100 “H006”CMX160 “H006”

100

80

60

40

20

00 5 10 15 20 25 30

(12V coil)

(24V coil)

0 200 400 600 800 1000 1200 1400

0 100 200 300 400 500 600 700

CommandCurrent, mA

0 100 200 300 400

lpm

gpm

psi

400

350

300

250

200

150

100

50

0

Figure 40a

4=

Special Features

5������3;�

5������3;�

CMX100 Single Acting Meter-in ElementPressure CompensationModel “H006” Meter-in Element

CMX160 Single Acting Meter-in ElementPressure CompensationModel “H006” Meter-in Element

100

80

60

40

20

0

gpm

lpm

0 50 100 150 200 250 300 350

0 1000 2000 3000 4000 5000

16 bar (232 psi)14 bar (203 psi)

12 bar (174 psi)

10 bar (145 psi)8 bar (116 psi)

Command Pressure

Pressure Drop (P-LS), bar

0 50 100 150 200 250 300 350Pressure Drop (P-LS), bar

0 1000 2000 3000 4000 5000

400

300

200

100

0

lpm

100

80

60

40

20

0

gpm

Command Pressure

22 bar (319 psi)20 bar (290 psi)18 bar (261 psi)16 bar (232 psi)

14 bar (203 psi)12 bar (174 psi)

10 bar (145 psi)

8 bar (116 psi)

psi

psi

400

300

200

100

0

4?

Special Features

Swing drive with pressurecontrolled braking

This feature provides meter-in pressurecontrol, proportional pressure controlledbraking through the command pressuresystem, and blocked actuator ports inneutral. To achieve proportional braking,the meter-out element is operated onlyby a special relief valve pilot circuit(Figure 41). (High gain meter out is

recommended because of relief valveoverride characteristics.)

The relief valve setting is controlled bythe command pressure, which isaccomplished by a piston that is actedupon by command pressure to opposethe spring load on the relief valve pilotpoppet. As the command pressureincreases, the actuator port pressurerequired to open the relief valve poppetdecreases, effectively decreasing the

relief valve setting. Thus when driving aload, the relief valve setting is at aminimum, typically about 8 bar (116 psi).To brake the load, the pilot pressure isdecreased, which increases the reliefvalve setting. The pilot pressure isdecreased until the desired brakingpressure is achieved.

Note: The adjustable relief valve option is not available with swing drivevalve sections.

5������3:

�.��

,

�$ �$

01

�����#��������

"��� ��������

8�����������������

+�����

,����

�����#���+����

�� ��

47

Special Features

Performance characteristics of themeter–out pressure control valve can beplotted using Q-P diagrams. Figure 42ais the Q–P diagram for the CMX100“S406” meter–in spool. Figure 42b is theQ-P (relief valve override) diagram ofthe “P03” relief valve for variouscommand pressures and a relief valvesetting of 208 bar. Combining thesediagrams yields Figure 42c (See Figure42e for CMX160 version). Note that theback pressure from the oppositeactuator port relief valve has beensubtracted from theconstant-pilot-pressure lines, so thepressure scale is the pressure dropacross the valve’s actuator ports. Now,for a given flow and command pressure,the pressure available to drive or brakethe load can be extracted. If anassumed steady state load curve isadded (Figure 42d), the chart can beused to determine the required

command pressure to drive the load at agiven speed; or, the equivalent brakingpressure (braking pressure plus the loadcurve) can be obtained.

To illustrate the operation of the valve,assume the load is at rest and the valveis in neutral. Figure 42d shows a brakingpressure of 185 bar at point A, which isthe relief valve setting, and the pressurethat must be imposed by an externalload to move the load. As pilot pressureis applied, pressure begins to be appliedto the actuator at point B. When theload pressure is overcome at point C,the load begins to move. If the pilotpressure is increased to 20 bar, the loadwill accelerate along the 20 bar pilotpressure line until the output pressureequals the steady-state load pressure atpoint E. Note that the pressureavailable to accelerate the load is theoutput pressure at any given flow and

pilot pressure minus the steady stateload pressure.

