Classi cation problems of good distance sets and classi cation...

148
. . . . . . . . . Classification problems of good distance sets and classification problems of good families Masashi ShinoharaShiga University) Osaka Combinatorics Seminar April 16, 2016 Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Transcript of Classi cation problems of good distance sets and classi cation...

Page 1: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.

.

. ..

.

.

Classification problems of good distance setsand

classification problems of good families

Masashi Shinohara(Shiga University)

Osaka Combinatorics SeminarApril 16, 2016

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 2: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Contents

Connections of two topics

Distance sets

DefinitionsConvex planar distance sets (survey)Planar distance sets (survey, S.)Three-distance sets in R3 (S.)Two-distance sets in Rd (Nozaki-S.)Distance sets on circles (Momihara-S.)

Families of sets

Erdos-Ko-Rado’s theorem and Katona’s proof (survey)Some generalizations of Erdos-Ko-Rado’s theorem (survey)Union families (Frankl-Tokushige)r -wise union families (Frankl-S.-Tokushige)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 3: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. s-code

s-code in Sd−1 s-code in Fn2

X ⊂ Sd−1 is s-code if C ⊂ Fn2 is s-code if

p · q ≤ s for ∀p,q ∈ X (p = q) dH(x, y) ≥ s for ∀x, y ∈ C (x = y)

p · q: usual inner product. dH(x, y) := |{i | xi = yi}|

max{|X | | X ⊂ Sd−1 is an s-code}? max{|C | | C ⊂ Fn2 is an s-code}?

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 4: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. s-code in Fn2 and Intersecting families

[n] = {1, 2, . . . , n}2[n] := {F | F ⊂ [n]}([n]k

):= {F ∈ 2[n] | |F | = k}

For x ∈ Fn2, we define x ∈ 2n by

x := {i | xi = 1}. (support of x)

1 2 3 4 5

x 1 1 0 0 1

y 1 0 1 0 0

x ∨ y = (1, 1, 1, 0, 1), where(x ∨ y)i := max{xi , yi}

12

4

35

x y[5]

dH(x, y) = |x|+ |y| − 2|x ∩ y|= 2k − 2|x ∩ y| (if |x| = |y| = k)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 5: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Contents

Connections of two topics

Distance sets

DefinitionsConvex planar distance sets (survey)Planar distance sets (survey, S.)Three-distance sets in R3 (S.)Two-distance sets in Rd (Nozaki-S.)Distance sets on circles (Momihara-S.)

Families of sets

Erdos-Ko-Rado’s theorem and Katona’s proof (survey)Some generalizations of Erdos-Ko-Rado’s theorem (survey)Union families (Frankl-Tokushige)r -wise union families (Frankl-S.-Tokushige)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 6: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Definition of distance sets

Rd : d-dimensional Euclidean space.

Sd−1(r) (or Sd−1): a sphere in Rd with radius r .

For P = (p1, p2, . . . , pd), Q = (q1, q2, . . . , qd) ∈ Rd ,

PQ =

√√√√ d∑i=1

(pi − qi )2

.Definition..

.

. ..

.

.

For X ⊂ Rd (|X | <∞), A(X ) = {PQ : P ,Q ∈ X ,P = Q}and k(X ) = |A(X )|.X is called an s-distance set if k(X ) = s.

Two subsets are called isomorphic if there exists a similartransformation form one to the others.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 7: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Examples of distance sets

X1

X2 X3 X4

A(X1) = {1} A(X2) = {1,√2} A(X3) = {1, τ} A(X4) = {1,

√2,√3}

1-distance set 2-distance set 2-distance set 3-distance set(τ = 1+

√5

2 )

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 8: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Examples of distance sets

X1

X2 X3 X4

A(X1) = {1}

A(X2) = {1,√2} A(X3) = {1, τ} A(X4) = {1,

√2,√3}

1-distance set 2-distance set 2-distance set 3-distance set(τ = 1+

√5

2 )

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 9: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Examples of distance sets

X1

X2 X3 X4

A(X1) = {1}

A(X2) = {1,√2} A(X3) = {1, τ} A(X4) = {1,

√2,√3}

1-distance set

2-distance set 2-distance set 3-distance set(τ = 1+

√5

2 )

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 10: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Examples of distance sets

X1 X2

X3 X4

A(X1) = {1}

A(X2) = {1,√2} A(X3) = {1, τ} A(X4) = {1,

√2,√3}

1-distance set

2-distance set 2-distance set 3-distance set(τ = 1+

√5

2 )

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 11: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Examples of distance sets

X1 X2

X3 X4

A(X1) = {1} A(X2) = {1,√2}

A(X3) = {1, τ} A(X4) = {1,√2,√3}

1-distance set

2-distance set 2-distance set 3-distance set(τ = 1+

√5

2 )

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 12: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Examples of distance sets

X1 X2

X3 X4

A(X1) = {1} A(X2) = {1,√2}

A(X3) = {1, τ} A(X4) = {1,√2,√3}

1-distance set 2-distance set

2-distance set 3-distance set(τ = 1+

√5

2 )

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 13: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Examples of distance sets

X1 X2 X3

X4

A(X1) = {1} A(X2) = {1,√2}

A(X3) = {1, τ} A(X4) = {1,√2,√3}

1-distance set 2-distance set

2-distance set 3-distance set(τ = 1+

√5

2 )

