Classical Model of Nuclear Fusion - University of Rochester1 Cl a s s i c a l R e a c t i o n T h e...

10
1 React ion Theor y 1 W. Udo Schröder, 2007 Semi- Classical R Classical Model of Nuclear Fusion Strong absorption hypothesis: Fusion between 1&2 occurs for r < r fu Effective potential 22 eff 2 L V V(r) 2r t . Scat t er ing 2 L Maximum L for fusion=L fu : 22 fu eff fu 2 fu 2 2 fu fu fu 2 L E V V(r ) 2r 2 L r E V(r ) 22 2 2 fu fu fu fu 2 2 L r E V(r ) W. Udo Schröder, 2007 Classical Pot fu fu fu fu 2 1 2 2 fu fu 2 2 fu fu fu r E V(r ) 2 E r E V(r ) 2 fu fu fu V(r ) r 1 E

Transcript of Classical Model of Nuclear Fusion - University of Rochester1 Cl a s s i c a l R e a c t i o n T h e...

Page 1: Classical Model of Nuclear Fusion - University of Rochester1 Cl a s s i c a l R e a c t i o n T h e o r y 1 W. Udo Schröder, 2007 S e m i-C Classical Model of Nuclear Fusion Strong

1

Cla

ssic

al R

eact

ion

Th

eory

1

W. Udo Schröder, 2007

Sem

i-C

lass

ical

Rea

ctio

n T

heo

ry

Classical Model of Nuclear Fusion

Strong absorption hypothesis: Fusion between 1&2 occurs for r < rfu

Effective potential 2 2

eff 2

LV V(r )

2 r

Cla

ssic

al P

ot. S

catt

erin

g2

L

Maximum L for fusion=Lfu:2 2

fueff fu 2

fu

2 2fu fu fu2

LE V V(r )

2 r

2L r E V(r )

2 2 2 2fu fu fu fu2

2L r E V(r )

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

fu fu fu fu2

122fu fu2

2fu fu fu

L r E V(r )

r E V(r )2

E r E V(r )2 fu

fu fu

V(r )r 1

E

Page 2: Classical Model of Nuclear Fusion - University of Rochester1 Cl a s s i c a l R e a c t i o n T h e o r y 1 W. Udo Schröder, 2007 S e m i-C Classical Model of Nuclear Fusion Strong

2

Experimental Complete Fusion Cross Sections

2 fuV(r )r 1

Determine 2 barrier parameters: rfu, V(rfu)

2fur

Cla

ssic

al P

ot. S

catt

erin

g3

cm

2fu fu1 E 0

cm fu

lim r

lim E V(r )

2 fufu fu

cm

2 2fu fu fu

cm

V(r )r 1

E

1r r V(r )

E2fur

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

fucm fu0

lim E V(r )

Classical formula holds for energies well above barrier. Near barrier consider quantal transmission

Matter Density Overlap at Fusion

Calculate 35Cl fusion with quantal barrier penetration, parabolic (harmonic) approximation

W. Scobel et al., PRC14, 1808(1976)

Deduce barrier heights and radii from fits of excitation

Cla

ssic

al P

ot. S

catt

erin

g4

radii from fits of excitation functions

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

32S projectiles on various targets

Strong absorption Fusion of medium-weight nuclei at 10% matter density overlap

Page 3: Classical Model of Nuclear Fusion - University of Rochester1 Cl a s s i c a l R e a c t i o n T h e o r y 1 W. Udo Schröder, 2007 S e m i-C Classical Model of Nuclear Fusion Strong

3

Fusion Dynamics for Heavy Systems

R R R

Different curves correspond to different

Cla

ssic

al P

ot. S

catt

erin

g5

different limitations of angular momenta (sliding, rolling, sticking)

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

Light systems: Barrier penetration probability depends on Veff barrier geometry (height, width) and Ecm.Heavy systems: Escape away from fusion path into different d.o.f. (e.g., through deformation, friction, PES deflection from conditional saddle points. “Extra push” needed for fusion. Dissipative reactions (multi-nucleon transfer) take over. Difficulty to produce SHE (ZCN > 100) with fusion reactions.

Stability of Rotating Nuclei

Fusion (composite) nuclei produced with L 1

May fission spontaneously, if g.s. fission barrier small

Limits to CN Fusion

Cla

ssic

al P

ot. S

catt

erin

g6

if g.s. fission barrier small (Bf ˜ 0)

Predictions by the rotating liquid drop model.