To slow or stop the load, the commandpressure is reduced. If the commandpressure is reduced to 16 bar (point F),the load will continue to be driven but ata pressure below the steady-state loadcurve. The load will slow along the 16bar line until the steady state load curveis intersected at G point. If thecommand pressure is further reduced to8 bar, the load will brake until the loadstops. Here, the effective decelerationpressure at any given speed is thebraking pressure plus the steady-stateload pressure.

By modulating the command signal, theoperator has complete proportionalcontrol of swing driving and brakingpressures. This control providessmooth, precise control of high inertiaswing drives.

5������3�

350

300

250

200

150

100

50

00 50 100 150

0 10 20 30 40

5

4

3

2

1

0

8 bar(116 psi)

12 bar(174 psi)

16 bar(232 psi)

20 bar(290 psi)

34 bar(MAX)

32 bar(464 psi)

28 bar(406 psi)

24 bar(348 psi)

kpsi

bar

gpm

5���$����

CMX100 Meter-in Pressure Control SpoolPressure vs. FlowModel “S406” Meter-in Element

Command Pressure

49

Special Features

5������3��

0

–20

–40

–60

–80

–100

–120

–140

–160

–180

–200

–220

–240

0

–1

–2

–3

0 50 100 150

0 10 20 30 40

Negative pressure indicatesbraking pressure

MIN.

16 bar (232 psi)

Command Pressure

12 bar (174 psi)

8 bar (116 psi)

4 bar (58 psi)

0 bar (0 psi)

kpsi

bar

gpm

5���$����

CMX100 Meter-out Pressure Control Relief Valve OverrideModel “P03” Meter-out Element

=;

Special Features

5������3��

CMX100 Pressure Control ValvePressure vs. FlowModel “S406-P03”

250

200

150

100

50

0

–50

–100

–150

–200

–250

0

3

2

1

0

–1

–2

–3

10 20 30 40

0 50 100 150

CommandPressure

28 bar(406 psi)

24 bar(348 psi)

20 bar(290 psi)

16 bar(232 psi)

12 bar(174 psi)

8 bar(116 psi)

4 bar(58 psi)

0 bar(0 psi)

kpsi

bar

Flow, lpm

gpm

=:

Special Features

5������3�

CMX100 Pressure Control ValvePressure vs. FlowModel “S406-P03”

250

200

150

100

50

0

–50

–100

–150

–200

–250

3

2

1

0

–1

–2

–3

0 50 100 150

0 10 20 30 40

CommandPressure

28 bar(406 psi)

24 bar(348 psi)

20 bar(290 psi)

16 bar(232 psi)

12 bar(174 psi)

8 bar(116 psi)

4 bar(58 psi)

0 bar(0 psi)

Load Pressure

A

B

C

D

E

F

G

H

Flow, lpm

bar

kpsi

gpm

=�

Special Features

5������3��

CMX160 Pressure Control ValvePressure vs. FlowModel “S506-P04”

3

2

1

0

–1

–2

–3

kpsi

260

240

220

200

180

160

140

120

100

80

60

40

20

0

–20

–40

–60

–80

–100

–120

–140

–160

–180

–200

–220

–240

–260

0 50 100 150 200 250

0 10 20 30 40 50 60

bar

Flow, lpm

gpm

Command Pressure

28 bar (406 psi)

4 bar (58 psi)

0 bar (0 psi)

12 bar (174 psi)

8 bar (116 psi)

20 bar (290 psi)

16 bar (232 psi)

24 bar (348 psi)

=2

Special Features

Free coast (type “F”meter-out)

This option provides a free coast or floatoperation in neutral. This isaccomplished by a passage betweenthe meter-out spring chamber and thecorresponding meter-in chamber (Figure

43). In neutral, pressure in the meter-inchamber is low; thus, the meter-outspring chamber pressure is low, and themeter-out poppet will open when therelatively light spring force of themeter-out servo stem is overcome.During commanded operation, a checkvalve prevents flow from the meter-in

chamber to the meter-out springchamber. Single “F” meter-out modelshold the load in one direction but not theother. The A*****F and B*****F modelshold the load in one direction but not the other. Dual “F” meter-out modelsgive a free coast or float feature in both directions.