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 14: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Examples of distance sets

X1 X2 X3

X4

A(X1) = {1} A(X2) = {1,√2} A(X3) = {1, τ}

A(X4) = {1,√2,√3}

1-distance set 2-distance set

2-distance set 3-distance set

(τ = 1+√5

2 )

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 15: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Examples of distance sets

X1 X2 X3

X4

A(X1) = {1} A(X2) = {1,√2} A(X3) = {1, τ}

A(X4) = {1,√2,√3}

1-distance set 2-distance set 2-distance set

3-distance set

(τ = 1+√5

2 )

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 16: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Examples of distance sets

X1 X2 X3 X4

A(X1) = {1} A(X2) = {1,√2} A(X3) = {1, τ}

A(X4) = {1,√2,√3}

1-distance set 2-distance set 2-distance set

3-distance set

(τ = 1+√5

2 )

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 17: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Examples of distance sets

X1 X2 X3 X4

A(X1) = {1} A(X2) = {1,√2} A(X3) = {1, τ} A(X4) = {1,

√2,√3}

1-distance set 2-distance set 2-distance set

3-distance set

(τ = 1+√5

2 )

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 18: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Examples of distance sets

X1 X2 X3 X4

A(X1) = {1} A(X2) = {1,√2} A(X3) = {1, τ} A(X4) = {1,

√2,√3}

1-distance set 2-distance set 2-distance set 3-distance set(τ = 1+

√5

2 )

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 19: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Goodness for distance sets

.Problem (数学セミナー 11 月号, Nozaki).... ..

.

.

Classify 2-distance sets in R2 which have maximum cardinality.

.Definition..

.

. ..

.

.

gd(k) := max{|X | : X is a k-distance set in Rd}.A k-distance set in Rd is said to be optimal if |X | = gd(k).

.Problem..

.

. ..

.

.

k , d : given.

Determine gd(k).Classify k-distance sets in Rd with gd(k) points or close togd(k) points.When are there finitely many k-distance sets in Rd .

d , n: given . . .

n, k: given . . .

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 20: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Goodness for distance sets

.Problem (数学セミナー 11 月号, Nozaki).... ..

.

.

Classify 2-distance sets in R2 which have maximum cardinality.

.Definition..

.

. ..

.

.

gd(k) := max{|X | : X is a k-distance set in Rd}.

A k-distance set in Rd is said to be optimal if |X | = gd(k).

.Problem..

.

. ..

.

.

k , d : given.

Determine gd(k).Classify k-distance sets in Rd with gd(k) points or close togd(k) points.When are there finitely many k-distance sets in Rd .

d , n: given . . .

n, k: given . . .

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 21: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Goodness for distance sets

.Problem (数学セミナー 11 月号, Nozaki).... ..

.

.

Classify 2-distance sets in R2 which have maximum cardinality.

.Definition..

.

. ..

.

.

gd(k) := max{|X | : X is a k-distance set in Rd}.A k-distance set in Rd is said to be optimal if |X | = gd(k).

.Problem..

.

. ..

.

.

k , d : given.

Determine gd(k).Classify k-distance sets in Rd with gd(k) points or close togd(k) points.When are there finitely many k-distance sets in Rd .

d , n: given . . .

n, k: given . . .

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 22: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Goodness for distance sets

.Problem (数学セミナー 11 月号, Nozaki).... ..

.

.

Classify 2-distance sets in R2 which have maximum cardinality.

.Definition..

.

. ..

.

.

gd(k) := max{|X | : X is a k-distance set in Rd}.A k-distance set in Rd is said to be optimal if |X | = gd(k).

.Problem..

.

. ..

.

.

k , d : given.

Determine gd(k).

Classify k-distance sets in Rd with gd(k) points or close togd(k) points.When are there finitely many k-distance sets in Rd .

d , n: given . . .

n, k: given . . .

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 23: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Goodness for distance sets

.Problem (数学セミナー 11 月号, Nozaki).... ..

.

.

Classify 2-distance sets in R2 which have maximum cardinality.

.Definition..

.

. ..

.

.

gd(k) := max{|X | : X is a k-distance set in Rd}.A k-distance set in Rd is said to be optimal if |X | = gd(k).

.Problem..

.

. ..

.

.

k , d : given.

Determine gd(k).Classify k-distance sets in Rd with gd(k) points or close togd(k) points.

When are there finitely many k-distance sets in Rd .

d , n: given . . .

n, k: given . . .

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 24: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Goodness for distance sets

.Problem (数学セミナー 11 月号, Nozaki).... ..

.

.

Classify 2-distance sets in R2 which have maximum cardinality.

.Definition..

.

. ..

.

.

gd(k) := max{|X | : X is a k-distance set in Rd}.A k-distance set in Rd is said to be optimal if |X | = gd(k).

.Problem..

.

. ..

.

.

k , d : given.

Determine gd(k).Classify k-distance sets in Rd with gd(k) points or close togd(k) points.When are there finitely many k-distance sets in Rd .

d , n: given . . .

n, k: given . . .

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 25: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Goodness for distance sets

.Problem (数学セミナー 11 月号, Nozaki).... ..

.

.

Classify 2-distance sets in R2 which have maximum cardinality.

.Definition..

.

. ..

.

