Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G...

51
® Clock Generation and Distribution for High-Performance Processors Stefan Rusu Senior Principal Engineer Enterprise Microprocessor Division Intel Corporation [email protected]

Transcript of Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G...

Page 1: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

®

Clock Generation and Distribution for High-Performance Processors

Stefan RusuSenior Principal Engineer

Enterprise Microprocessor DivisionIntel Corporation

[email protected]

Page 2: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 2®

Outline

• Clock Distribution Trends• Distribution Networks• De-skew Circuits• Jitter Reduction Techniques• Clock Power Dissipation• Future Directions• Summary

Page 3: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 3®

Clock Definition and Parameters• The clock is a periodic synchronization signal used as a time

reference for data transfers in synchronous digital systems

• Skew– Spatial variation of the clock signal

as distributed through the chip– Global vs. local skew

• Clock jitter– Temporal variation of the clock

with respect to a reference edge– Long-term vs. cycle-to-cycle jitter

• Duty cycle variation– 50/50 design target

RefClk

EndClk

tskew

tjitter

thigh tlow

Page 4: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 4®

Processor Frequency Trend

10

100

1000

10000

1987 1989 1991 1993 1995 1997 1999 2001 2003 2005

Freq

uenc

y [M

Hz]

386486

Pentium®

Pentium Pro®

Pentium® II

Pentium® III

Pentium® 4

Page 5: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 5®

Clock Skew Trend

0

100

200

300

400

500

600

100 1000 10000Processor Frequency [MHz]

Clo

ck S

kew

[ps]

Source: ISSCC and JSSC papers

Page 6: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 6®

Relative Clock Skew

0

2.5

5

7.5

10

100 1000 10000Processor Frequency [MHz]

Clo

ck S

kew

as

Perc

enta

geof

Cyc

le T

ime

[%]

• Clock skew accounts in average for ~5% of the cycle time

Source: ISSCC and JSSC papers

Page 7: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 7®

Sources of Clock Skew• With a perfectly balanced distribution, device mismatch

is the largest contributor to the clock skew

0 20 40 60

Device Mismatch (Le)

Supply Mismatch

Load Mismatch

Temperature Mismatch

Percent

Geannopoulos, ISSCC-1998

Page 8: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 8®

Clock Jitter Trend

0

100

200

300

400

500

100 1000 10000Processor Frequency [MHz]

Clo

ck J

itter

[ps]

Source: ISSCC and JSSC papers

Page 9: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 9®

Outline

• Clock Distribution Trends• Distribution Networks• De-skew Circuits• Jitter Reduction Techniques• Clock Power Dissipation• Future Directions• Summary

Page 10: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 10®

Clock Distribution Networks

Mesh GridTree

Tapered H-TreeH-Tree X-Tree

Page 11: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 11®

Inductance Effect

Xanthopoulos, ISSCC-2001

Page 12: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 12®

Itanium® Processor Clock Hierarchy

GlobalDistribution

VCC/2

DSK

DSK

DSKPLL

CLKPCLKN

RCD

RCDDLCLK

OTB

RegionalDistribution

LocalDistribution

ReferenceClock

MainClock

Rusu, ISSCC-2000

Page 13: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 13®

Local Clock Distribution• Local clock distribution enables flexible skew

management to support:– Intentional clock skew insertion for timing optimization– Clock gating for power reduction

Normal Local Clock Buffers Intentional

Skew Buffer

CombinatorialBlock

Regional Clock Grid

Rusu, ISSCC-2000

Page 14: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 14®

Itanium® 2 Processor Clock Distribution• First level: Pseudo-differential, impedance matched branching,

balanced h-tree • Second level: balanced, width and length tuned binary h-tree• Second Level Clock Buffers: adjustable delay buffer• Gaters: all constant input loading with load-tuned drive strength

gaters

SLCBs(33)

primarydriver

Repeaters(5) Each SLCB ~70 tap points of ~8 gaters each

Anderson, ISSCC-2002

Page 15: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 15®

Optical Skew Probing

Vout

Idn

Photon

Vin

s

• Clock edge generates infrared photon emission• Emission peak indicates clock transition edge