5������32

�.��

,

���$ �� �$

����������

10

=3

Special Features

5������33

5������34��+�����E����������5�������BF����.���������#������������ ��������������������������#����������C

�.��

,

���$ �� �$

CMX100 Free Coast Performance“F03” Meter-out PoppetFlow vs. Pressure Differential

25

20

15

10

5

0

400

300

200

100

0

0 50 100 150 200 250

0 10 20 30 5040 60

Flow A � T

Flow A � T � B(T Blocked)

psi

bar

gpm

lpm

=4

Inlet Bodies

Standard end inlet bodyThe standard inlet body (Figure 46)provides connections for pump, tankand load sense. On electrohydraulicvalve banks, a connection is alsoprovided for pilot supply, which may be

internal or external. For internal pilotsupply, an internal passage connectsthe pilot supply to the pressure port. Forexternal pilot supply, this connectingpassage is blocked by a 1/4-28 UNF setscrew (.125 in. hex key) accessible

through the pump port, and the “XP”external connection is made through a#6 SAE O-ring boss port (.5625-18UNF-2B thread).

Click here to see other port sizes.

Figure 46

2��B������ ������������������C

.� �

CMX100 CMX160

.�

� 2�

.�

2�

Schematic of standard end inlet

-�����������������������������

�$ �$

==

Inlet Bodies

End inlet body with loadsensing relief valve(CMX100 only)

This inlet body (Figure 47) is designedfor use with fixed displacement pumpsto provide a combined function similar toa variable displacement load sensingpump, but at a lower system cost. Inaddition to the system connections forpressure, tank, optional load sense andoptional external electrohydraulic pilotsupply, the inlet section incorporates aload sensing relief valve that maintainsinlet pressure at a fixed level above loadsense pressure and limits maximuminlet pressure to a preset value.

The load sensing relief valve uses abalanced spool concept to control inletpressure. Load sense pressure fromthe valve bank is admitted to the springchamber via a 1.27 mm (.050”) orifice.

Load sense pressure plus the springload is balanced against the inletpressure on the opposite end of thespool. When the load sense pressureplus spring force is overcome by theinlet pressure, the spool opens allowinginlet flow to tank, thus controlling inletpressure. When the pre-set maximumpressure is reached in the springchamber, the pilot poppet opens, limitingthe spring chamber pressure (and thenthe inlet pressure) since the LS flow intothe spring chamber is controlled by the.050” orifice. Note that the pre-setmaximum pressure must be matched tothe spring(s) used, so the spools are not interchangeable.

Two springs are available, which may beused separately or as a nested pair togive three inlet-to-load sense pressuredifferential settings: 10 bar (145 psi), 16bar (232 psi) and 26 bar (377 psi). Theload sensing relief valve

is rated at 250 bar pressure (3625 psi).An optional solenoid operated unloadingvalve is also available which provides adirect path to tank when pump “standby”pressure is not desired. The unloadingvalve provides a 4.7 bar (68 psi)pressure differential at 100 lpm (26USgpm) and is open “P” to “T” when thesolenoid is de-energized. Theunloading valve is pressure rated at 205bar (3000 psi).

An optional external load senseconnection is available for specialapplications. Load sense connectionsfrom other valve banks should be madeat the end cover when a load sensedecompression orifice is used todecompress the load sense passage.The load sense decompression orificeshould be located as far as possiblefrom the load sensing relief valve.

Click here to see orifice locationdiagram.

Figure 47

P

T

LSP

C2C1

Inlet

Pilot poppet

Spool

Springchamber

Orifice

Load sense

Tank

Optionalunloadingvalve

T

CM

X s

ectio

ns

=?

Inlet Bodies

CMX160/100 mid-inlet

The mid-inlet (Figures 48 and 49)facilitates the use of CMX160 andCMX100 valve sections in the samevalve bank. The CMX160 sections aremounted on one side of the mid-inlet,and the CMX100 sections are mountedon the opposite side. System pressureand tank connections are made in themiddle of the valve bank, rather than onthe end.