.

gd(k) := max{|X | : X is a k-distance set in Rd}.A k-distance set in Rd is said to be optimal if |X | = gd(k).

.Problem..

.

. ..

.

.

k , d : given.

Determine gd(k).Classify k-distance sets in Rd with gd(k) points or close togd(k) points.When are there finitely many k-distance sets in Rd .

d , n: given . . .

n, k: given . . .

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 26: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Contents

Connections of two topics

Distance sets

DefinitionsConvex planar distance sets (survey)Planar distance sets (survey, S.)Three-distance sets in R3 (S.)Two-distance sets in Rd (Nozaki-S.)Distance sets on circles (Momihara-S.)

Families of sets

Erdos-Ko-Rado’s theorem and Katona’s proof (survey)Some generalizations of Erdos-Ko-Rado’s theorem (survey)Union families (Frankl-Tokushige)r -wise union families (Frankl-S.-Tokushige)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 27: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Erdos’s problem (On sets of distances of n points, AMM, 1946)

.Conjecture (Erdos)..

.

. ..

.

.

Every convex n-gon (n ≥ 6) has at least ⌊n/2⌋ difference distancesbetween vertices where ⌊n⌋ is a greatest integer at most n.

Rn: the vertex set of a regular n-gon

R8 R9

Rn is a ⌊n/2⌋-distance set.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 28: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Erdos’s problem (On sets of distances of n points, AMM, 1946)

.Conjecture (Erdos)..

.

. ..

.

.

Every convex n-gon (n ≥ 6) has at least ⌊n/2⌋ difference distancesbetween vertices where ⌊n⌋ is a greatest integer at most n.

Rn: the vertex set of a regular n-gon

R8 R9

Rn is a ⌊n/2⌋-distance set.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 29: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Erdos’s problem (On sets of distances of n points, AMM, 1946)

.Conjecture (Erdos)..

.

. ..

.

.

Every convex n-gon (n ≥ 6) has at least ⌊n/2⌋ difference distancesbetween vertices where ⌊n⌋ is a greatest integer at most n.

Rn: the vertex set of a regular n-gon

R8 R9

Rn is a ⌊n/2⌋-distance set.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 30: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Erdos’s problem (On sets of distances of n points, AMM, 1946)

.Conjecture (Erdos)..

.

. ..

.

.

Every convex n-gon (n ≥ 6) has at least ⌊n/2⌋ difference distancesbetween vertices where ⌊n⌋ is a greatest integer at most n.

Rn: the vertex set of a regular n-gon

R8 R9

Rn is a ⌊n/2⌋-distance set.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 31: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Convex distance sets (n-point k-distance set)

Altman (1963)n ≤ 2k + 1.If n = 2k + 1, then X = R2k+1.

Fishburn (1995)If n = 2k (k ≥ 4), then X = R2k or X ⊂ R2k+1.If (n, k) = (7, 4), then X ⊂ R2k or X ⊂ R2k+1.

.Conjecture.... ..

.

.

If n = 2k − 1 (k ≥ 4), then X ⊂ R2k or X ⊂ R2k+1.

Erdos-Fishburn (1996)If (n, k) = (9, 5), then X ⊂ R2k or X ⊂ R2k+1.If (n, k) = (11, 6), then X ⊂ R2k or X ⊂ R2k+1 (comment).

Let s := (2k + 1)− n.

s \ k 1 2 3 4 5 6 · · ·0 ⃝1 × × ⃝2 × ⃝ ⃝ △ ?

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 32: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Convex distance sets (n-point k-distance set)

Altman (1963)n ≤ 2k + 1.If n = 2k + 1, then X = R2k+1.

Fishburn (1995)If n = 2k (k ≥ 4), then X = R2k or X ⊂ R2k+1.

If (n, k) = (7, 4), then X ⊂ R2k or X ⊂ R2k+1..Conjecture.... ..

.

.

If n = 2k − 1 (k ≥ 4), then X ⊂ R2k or X ⊂ R2k+1.

Erdos-Fishburn (1996)If (n, k) = (9, 5), then X ⊂ R2k or X ⊂ R2k+1.If (n, k) = (11, 6), then X ⊂ R2k or X ⊂ R2k+1 (comment).

Let s := (2k + 1)− n.

s \ k 1 2 3 4 5 6 · · ·0 ⃝1 × × ⃝2 × ⃝ ⃝ △ ?

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 33: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Convex distance sets (n-point k-distance set)

Altman (1963)n ≤ 2k + 1.If n = 2k + 1, then X = R2k+1.

Fishburn (1995)If n = 2k (k ≥ 4), then X = R2k or X ⊂ R2k+1.If (n, k) = (7, 4), then X ⊂ R2k or X ⊂ R2k+1.

.Conjecture.... ..

.

.

If n = 2k − 1 (k ≥ 4), then X ⊂ R2k or X ⊂ R2k+1.

Erdos-Fishburn (1996)If (n, k) = (9, 5), then X ⊂ R2k or X ⊂ R2k+1.If (n, k) = (11, 6), then X ⊂ R2k or X ⊂ R2k+1 (comment).

Let s := (2k + 1)− n.

s \ k 1 2 3 4 5 6 · · ·0 ⃝1 × × ⃝2 × ⃝ ⃝ △ ?

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 34: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Convex distance sets (n-point k-distance set)

Altman (1963)n ≤ 2k + 1.If n = 2k + 1, then X = R2k+1.