If E* > 0, composite nucleus may fission during deexcitation cascade (Jf)

g.s.

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

Blann et al., PRL 29, 303 (1972)

E*>0

CN

Page 4: Classical Model of Nuclear Fusion - University of Rochester1 Cl a s s i c a l R e a c t i o n T h e o r y 1 W. Udo Schröder, 2007 S e m i-C Classical Model of Nuclear Fusion Strong

4

Compound-Nucleus Processes

Particle Evapor-ationEvaporation Residues ER

Cla

ssic

al P

ot. S

catt

erin

g7

a AEcm,

Formation

C*E*=Ecm+Q I=

EquilibrationCompound

Decay

ER

-ray emission

Fission fragments

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

Compound Nucleus

Statistical Independence Hypothesis:All degrees of freedom equilibrated, no memory of formation,except conservation laws (momentum, energy, angular momentum,…

Fission

Fusion reaction 14N+12C leading to compound nucleus 26-nAl, emitted at < ˜ 00

(Momentum Conservation)

elastic

Cla

ssic

al P

ot. S

catt

erin

g8

14N

26-nAl12C

CN decays in flight by particle

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

CN decays in flight by particle evaporation (ER) or fission

Page 5: Classical Model of Nuclear Fusion - University of Rochester1 Cl a s s i c a l R e a c t i o n T h e o r y 1 W. Udo Schröder, 2007 S e m i-C Classical Model of Nuclear Fusion Strong

5

Fusion Excitation FunctionsR.G. Stokstad et al., PRL 41, 465 (1978) P. Sperr et al., PRL37, 321(1976)

fus˜ Ronly for Ecm below and close to barrier.

R

Cla

ssic

al P

ot. S

catt

erin

g9

148Sm: 2=0154Sm: 2=0.3

Maximum Lfusdue to yrast limitation (nuclear centrifugal stability)

ER = lowest window

R

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

Deformation changes the effective barrier height larger fus d

d

0 ER F R

Fusi

onFi

ssio

n

multi-

nucl

eon

Tra

nsf

er

Ela

stic

/quas

i-el

astic

Sca

tter

ing

Fusi

on-E

R

ER Angular Distributions

p

Cla

ssic

al P

ot. S

catt

erin

g10

Random emission from moving CN does not change average velocity, preserves < > = 00,

ERp p

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

preserves < > = 0 ,

Sideways recoil components important for angular distributions of ERs.

Page 6: Classical Model of Nuclear Fusion - University of Rochester1 Cl a s s i c a l R e a c t i o n T h e o r y 1 W. Udo Schröder, 2007 S e m i-C Classical Model of Nuclear Fusion Strong

6

Independence Hypothesis

Compound nucleus reaction (formation+decay)a+A C* b+B Decoupled 2-step process, intermediate equilibration following fusion takes long and leads to the same asymptotic condition C*(E, I,…)

Cla

ssic

al P

ot. S

catt

erin

g11

*

*

aA bB aA C

dD bB dD C

E E

E E

E E

*C bB E

Separation of cross sections:Independent probabilities of formation and decay multiply for overall reaction

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

*gG bB gG CE E overall reaction

(HI, xn) Excitation Functions

a+Ab+B

C’* + nC’’* + 2nC’’’* + 3n

C* (19F, 7n)

(19F, 8n)

(19F, 9n)

Cla

ssic

al P

ot. S

catt

erin

g12

(HI, xn) cross sections

(19F, 9n)

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

Elab

Channels open successively. Statistical competition in overlap regions.

Page 7: Classical Model of Nuclear Fusion - University of Rochester1 Cl a s s i c a l R e a c t i o n T h e o r y 1 W. Udo Schröder, 2007 S e m i-C Classical Model of Nuclear Fusion Strong

7

Evaporation Particles

cm spectra of particles statistically emitted from CN (evaporated) are of Maxwell Boltzmann type

neutrons

Cla

ssic

al P

ot. S

catt

erin

g13

( ) E TB

dNE E e

dE

BE Coulomb barrier

T effective nuclear temperature

Veff CN

protons

EB

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

EB

R

Even for fixed E* the particles spectrum is continuous (Maxwell-Boltzmann), except for transitions to discrete spectrum at low EER*

E*

CNER

CN Decay Widths

E*

CNER

Unstable state (finite energy “line” width ) mean lifetime – Heisenberg’s UR: · ˜