Standard mid-inlet

The standard mid-inlet (Figure 48)provides connections for pump, tankand external pilot supply (forelectrohydraulic valves). Internal pilotsupply is available by omitting a setscrew plug in a connecting passagebetween the pump port and pilot supplypassage, and plugging the external port.Load sense and external drainconnections for mid-inlet valve banksare made at the end covers.

Figure 48

CMX 100’sCMX 160’s

Mid-inlet body

P XP T

LS

Internal pilot supply (Plugged for external pilot supply)

��

��:

=;

�+>

��

-'

+

��

��:

;;

�+>

��

-'

+

�2134'144����5����

=7

Inlet Bodies

Mid-inlet and CMX100-PC** endinlet with reducing valve andanticavitation make-up flow

This mid-inlet (Figure 49) incorporatestwo reducing/relieving cartridges toprovide pilot supply pressure and tankport make-up flow. The reduced pilotsupply pressure can be suppliedinternally to electrohydraulic sections� 6�������� ��������������*8�������

����������������������������#��

������� ������ ������������������

��������������������������

�� ������������������ ������

Make-up flow is an anti-cavitationfeature. It is required in circuits wherean overrunning load is causing anactuator to move and draw more fluidfrom the tank port than is being returnedby the opposite actuator port, and acheck valve in the tank line preventsfluid from being drawn from tank. (Aswing function powered by a hydraulic

motor is a typical circuit that requiresmake-up flow.) The reducing valveshould be set 0.69 bar (10 psi) belowthe back pressure check valve setting.

�������:;;#,�DD��� ��������� �����

����������� #�������� ��� �� ������

����������������������������

���:=;���������/���������������

������ ������ ����������� #����������

�� ������������ ������������

���#������������� ���

Figure 49

PRV2-10 cartridge (pilot flow)

PRV2-10 cartridge(make-upflow)

Drain

Aux. drain port

Inlet pressure

Internal pilot supply (electro-hydraulic valve)

Pilot supplyport (HRC)

Drain

Tank port

P1

PS

P2

CMX 100’s

CMX 160’s

DR

T

LS

�2134'144����5����

=9

End Cover

An end cover (Figure 50) is required toterminate each valve bank. The endcover provides a passage that connects

the control cap drain galleries fromeither side of the valve body.

Additionally, several optional featuresare located in the end cover:

��������������� ������

Internal/external drain Provides choice of internal or external drain. Click here and see “Actuation” pages.

Auxiliary load sense Provides load sense series connection for multiple valve banks. Click here to see“Load Sensing Check Valves”.

Load sense decompression orifice Provides load sense decompression to drain via a 0.50 mm (.020”) screened orifice.

Auxiliary “P” Port Augments “P” port in inlet body for special applications. Click here to see size chart.

Auxiliary “T” Port Augments “T” port in inlet body for special applications. Click here to see size chart.

PLST

B

A

PSDR PS DR

5������4;

DR LS

End cover (shown with load sense decompression orifice and external drain)

Drain

Load sense in

Load sensedecompressionorifice

Auxiliary “T” port

CMX100 CMX160

Drain plug(Removed for internal drain)

Endcover

Auxiliary pressure port

?;

Model Codes

Operating Section

Port Designation “B”

Repeat positions 6-13 forpositions 15-22

Equivalent positions (6 & 15) and (7 & 16) must be identical designators. Also, positions 10 & 19 must be identical when a meter-out spool is required.

Actuation

E – ElectrohydraulicH – Hydraulic (must have external drain

in end cover)

Solenoid Voltage(Electrohydraulic actuation only –leave blank for hydraulic actuation.)

G – 12 V DCH – 24 V DC

Electrical Connectors(Leave blank for hydraulic actuation.)

FL – Flying leadsU0 – DIN 43650 Spade plug onlyU1 – DIN 43650 CompleteMP –Metri-pack�

Design Number

10

Meter-in Cracking Pressure

06 – 6.3 bar (90 psi)12 – 11.6 bar (168 psi)

Meter-out Function

S – StandardP – Pressure control (must have

external drain). When P isdesignated in position 10 & position19, positions 11 & 20 must be “03”for a CMX100 and “04” for aCMX160.