Tam, VLSI Symposium, 2003

Page 16: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 16®

Optical Probing Results

Tam, VLSI Symposium, 2003

Page 17: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 17®

130nm Itanium® 2 Skew Profile

-100

10203040506070

1 6 11 16 21Clock Zone

Rel

ativ

e D

elay

(ps)

DefaultFuse AdjustedSCAN Adjusted

Tam, VLSI Symposium, 2003

Page 18: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 18®

Pentium® 4 Processor Clock Network

PLL

• 2GHz triple-spine clock distribution (180nm)

Kurd, JSSC-2001

Page 19: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 19®

90nm Clock Distribution

skew in ps

• Sub-10ps clock skew demonstrated in a 90nm processor using clock tree averaging

Bindal, ISSCC 2003

Page 20: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 20®

Pentium® 4 Processor Clock Skew

22ps

7ps

130nm Pentium® 4 Processor 90nm Pentium® 4 Processor

• 90nm design has 3x lower clock skew than the 130nm

Schutz, ISSCC 2004

Page 21: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 21®

Alpha* Processors ClockingProduct 21064 21164 21264

300MHz 600MHz

Transistors 1.7M 9.3M 9.3M

Process 0.75um 4ML 0.5um, 4ML 0.35um, 6ML

Power 25W 50W 72W

Clock load 2.75nF 3.75nF 2.8nF

Frequency 166MHz

* Other names and brands may be claimed as the property of others

pre-driver

final drivers

PLL

ClockFloorplan

Clockskewplot

Skew

(ps)

Chip Horizontal AxisChip Vertical Axis

15

30

45

60

75

0

Gronowski, JSSC 1998

Page 22: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 22®

1.2GHz Alpha* Processor Clock

GCLK

NCLK

L2LCLK L2RCLK

DLL DLL

DLL

PLL

Xanthopoulos, ISSCC-2001* Other names and brands may be claimed as the property of others

Page 23: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 23®

Power4* Clock Distribution

PLLBypassRef clk in

Clock Distribution

Ref clk out

Feedback

Global ClockGrid

PLL out 123

4

• Dual core, SOI process, 174M transistors• Measured clock skew below 25ps

Restle, ISSCC-2002* Other names and brands may be claimed as the property of others

Page 24: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 24®

YY

XX

Delay (ps) buffer

level 3

buffer level 2

grid

Tuned sector trees

Sector bufferslevel 4

buffer level 1

Power4* - 3D Skew Visualization

Restle,ISSCC-2002

800

700

600

500

400

300

200

100* Other names and brands may be claimed as the property of others

Page 25: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 25®

Outline

• Clock Distribution Trends• Distribution Networks• De-skew Circuits• Jitter Reduction Techniques• Clock Power Dissipation• Future Directions• Summary

Page 26: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 26®

Dual-Zone Clock Deskew

Delay Line

Delay SR

Right Spine

Left Spine CL

Core

PD

FB ClkX Clk

Clk_Gen

Deskew Ctl

Delay Line

Delay SR

Geannopoulos, ISSCC-1998

Page 27: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 27®

Itanium® Processor Clock Deskew

• Distributed array of deskew buffers to reduce process related skew

• 8 deskew clusters each holding up to 4 buffers

• 30 deskew zones

DSK

DSK

DSK

DSKDSK

DSKDSK

DSK

CDC

DSK = Cluster of 4 deskew buffers

CDC = Central Deskew ControllerRusu, ISSCC-2000

Page 28: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 28®

Itanium® Processor Deskew Buffer

Enable#

20-bit Delay Control Register

Output

Input

TAP I/F Step size = 8.5psDeskew range = 170ps

• Small step size enables fine skew control over a wide range

• TAP read / write access to Control Register enables faster timing debug and performance tuning