Fishburn (1995)If n = 2k (k ≥ 4), then X = R2k or X ⊂ R2k+1.If (n, k) = (7, 4), then X ⊂ R2k or X ⊂ R2k+1.

.Conjecture.... ..

.

.

If n = 2k − 1 (k ≥ 4), then X ⊂ R2k or X ⊂ R2k+1.

Erdos-Fishburn (1996)If (n, k) = (9, 5), then X ⊂ R2k or X ⊂ R2k+1.If (n, k) = (11, 6), then X ⊂ R2k or X ⊂ R2k+1 (comment).

Let s := (2k + 1)− n.

s \ k 1 2 3 4 5 6 · · ·0 ⃝1 × × ⃝2 × ⃝ ⃝ △ ?

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 35: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Convex distance sets (n-point k-distance set)

Altman (1963)n ≤ 2k + 1.If n = 2k + 1, then X = R2k+1.

Fishburn (1995)If n = 2k (k ≥ 4), then X = R2k or X ⊂ R2k+1.If (n, k) = (7, 4), then X ⊂ R2k or X ⊂ R2k+1.

.Conjecture.... ..

.

.

If n = 2k − 1 (k ≥ 4), then X ⊂ R2k or X ⊂ R2k+1.

Erdos-Fishburn (1996)If (n, k) = (9, 5), then X ⊂ R2k or X ⊂ R2k+1.If (n, k) = (11, 6), then X ⊂ R2k or X ⊂ R2k+1 (comment).

Let s := (2k + 1)− n.

s \ k 1 2 3 4 5 6 · · ·0 ⃝1 × × ⃝2 × ⃝ ⃝ △ ?

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 36: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Convex distance sets (n-point k-distance set)

Altman (1963)n ≤ 2k + 1.If n = 2k + 1, then X = R2k+1.

Fishburn (1995)If n = 2k (k ≥ 4), then X = R2k or X ⊂ R2k+1.If (n, k) = (7, 4), then X ⊂ R2k or X ⊂ R2k+1.

.Conjecture.... ..

.

.

If n = 2k − 1 (k ≥ 4), then X ⊂ R2k or X ⊂ R2k+1.

Erdos-Fishburn (1996)If (n, k) = (9, 5), then X ⊂ R2k or X ⊂ R2k+1.If (n, k) = (11, 6), then X ⊂ R2k or X ⊂ R2k+1 (comment).

Let s := (2k + 1)− n.

s \ k 1 2 3 4 5 6 · · ·0 ⃝1 × × ⃝2 × ⃝ ⃝ △ ?

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 37: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Infinitely many classes

6-point 4-distance set 8-point 6-distance set

.Example..

.

. ..

.

.

Let n ≥ 4 and

Mn =

{3t, if n = 4t or 4t − 1,

3t − 2, if n = 4t − 2 or 4t − 3

Then there exist (infinitely many) n-point Mn-distance sets in S1

which are not subsets of any regular polygon.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 38: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Infinitely many classes

6-point 4-distance set 8-point 6-distance set.Example..

.

. ..

.

.

Let n ≥ 4 and

Mn =

{3t, if n = 4t or 4t − 1,

3t − 2, if n = 4t − 2 or 4t − 3

Then there exist (infinitely many) n-point Mn-distance sets in S1

which are not subsets of any regular polygon.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 39: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Contents

Connections of two topics

Distance sets

DefinitionsConvex planar distance sets (survey)Planar distance sets (survey, S.)Three-distance sets in R3 (S.)Two-distance sets in Rd (Nozaki-S.)Distance sets on circles (Momihara-S.)

Families of sets

Erdos-Ko-Rado’s theorem and Katona’s proof (survey)Some generalizations of Erdos-Ko-Rado’s theorem (survey)Union families (Frankl-Tokushige)r -wise union families (Frankl-S.-Tokushige)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 40: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Planar distance sets

Rk : the vertex set of the regular k-gon in S1.

R2k+1 and R2k is a k-distance set.

Optimal planar k-distance sets

k = 1R3

k = 2 (Kelly, 1947)R5

k = 3 (Erdos-Fishburn, 1996)R7 and R6∪ {O}

Is every optimal planar k-distance set R2k+1 for large k?

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 41: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Planar distance sets

Rk : the vertex set of the regular k-gon in S1.

R2k+1 and R2k is a k-distance set.

Optimal planar k-distance sets

k = 1R3

k = 2 (Kelly, 1947)R5

k = 3 (Erdos-Fishburn, 1996)R7 and R6∪ {O}

Is every optimal planar k-distance set R2k+1 for large k?

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 42: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Planar distance sets

Rk : the vertex set of the regular k-gon in S1.

R2k+1 and R2k is a k-distance set.

Optimal planar k-distance sets

k = 1R3

k = 2 (Kelly, 1947)R5

k = 3 (Erdos-Fishburn, 1996)R7 and R6∪ {O}

Is every optimal planar k-distance set R2k+1 for large k?

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 43: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Planar distance sets

Rk : the vertex set of the regular k-gon in S1.

R2k+1 and R2k is a k-distance set.

Optimal planar k-distance sets

k = 1R3

k = 2 (Kelly, 1947)R5

k = 3 (Erdos-Fishburn, 1996)R7 and R6∪ {O}

Is every optimal planar k-distance set R2k+1 for large k?