F – Free coastM – Meter-out spool - fully open to tank

in neutral (CMX100 only)N – Meter-out spool - restricted opening

to tank in neutral (CMX100 only)V – Standard with externally vented

port relief

Meter-out Element(∆P @ rated flow)

00 – Meter-out spool, CMX100 only03 – 3 bar (44 psi), CMX100 only04 – 4 bar (58 psi), CMX160 only07 – 7 bar (102 psi), CMX160 only14 – 14 bar (203 psi) 56 – 56 bar (812 psi), CMX160 only90 – 90 bar (1305 psi), CMX100 only

Meter-out Special Features(Leave blank when module is not required.)

A – Anti-cavitation valve T to AB – Anti-cavitation valve T to BC – Anti-cavitation valve T to ABH – High flow module (requires high

flow meter-in function)

Meter-out Port Relief(Relief setting)

00 – Without pilot relief10-38 – Consecutive numbers

representing 100 bar (1450 psi)to 380 bar (5512 psi) inincrements of 10 bar (150 psi)e.g. 14 is 140 bar.

99 – Externally adjustable relief**(factory set to 207 bar (3000 psi).

Valve Series

Load sensingPressure compensated

Valve Series

100 – 100 l/min (26 USgpm) rated flow160 – 160 l/min (42 USgpm) rated flow

Port Configuration

S – Threaded port SAE O-ringconnection

W – Wide body threaded port SAEO-ring connection

F – Flanged port Code 62 SAE 4-bolthigh pressure

G – Flanged port Code 61 SAE 4-boltstandard pressure

Construction

2 – Sectional3 – Sectional with module (requires F

or G ports). See code position 12 for module designator.

Port Designation “A”

Meter-in Function

S – StandardP – Standard with pressure limitation, CMX100 onlyL – Low flow, 0-40 l/min (0-11 USgpm),

CMX100 onlyH – Single acting high flow

(up to twice rated flow)

Meter-in Designators

N – No vents in meter-in spoolD – Vented meter-in spool (standard)

Pressure Feedback Piston Dia.*

0 – No piston (flow control spool)2 – 1.6 mm (pressure control spool)4 – 3.6 mm (pressure control spool)

CMX100 only5 – 4.5 mm (pressure control spool)

CMX160 only

3 4 5 876 9 101 2 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

9

15 - 22

14

23

24

21 22 23 24 25 26

8

11

12

13

25

26

* When a pressure feedback piston is indicated in positions 8 & 17 together with a “P” in positions 10 & 19, relief settings below 140 bar (2030 psi) will result inexcessive leakage.** Not available with pressure controlmeter-out; i.e. P03*99 and P04*99 are not possible.

?:

PC** – Inlet body with pressure reducing valve and anticavitationmake-up flow – CMX100 only – SAE straight thread

10 – Pressure reducing valve only. Standard setting is 28 bar (400 psi).

2* – Make-up flow valve only. Indicate desired pressure setting; e.g., 2B. A – 3,5 bar (50 psi) B – 7 bar (100 psi) C – 10,5 bar (150 psi)

3* – Both pressure reducing valve – 28 bar (400 psi) – and make-up flow valve. Indicate desired pressure setting with appropriate letter as shown above; e.g., 3A.

Examples: CMX100-PC10

CMX100-PC2B CMX100-PC3C

Pilot Supply

H – HydraulicN – Internal pilot supply –

electrohydraulicE – External pilot supply –

electrohydraulic

Operating SectionOne required for each section, up toeight sections. Letter indicates sectionport configuration; i.e., S, W, F or G.

End Cover

C – Without LS (load sense) port, LS decompression orifice or external relief vent port

F – With LS port and 0,5 mm (0.020 in.)LS decompression orifice

L – With LS port onlyVV – With LS port and external relief

vent port. Only used with “V” meter-out function.