Rusu, ISSCC-2000

Page 29: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 29®

Pentium® 4 Processor Deskew

Logical diagram of the skew optimization circuit

Phase detector network

Kurd, JSSC-2001

Page 30: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 30®

Deskew Techniques Summary

Author Source ClockZones

SkewBefore

StepSize

60ps 12ps

8ps

Kurd ISSCC-01 47 64ps 16ps 8ps

Stinson ISSCC-03 23 60ps 7ps 7ps

110ps

ISSCC-98

SkewAfter

Geannopoulos

ISSCC-00

2

30

15ps

Rusu 28ps

• Clock deskew techniques compensate for device and interconnect within-die variations

• Deskew circuits cut clock skew to less than a quarter of the original value

Page 31: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 31®

Useful Clock Skew

050

100150200250300

Freq

uenc

y Im

prov

emen

t (M

Hz)

1 2 3 4

Samples

0

10

20

30

40

Freq

uenc

y Im

prov

emen

t (M

Hz)

1 2 3

Samples

Initial Stepping Subsequent Stepping

• Use de-skew buffers to insert intentional skew to maximize the processor operating frequency

• Larger benefit achieved in early steppings

Tam, VLSI Symposium, 2003

Page 32: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 32®

Outline

• Clock Distribution Trends• Distribution Networks• De-skew Circuits• Jitter Reduction Techniques• Clock Power Dissipation• Future Directions• Summary

Page 33: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 33®

Pentium® 4 Processor Jitter Reduction

Vcc

R

C

IVcc - IR

10% dip inCore Supply

2% dip inFilteredSupply

-60

-40

-20

0

20

40

60

0 10 20 30 40 50Cycle #

Jitte

r (ps

)

With FilterNo Filter

• RC-filtered power supply for clock drivers reduces clock distribution jitter

Kurd, JSSC-2001

Page 34: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 34®

Alpha* Processor Voltage Regulator

DLL

LPF -+

2.5V1.5V

-60

-50

-40

-30

-20

-10

0

1.0E+02 1.0E+04 1.0E+06 1.0E+08 1.0E+10Frequency [Hz]

PSR

R [d

B]

• Voltage regulator ensures optimum DLL tracking• Supply noise frequencies over 1MHz are attenuated

by more than 15dBXanthopoulos, ISSCC-2001

* Other names and brands may be claimed as the property of others

Page 35: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 35®

On-Die Clock Jitter Detector

ArrayPhase

Detector

Counter

Internal Clock

PostProcessCircuitry

+Registers

Phase bins

2

0.5 * DL

0.5 * DL

Digital LPF

n

inc/dec

ref

clk

up/dn#

Kuppuswamy, VLSI Symposium 2001

Page 36: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 36®

Array Phase Detectorclk ref

FF FF FF FF FF FF FFFFFF . . .. . .

• 7 elements above and below center, with increasing positive and negative built-in offset away from center

• Phase offset created by progressively delaying data wrt clock

Page 37: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 37®

Histogram Mode Operation

Array Phase Detector

XOR Logic

Error Detection Logic jitter error

coun

t

bins

Page 38: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 38®

Graph Mode OperationA

rray

Pha

se D

etec

tor

XOR

Log

icEr

ror D

etec

tion

Logi

c

jitter error encoded

bins

time

Page 39: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 39®

Outline

• Clock Distribution Trends• Distribution Networks• De-skew Circuits• Jitter Reduction Techniques• Clock Power Dissipation• Future Directions• Summary

Page 40: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 40®

Clock Power Breakdown Example• 30% of the total power is attributed to clock• Most of the clock power is used in the final

clock buffers and flip-flops

70.2%

26.2%

1.5%

2.1%

1st Level2nd Level3rd LevelRest of chip

Anderson, ISSCC-2002

Page 41: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 41®

Clock Power Reduction

• Reduce clock frequency– Multiple frequency domains– Dual edge triggered flip-flops