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 44: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Planar distance sets

Rk : the vertex set of the regular k-gon in S1.

R2k+1 and R2k is a k-distance set.

Optimal planar k-distance sets

k = 1R3

k = 2 (Kelly, 1947)R5

k = 3 (Erdos-Fishburn, 1996)R7 and R6∪ {O}

Is every optimal planar k-distance set R2k+1 for large k?

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 45: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Planar distance sets

k = 4 (Erdos-Fishburn, 1996)R9 and three sets in Fig. 1.

Fig. 1

k = 5 (Erdos-Fishburn, S. 2008)

Fig. 2

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 46: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Planar distance sets

k = 4 (Erdos-Fishburn, 1996)R9 and three sets in Fig. 1.

Fig. 1

k = 5 (Erdos-Fishburn, S. 2008)

Fig. 2

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 47: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Planar distance sets

k = 6, 7 (Candidates of optimal planar 6-, 7- distance sets,Wei(2012))

Fig. 3

.Conjecture (Erdos-Fishburn)..

.

. ..

.

.

Every optimal k-distance sets for k ≥ 7 are subsets of L∆ whereL∆ = {a(1, 0) + b(1/2,

√3/2) : a, b ∈ Z} (the triangular lattice).

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 48: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Planar distance sets

k = 6, 7 (Candidates of optimal planar 6-, 7- distance sets,Wei(2012))

Fig. 3

.Conjecture (Erdos-Fishburn)..

.

. ..

.

.

Every optimal k-distance sets for k ≥ 7 are subsets of L∆ whereL∆ = {a(1, 0) + b(1/2,

√3/2) : a, b ∈ Z} (the triangular lattice).

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 49: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Distance sets on a plane

k \ n 3 4 5 6 7 8 9 10 11 12 13 14

2 ∞ 6 1 ×3 ∞ 34 9 2 ×4 ∞ 42 15 4 ×5 ∞ ? 4 1 ×6 ∞ ? ≥ 2 ×

The number of planar k-distance sets with n points.

Kelly(1947), Einhorn-Schoenberg(1966), Erdos-Fishburn(1996), Harborth

-Piepmeyer(1996), S.(2004, 2008), Lan-Wei (2013), Wei (2011, 2012)

Examples of n-point k-distance sets(n, k) = (5, 3) (7, 4) (12, 5) (13, 6)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 50: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Contents

Connections of two topics

Distance sets

DefinitionsConvex planar distance sets (survey)Planar distance sets (survey, S.)Three-distance sets in R3 (S.)Two-distance sets in Rd (Nozaki-S.)Distance sets on circles (Momihara-S.)

Families of sets

Erdos-Ko-Rado’s theorem and Katona’s proof (survey)Some generalizations of Erdos-Ko-Rado’s theorem (survey)Union families (Frankl-Tokushige)r -wise union families (Frankl-S.-Tokushige)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 51: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Finiteness of two-distance sets

There are infinitely many (d + 1)-point two-distance sets in Rd .

.Theorem (Einhorn-Schoenberg, 1966)..

.

. ..

.

.

There are finitely many (d + 2)-point two-distance sets in Rd .

For any simple graph G (= Kn,Nn) of order n,∃!X ⊂ Rd such that G ↔ X and d ≤ n − 2. (function view)

X : n-point two-distance set in Rd .

d \ n 3 4 5 6 7

2 ∞ 6 1 ×3 − ∞ 26 6 ×

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 52: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Finiteness of two-distance sets

There are infinitely many (d + 1)-point two-distance sets in Rd ..Theorem (Einhorn-Schoenberg, 1966)..

.

. ..

.

.

There are finitely many (d + 2)-point two-distance sets in Rd .

For any simple graph G (= Kn,Nn) of order n,∃!X ⊂ Rd such that G ↔ X and d ≤ n − 2. (function view)

X : n-point two-distance set in Rd .

d \ n 3 4 5 6 7

2 ∞ 6 1 ×3 − ∞ 26 6 ×

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 53: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Finiteness of two-distance sets

There are infinitely many (d + 1)-point two-distance sets in Rd ..Theorem (Einhorn-Schoenberg, 1966)..

.

. ..

.

.

There are finitely many (d + 2)-point two-distance sets in Rd .

For any simple graph G (= Kn,Nn) of order n,∃!X ⊂ Rd such that G ↔ X and d ≤ n − 2. (function view)

X : n-point two-distance set in Rd .

d \ n 3 4 5 6 7

2 ∞ 6 1 ×3 − ∞ 26 6 ×

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 54: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Finiteness of two-distance sets

There are infinitely many (d + 1)-point two-distance sets in Rd ..Theorem (Einhorn-Schoenberg, 1966)..

.

. ..

.

.

There are finitely many (d + 2)-point two-distance sets in Rd .

For any simple graph G (= Kn,Nn) of order n,∃!X ⊂ Rd such that G ↔ X and d ≤ n − 2. (function view)

X : n-point two-distance set in Rd .

d \ n 3 4 5 6 7

2 ∞ 6 1 ×3 − ∞ 26 6 ×

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 55: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Three-distance sets in R2, R3

.Theorem (S, 2004)..

.

. ..

.

.

There are exactly 34 three-distance sets with 5 points.

g3(2) = 7 and optimal three-distance sets in R2 is R7 and R+6 .