Auxiliary Ports in End Cover (Click here for port sizes.)

P – Aux. P portT – Aux. T port or gage portS – Aux. P & T ports

Drain (end cover)

X – External drain port openN – Internally drained

Mounting Holes

U – Inch threadsM – Metric threads

Click here for thread sizes.

Design Number

Assembly Number

Assigned by Vickers

3 4 5 876 9 101 2

Valve Banks with End Inlet

1

2

Valve Series

Inlet (Click here for port sizes.)

S – SAE straight thread – CMX100 onlyF – SAE 4-bolt flange, Code 62,

CMX160 onlyG – SAE 4-bolt flange, Code 61,

CMX160 onlyL – Load sense inlet – CMX100 only –

SAE straight thread

** Load sensing pressure differential in bar

10 – 10 bar (145 psi)16 – 16 bar (232 psi)26 – 26 bar (377 psi)

* Unloading solenoid valve,flying leads only

N – NoneG – 12 VDCH – 24 VDC

** Unloading relief valve setting:With solenoid valve;

Range 10–210 bar (145–3000 psi)Range codes 01–21 � 10 = pressure setting in bar.

Example: L16G18Without solenoid valve;

Range 10–250 bar (145–3625 psi)Range codes 01–25 � 10 = pressure setting in bar.

Example: L16N24

3

4

6

7

9

10

8

5

?�

Model Codes

Mid-inlet*

MS –SAE straight thread ports withprovision for cartridge valves

MG –SAE 4-bolt flange ports (code 61) with no provision for cartridge valves

Mid-inlet Cartridge Valve(s)

00 – No cartridge valves10 – Pilot supply valve.

Standard setting is 28 bar (400 psi).2* – Make-up flow valve pressure

setting. Indicate desired setting, e.g., 2B.

A - 3,5 bar (50 psi)B - 7 bar (100 psi)C - 10,5 bar (150 psi)

3* – Pilot supply valve – 28 bar (400 psi) – and make-up flow valve(Indicate desired pressure settingwith appropriate letter as shownabove; e.g., 3A).

Pilot Supply for Hydraulic Remote Controllers

E – External pilot port openH – External pilot port plugged

Drain (mid-inlet)

X – External drain port open (MS mid-inlet only)

B – Blocked drain (both internal &external drains plugged)

CMX100 Valve Series

Valve Operating Section(CMX100)

One letter required per section, up to 8sections. Letter indicates valve sectionport configuration; i.e., S, W, F or G.

3 4 5 876 9 101 2 11 12 13 14 15 16 17

Valve Banks with Mid-inlet

1

2

CMX160 Valve Series

End Cover (CMX160)

C – Without LS (load sense) port, LS decompression orifice or external relief vent port

F – With LS port and 0,5 mm (0.020 in.)LS decompression orifice

L – With LS port onlyV – With LS port and external relief

vent port. Only used with “V” meter-out function.

Auxiliary Ports in End Cover

P – Auxiliary “P” portT – Auxiliary “T” port or gage portS – Auxiliary “P & T” ports

Drain (CMX160 end cover)

X – External drain port openB – Blocked drain (both internal &

external drains pluggedN – Internally drained

Valve Operating Section (CMX160)

One letter required per section, up to 8sections. Letter indicates valve sectionport configurations; i.e., S, W, F or G.

3

4

5

6

7

8

9

10

12

13

End Cover (CMX100)

C – Without LS (load sense) port, LS decompression orifice or external relief vent port

F – With LS port and 0,5 mm (0.020 in.)LS decompression orifice

L – With LS port onlyV – With LS port and external relief

vent port. Only used with “V” meter-out function.

Auxiliary Ports in End Cover

P – Auxiliary “P” portT – Auxiliary “T” port or gage portS – Auxiliary “P & T” ports

Drain (CMX100 end cover)

X – External drain port openB – Blocked drain (both internal &

external drains pluggedN – Internally drained

Mounting Holes

U – Inch thread size. End covers, 1 hole each. Mid-inlet, 2 holes.

M – Metric thread size. End covers, 1 hole each. Mid-inlet, 2 holes.