• Reduce voltage swing– Low swing clocks

Clock Power = f * C * V2

• Reduce clock loading– Clock gating– Clock-on-demand flip-flop– Optimized routing

Page 42: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 42®

Half Swing Clocking

• Requires four clock signals– Two clock phases with a swing between

Vdd and Vdd/2 drive the PMOS devices

– The other two phases with a swing between Gnd and Vdd/2 drive the NMOS transistors

• Experimental savings of 67% were demonstrated on a 0.5µm CMOS test chip with only 0.5ns speed degradation

• Requires additional area for the special clock drivers and suffers from skew problems between the four phases

Kojima, JSSC 1995

Page 43: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 43®

Clock-on-demand Flip-Flop

• Activates internal clock only when the input data will change the output - equivalent to single bit clock gating

• Longer setup time and sensitive to hold time violations Hamada, ISSCC 1999

Page 44: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 44®

XScale Processor Clock Gating• Three hierarchical clock

gating levels– Top level – stop clock

– Unit level – 83 enables

– Local clock buffers –400 unique enables C

LK S

PIN

E

GC

LK_IC1

GC

LK_RF1G

CLK_D

C1

GC

LK_MA2

GLB_M

A_EN

GCLK_DA1

GCLK_DA2

GCLK_IA1

GCLK_IA2DA_BNK1_EN#

DA_BNK1_EN

IA_BNK1_EN#

IA_BNK1_EN

GC

LK_D

A9

GC

LK_D

A10

GC

LK_I

A9

GC

LK_I

A10

EGCLK (M6)

(M5)

Clark, JSSC 11/2001

Page 45: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 45®

Dual Edge Triggered Flip-Flop

Mn3

Mn4

CLK

D

CLK3

CLK

CLK1

D

CLK4

CLK1

X Y

Inv1 Inv2 Inv3 Inv4

CLK CLK1 CLK2 CLK3 CLK4

Q

1st STAGE: X 1st STAGE: Y2nd STAGE

I1

Mp2

Mp3

CL

Q

Mn1

Mn2

Mp1

Mn7

Mn8

Mp6

Mn5

Mn6

Mp4

Mp5Mp8Mp7

Mn9

Mn10

I2

I3

• Operates at half the clock frequency• Requires tight control of the clock duty cycle

Nedovic, ESSCIRC 2002

Page 46: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 46®

Outline

• Clock Distribution Trends• Distribution Networks• De-skew Circuits• Jitter Reduction Techniques• Clock Power Dissipation• Future Directions• Summary

Page 47: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 47®

Rotary Clock Distribution

• Transmission line based,self-regenerating rotary clock generator

Wood, ISSCC-2001

Page 48: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 48®

Standing Wave Oscillator

O’Mahony, ISSCC-2003

Page 49: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 49®

10GHz Clock Grid Test Chip

• Fabricated in a 0.18µm 1.8V 6M CMOS process

• Very low clock skew and power consumption

• Attractive alternativefor 10GHz clockingand beyond

Page 50: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 50®

Optical Clock Distribution• Board-level guided-wave H-tree distribution• Monolithic silicon-based detection• Couplers provide tolerance for horizontal and vertical

misalignment of the flip-chip assembly• Optical transmission is immune to process variations,

power-grid noise and temperature

J.D. Meindl, Georgia Institute of Technology, 2000

Page 51: Clock Generation and Distribution - Educypediaeducypedia.karadimov.info/library/chapter5.pdfD A 9 G C LK _DA 1 0 GCL K _ I A 9 G LK _IA10 EGCLK (M6) (M 5) Clark, JSSC 11/2001 ® SoC

SoC 2004 – Stefan Rusu 51®

Summary• High performance processors require a low skew

and jitter clock distribution network

• Clock distribution techniques are optimized to achieve the best skew and jitter with reduced area and power consumption

• Deskew techniques are demonstrated to cut the skew to ¼ of its original value

• On-die supply filters are used to reduce jitter

• Intensive research focuses on novel clock distribution techniques