˜ / = decay probability

Cla

ssic

al P

ot. S

catt

erin

g14

Total production prob. of CN in reactions:

. .,,

g s elasticexcited inelastic

Total decay width

Specific reaction channel * *C form decP C P C

22

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

Transition probability

Principle of detailed balance:

#states ·P( #states ·P(

22H

2 2

2 2H H

#final states

Page 8: Classical Model of Nuclear Fusion - University of Rochester1 Cl a s s i c a l R e a c t i o n T h e o r y 1 W. Udo Schröder, 2007 S e m i-C Classical Model of Nuclear Fusion Strong

8

CN Decay Widths

E*

CNER

Principle of detailed balance: #states ·P( #states ·P(

2 2 ( )k k spin factors

Cla

ssic

al P

ot. S

catt

erin

g15

2 2

( )

C C

k k spin factors

k k

2

2C

C

k

k

Partial decay width

: all “channels” by which C can be formed or into which it can decay

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

2

2C

C

k

k

Partial decay widthCan compute total width and partial widths for decay to particular channel if all formation cross sections are known, all “channels” by which C can be formed in the inverse process.

Decay Width for Neutron Emission

Density of states of CN parent at original excitation

Final state density of daughter

n

*0( )C E

*0E *

0E Q

ndE *0 nE E Q

*0( )C E

Cla

ssic

al P

ot. S

catt

erin

g16 C’

+n

2'' 'C nC C n Cn

nC C C C

nC CkP

Final state density of daughter nucleus, accounting for energy lost in neutron emission

C * *0 0( )C C nE E E Q

*0C nE E Q

: CAll decays

C independent

of decay channel

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

C C C C of decay channel

*' 0

' *0

( )( )

( )C nn

n nC Cn C

E E QdN EE

dE E

' ( )nC C Inverse capture cross section

Energy spectrum of emitted neutrons depends on level density in final nucleus, non-monotonic ~En· C’(…- En…)

Page 9: Classical Model of Nuclear Fusion - University of Rochester1 Cl a s s i c a l R e a c t i o n T h e o r y 1 W. Udo Schröder, 2007 S e m i-C Classical Model of Nuclear Fusion Strong

9

E* Dependence of Nuclear Level Density

*'

'

( )C

nC C

E Strongly excitation energy dependent shape of dN/dEn

Weakly dependent on En (neglect this)

Internal system of nucleons at high energies = chaotic (Fermi) gas

Cla

ssic

al P

ot. S

catt

erin

g17

Internal system of nucleons at high energies = chaotic (Fermi) gas

Use statistical mechanics concepts: Entropy ( *) ( *)BS E k n E

* *0 0

*0

*:10

*( )* 0

( ) ( )

( *)( ) ...

*

( )

n B n

n

k TB E Q

S E Q k E k TB n B

S E E Q k n E E Q

dS ES E Q E

dE

E E Q e e

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

*( )* 00

*0

( )

( )

S E Q k E k TB n Bn

E k Tn B

E E Q e e

E Q e

*' 0

' *0

( )( )( )

( )E TCn n

n nC C nn C

E QdN EE E e

dE E

Constant-temperature level density (good for small |Q|Set kB =1 [T]= energy

C’ and T correspond to final nucleus+n

FG Nuclear Temperatures and Level Densities

Spectrum of single neutron

2 @

E Tnn

n

n nn

dNE e

dE

dNE T Max E T

dE

Cla

ssic

al P

ot. S

catt

erin

g18

ndE

1.5 0.92 (1 )

E Tn effn

nst

n eff

dNE e

dE

E T T T daughter

Spectrum of cascade of neutrons

1( ) 8a A A MeV Deviations at shell closures

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

Fermi gas relations:* 2

**

*

** 20

" "

2

a E

E a T little a

dES a E

E

E e

Page 10: Classical Model of Nuclear Fusion - University of Rochester1 Cl a s s i c a l R e a c t i o n T h e o r y 1 W. Udo Schröder, 2007 S e m i-C Classical Model of Nuclear Fusion Strong

10

Angular Distributions of CN Decay ParticlesBeam axis and collision trajectory define the “reaction plane.”

Cla

ssic

al P

ot. S

catt

erin

g19

Orbital and CN spin angular momentum have to be perpendicular to it. Random emission in reaction plane (in ), symmetry about

W. Udo Schröder, 2007

Cla

ssic

al P

ot. S

catt

erin

g

.

1sin

CN

CN

dconst

ddd

symmetry about cm=900.