.Conjecture (Einhorn-Schoenberg, 1966)..

.

. ..

.

.

Every 12-point three-distance set is isomorphic to the vertex set ofa regular icosahedron. In particular, g3(3) = 12.

.Theorem (S.)..

.

. ..

.

.

Every 12-point three-distance set is isomorphic to the vertex set ofa regular icosahedron. In particular, g3(3) = 12.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 56: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Three-distance sets in R2, R3

.Theorem (S, 2004)..

.

. ..

.

.

There are exactly 34 three-distance sets with 5 points.

g3(2) = 7 and optimal three-distance sets in R2 is R7 and R+6 .

.Conjecture (Einhorn-Schoenberg, 1966)..

.

. ..

.

.

Every 12-point three-distance set is isomorphic to the vertex set ofa regular icosahedron. In particular, g3(3) = 12.

.Theorem (S.)..

.

. ..

.

.

Every 12-point three-distance set is isomorphic to the vertex set ofa regular icosahedron. In particular, g3(3) = 12.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 57: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Three-distance sets in R2, R3

.Theorem (S, 2004)..

.

. ..

.

.

There are exactly 34 three-distance sets with 5 points.

g3(2) = 7 and optimal three-distance sets in R2 is R7 and R+6 .

.Conjecture (Einhorn-Schoenberg, 1966)..

.

. ..

.

.

Every 12-point three-distance set is isomorphic to the vertex set ofa regular icosahedron. In particular, g3(3) = 12.

.Theorem (S.)..

.

. ..

.

.

Every 12-point three-distance set is isomorphic to the vertex set ofa regular icosahedron. In particular, g3(3) = 12.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 58: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. A relation between their results and conjecture

.Proposition..

.

. ..

.

.

Every 12-point three-distance set containing a 5-point two-distanceset is isomorphic to the vertex set of a regular icosahedron.

.Proposition..

.

. ..

.

.

Every 14-point three-distance set in R3 contains a 5-pointtwo-distance set in R3.

.Proposition..

.

. ..

.

.

Every 12-point three-distance set in R3 contains a 5-pointtwo-distance set in R3.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 59: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. A relation between their results and conjecture

.Proposition..

.

. ..

.

.

Every 12-point three-distance set containing a 5-point two-distanceset is isomorphic to the vertex set of a regular icosahedron.

.Proposition..

.

. ..

.

.

Every 14-point three-distance set in R3 contains a 5-pointtwo-distance set in R3.

.Proposition..

.

. ..

.

.

Every 12-point three-distance set in R3 contains a 5-pointtwo-distance set in R3.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 60: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. A relation between their results and conjecture

.Proposition..

.

. ..

.

.

Every 12-point three-distance set containing a 5-point two-distanceset is isomorphic to the vertex set of a regular icosahedron.

.Proposition..

.

. ..

.

.

Every 14-point three-distance set in R3 contains a 5-pointtwo-distance set in R3.

.Proposition..

.

. ..

.

.

Every 12-point three-distance set in R3 contains a 5-pointtwo-distance set in R3.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 61: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Definition of diameter graphs

.Definition..

.

. ..

.

.

D(X ) := maxA(X ) :the diameter of X

G := DG (X ) :the diameter graph of X

X

{V (G ) = X ,

For P ,Q ∈ X , P ∼ Q if PQ=D(X).

.Example.... ..

.

.

DG (R2m+1) = C2m+1, DG (R2m) = m · P2

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 62: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Independent set of diameter graph

Let X be a k-distance set.

X

⊃ Y

↕ ↕V (DG (X )) ⊃ H : an independent set

Then Y is an at most (k − 1)-distance set..Proposition..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3 with |X | = 12.Then α(G ) ≥ 5.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 63: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Independent set of diameter graph

Let X be a k-distance set.

X

⊃ Y

V (DG (X ))

⊃ H : an independent set

Then Y is an at most (k − 1)-distance set..Proposition..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3 with |X | = 12.Then α(G ) ≥ 5.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 64: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Independent set of diameter graph

Let X be a k-distance set.

X

⊃ Y

V (DG (X )) ⊃ H : an independent set

Then Y is an at most (k − 1)-distance set..Proposition..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3 with |X | = 12.Then α(G ) ≥ 5.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 65: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Independent set of diameter graph

Let X be a k-distance set.

X

Y

↕ ↕V (DG (X )) ⊃ H : an independent set

Then Y is an at most (k − 1)-distance set..Proposition..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3 with |X | = 12.Then α(G ) ≥ 5.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 66: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Independent set of diameter graph

Let X be a k-distance set.

X ⊃ Y

↕ ↕V (DG (X )) ⊃ H : an independent set

Then Y is an at most (k − 1)-distance set..Proposition..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3 with |X | = 12.Then α(G ) ≥ 5.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 67: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Independent set of diameter graph

Let X be a k-distance set.

X ⊃ Y

↕ ↕V (DG (X )) ⊃ H : an independent set

Then Y is an at most (k − 1)-distance set.

.Proposition..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3 with |X | = 12.Then α(G ) ≥ 5.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 68: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Independent set of diameter graph

Let X be a k-distance set.

X ⊃ Y

↕ ↕V (DG (X )) ⊃ H : an independent set

Then Y is an at most (k − 1)-distance set..Proposition..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3 with |X | = 12.Then α(G ) ≥ 5.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 69: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Diameter graphs for X ⊂ R2

.Proposition..