Design Number

Assembly Number

Assigned by Vickers

11

14

15

16

17

D��@��� #����������������������������������������� ���+��� #������������������������������������� ��������� ��������������������

?2

Port and Mounting Hole Sizes

Dimensions in mm (inch) – valve banks with end inlet and end cover

������������ ,�������������

�������������(���������*

��"�����(���������*

�����-�.��������-������������-�6����������7�����������

������������� �����(8�������*�

,�6�����+�9�:�����

,�6�����+�9�:��� �������

������ ��;

���:;;#5:�$?�B�4;C ��������

B:�;=�4#:�CDD B:�2:�4#:�CDD B�4=�4#:7CDD�:;�1,5-6H20,0 deep

�32?4#:3F'�#�"�?4� ���

B�4=�4#:7CDD B�4=�4#:7CDD

���:;;#@ :�$?�B�4;C� ��� B:�;=�4#:�CDD B:�2:�4#:�CDD B�4=�4#:7CDD�:;�1,5-6H20,0 deep

�32?4#:3F'�#�"�?4� ���

B�4=�4#:7CDD B�4=�4#:7CDD

���:;;#+6A B:�;=�4#:�CDD B:�;=�4#:�CDD B:�2:�4#:�CDD B�4=�4#:7CDD�:;�1,5-6H20,0 deep

�32?4#:3F'�#�"�?4� ���

B�4=�4#:7CDD B�4=�4#:7CDD

���:=;#5 :9�B�?4C� ���� :9�B�?4C� ����2:$7�B:��4C� �������

B�4=�4#:7CDD�:��1,75-6H18,0 deep

�4;;;#:2F'�#�"�?:� ���

:9�B�?4C� ��������

B�4=�4#:7CDD

���:=;#@ :9�B�?4C� ��� �4�B:�;;C� ���2:$7�B:��4C� �������

B�4=�4#:7CDD�:��1,75-6H18,0 deep

�4;;;#:2F'�#�"�?:� ���

�4�B:�;;C� �������

B�4=�4#:7CDD

���:=;#+6A B:�2:�4#:�CDD �4�B:�;;C� ���2:$7�B:��4C� �������

B�4=�4#:7CDD�:��1,75-6H18,0 deep

�4;;;#:2F'�#�"�?:� ���

�4�B:�;;C� �������

B�4=�4#:7CDD

** SAE straight-thread O-ring connection.� SAE 4-bolt flange, standard pressure series (code 61).�� SAE 4-bolt flange, high pressure series (code 62).

� Valve banks with end inlet have three mounting holes: two ����������� ��� ���������� ��������Valve banks with mid-inlet have four mounting holes: two ���:=;#�.������������ #�������� �$��������:=;#�.��

�������������� �������� ��������:;;#�.��������������

�������� ���������

CMX100 bank

CMX100 sectionsCMX160 sections

Mid-inlet body

CMX160 bankEnd inlet body

End cover

End cover End inlet body

Typical End-inlet Valve Banks

Typical Mid-inlet Valve Bank

B

A

CMX100-S2CMX100-F2/G2/W2 CMX160-S2 CMX160-F2/G2/W2

201 (7.9) 201 (7.9)243 (9.6)243 (9.6)

47 (1.85) 59 (2.32)51 (2.01)75 (2.95)

366 (14.4)366 (14.4))386 (15.2)386 (15.2)

Hydraulic Actuation

Electrohydraulic ActuationModel Series

C (length, not shown)

A (width)

NOTE: Valve sections with different types of actuation, and/or different pressure ratings and port connections, can be used in the same valve bank. Click here for additional information on section sizes and pressure ratings. See preceding page for port and mounting hole sizes.

149 (5.87)144 (5.67)172 (6.77)165 (6.50)

B (height)

Dimensions, Millimeter (Inch) – Operating Sections

End cover

End cover

39 (1.54)35 (1.38)

50 (1.97) 27 (1.06)

86 (3.39)27 (1.06)

35 (1.38)

A

A A

B

B

B

?3

Valve Bank Dimensions