.

. ..

.

.

Let G = DG (X ) for X ⊂ R2. Then(i) G contains no C2k for any k ≥ 2;(ii) if G contains C2k+1, then any two vertices in V (G ) \V (C2k+1)are not adjacent.In particular, G contains at most one cycle.

.Proof...

.

. ..

.

.

Two segments whose lengths are the diameter of X mustintersect.

isolated vertices

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 70: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Applications for planar distance sets

.Proposition..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R2 with |X | = n.If G = Cn, then we have α(G ) ≥

⌈n2

⌉where

⌈n2

⌉is the smallest

integer at least n2 .

.Application..

.

. ..

.

.

Let X be a 9-point 4-distance set in R2 and G = DG (X ).

If G = C9, then X = R9 (∵ X is a convex 4-distance set)

If G = C9, then α(G ) ≥⌈92

⌉= 5. Therefore X contains a

5-point (at most) 3-distance set in R2.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 71: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Applications for planar distance sets

.Proposition..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R2 with |X | = n.If G = Cn, then we have α(G ) ≥

⌈n2

⌉where

⌈n2

⌉is the smallest

integer at least n2 .

.Application..

.

. ..

.

.

Let X be a 9-point 4-distance set in R2 and G = DG (X ).

If G = C9, then X = R9 (∵ X is a convex 4-distance set)

If G = C9, then α(G ) ≥⌈92

⌉= 5. Therefore X contains a

5-point (at most) 3-distance set in R2.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 72: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Applications for planar distance sets

.Proposition..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R2 with |X | = n.If G = Cn, then we have α(G ) ≥

⌈n2

⌉where

⌈n2

⌉is the smallest

integer at least n2 .

.Application..

.

. ..

.

.

Let X be a 9-point 4-distance set in R2 and G = DG (X ).

If G = C9, then X = R9 (∵ X is a convex 4-distance set)

If G = C9, then α(G ) ≥⌈92

⌉= 5. Therefore X contains a

5-point (at most) 3-distance set in R2.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 73: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Diameter graphs for X ⊂ R3

.Theorem (Dol’nikov(2000))..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3. If G containstwo cycles of odd length C and C ′, then V (C ) ∩ V (C ′) = ∅.

.Corollary..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3 with |X | = n.Let G contain a triangle C. Then G − C is a bipartite graph. Inparticular, α(G ) ≥

⌈n−32

⌉.

.Corollary..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3. Then G doesnot contain two disjoint 5-cycles.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 74: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Diameter graphs for X ⊂ R3

.Theorem (Dol’nikov(2000))..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3. If G containstwo cycles of odd length C and C ′, then V (C ) ∩ V (C ′) = ∅.

.Corollary..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3 with |X | = n.Let G contain a triangle C. Then G − C is a bipartite graph. Inparticular, α(G ) ≥

⌈n−32

⌉.

.Corollary..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3. Then G doesnot contain two disjoint 5-cycles.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 75: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Diameter graphs for X ⊂ R3

.Theorem (Dol’nikov(2000))..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3. If G containstwo cycles of odd length C and C ′, then V (C ) ∩ V (C ′) = ∅.

.Corollary..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3 with |X | = n.Let G contain a triangle C. Then G − C is a bipartite graph. Inparticular, α(G ) ≥

⌈n−32

⌉.

.Corollary..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3. Then G doesnot contain two disjoint 5-cycles.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 76: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. α(DG (X )) ≥ 5 for X ⊂ R3 with |X | = 12

.Proposition..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3 with |X | = 12.Then α(G ) ≥ 5, where α(G ) is a independence number of G.

Let G = DG (X ) for X ⊂ R3 with n (≥ 12) points.By Corollary, if G contains a triangle,

α(G ) ≥⌈12− 3

2

⌉= 5.

We assume a simple graph G satisfy the following conditions.|V (G )| = 12

α(G ) < 5

triangle− free

Then we can prove that G contains disjoint 5-cycles C and C ′.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 77: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. α(DG (X )) ≥ 5 for X ⊂ R3 with |X | = 12

.Proposition..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3 with |X | = 12.Then α(G ) ≥ 5, where α(G ) is a independence number of G.

Let G = DG (X ) for X ⊂ R3 with n (≥ 12) points.By Corollary, if G contains a triangle,

α(G ) ≥⌈12− 3

2

⌉= 5.

We assume a simple graph G satisfy the following conditions.|V (G )| = 12

α(G ) < 5

triangle− free

Then we can prove that G contains disjoint 5-cycles C and C ′.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 78: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. α(DG (X )) ≥ 5 for X ⊂ R3 with |X | = 12

.Proposition..

.

. ..

.

.

Let G = DG (X ) be the diameter graph of X ⊂ R3 with |X | = 12.Then α(G ) ≥ 5, where α(G ) is a independence number of G.

Let G = DG (X ) for X ⊂ R3 with n (≥ 12) points.By Corollary, if G contains a triangle,

α(G ) ≥⌈12− 3

2

⌉= 5.

We assume a simple graph G satisfy the following conditions.|V (G )| = 12

α(G ) < 5

triangle− free

Then we can prove that G contains disjoint 5-cycles C and C ′.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 79: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Contents

Connections of two topics

Distance sets

DefinitionsConvex planar distance sets (survey)Planar distance sets (survey, S.)Three-distance sets in R3 (S.)Two-distance sets in Rd (Nozaki-S.)Distance sets on circles (Momihara-S.)

Families of sets

Erdos-Ko-Rado’s theorem and Katona’s proof (survey)Some generalizations of Erdos-Ko-Rado’s theorem (survey)Union families (Frankl-Tokushige)r -wise union families (Frankl-S.-Tokushige)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 80: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Example of a two-distance set in Sd−1 ⊂ Rd

g2(d) := max{|X | : X is a 2-distance set in Rd}g∗2 (d) := max{|X | : X is a 2-distance set in Sd−1}

Vd : the set of all mid-points of edges of a regular simplex in Rd .Then

|Vd | =(d + 1

2

)=

d(d + 1)

2

and Vd is a two-distance set in Rd .

.Proof...

.

. ..

.

.

Let P1 ↔ E1, P2 ↔ E2 for P1,P2 ∈ Vd . (Ei : edge)(a) E1 and E2 have a common vertex ⇒ P1P2 = 1/2(b) E1 and E2 don’t have a common vertex ⇒ P1P2 =

√2/2

d(d + 1)

2≤ g∗

2 (d) ≤ g2(d)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 81: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Example of a two-distance set in Sd−1 ⊂ Rd

g2(d) := max{|X | : X is a 2-distance set in Rd}g∗2 (d) := max{|X | : X is a 2-distance set in Sd−1}

Vd : the set of all mid-points of edges of a regular simplex in Rd .Then

|Vd | =(d + 1

2

)=

d(d + 1)

2

and Vd is a two-distance set in Rd ..Proof...

.

. ..

.

.

Let P1 ↔ E1, P2 ↔ E2 for P1,P2 ∈ Vd . (Ei : edge)(a) E1 and E2 have a common vertex ⇒ P1P2 = 1/2(b) E1 and E2 don’t have a common vertex ⇒ P1P2 =

√2/2

d(d + 1)

2≤ g∗

2 (d) ≤ g2(d)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 82: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Tight two-distance sets

Upper boundsDelsarte-Goethals-Seidel 1977

d(d + 1)

2≤ g∗

2 (d) ≤(d + 2

2

)− 1 =: T (d)

Blokhuis 1983, Bannai-Bannai-Stanton 1983

d(d + 1)

2≤ g2(d) ≤

(d + 2

2

)−1 =: T (d)

A two-distance set X in Sd−1 (resp. Rd) is said to be tight if

|X | = T (d)(resp. |X | =

(d+22

)= T (d) + 1

).

.Remark..

.

. ..

.

.

Tight two-distance sets in Sd−1 are known only ford = 2, 6, 22.

It is known some conditions for d to exist tight two-distanceset in Sd−1. (Bannai-Damerell, Bannai-Munemasa-Venkov)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 83: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Optimal two-distance sets and other results

d 1 2 3 4 5 6 7 8

g∗2 (d) 2 5 6 10 16 27 28 (36)

g2(d) 3 5 6 10 16 27 29 45

.Theorem (Musin(2008), JCTA)..

.

. ..

.

.

g∗2 (d) =

d(d+1)2 for 8 ≤ d ≤ 39 (d = 22, 23) and

g∗2 (22) = 275 = T (22), g∗

2 (23) = 276 or 277.

.Theorem (Nozaki-S. (2010), JCTA)..

.

. ..

.

.

∃ tight two-distance set in Sd−2(⊂ Rd−1) ⇐⇒∃ proper locally two-distance set in Rd with more than d(d+1)

2points ..Theorem (Nozaki-S. (2012), LAA)..

.

. ..

.

.

G: strongly regular graph of order n ⇐⇒d(G ) + d(G ) = n − 1 and both X (G ) and X (G ) are spherical.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 84: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Contents

Connections of two topics

Distance sets

DefinitionsConvex planar distance sets (survey)Planar distance sets (survey, S.)Three-distance sets in R3 (S.)Two-distance sets in Rd (Nozaki-S.)Distance sets on circles (Momihara-S.)

Families of sets

Erdos-Ko-Rado’s theorem and Katona’s proof (survey)Some generalizations of Erdos-Ko-Rado’s theorem (survey)Union families (Frankl-Tokushige)r -wise union families (Frankl-S.-Tokushige)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 85: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Distance sets on circles.Theorem (Momihara-S., to appear in AMM)..

.

. ..

.

.

Let X ⊂ S1 be a k-distance set with n points.If k < Mn, then X ⊂ R2k or X ⊂ R2k+1.

.Proposition 1..

.

. ..

.

.

Let X ⊂ S1 be a k-distance set with n points.If k < Mn, then X ⊂ Rm for some m..Proposition 2..

.

. ..

.

.

Let X ⊂ Rm be a k-distance set with n points. Assume that⟨X ⟩ = Rm. If k < Mn, then m ∈ {2k, 2k + 1}.

Differences in A ⊂ Zm.A = {0, 1, 4} ⊂ Z9.A− A = {0,±1,±3,±4}.|A− A| = 7↔ 3-distance set

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 86: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Distance sets on circles.Theorem (Momihara-S., to appear in AMM)..

.

. ..

.

.

Let X ⊂ S1 be a k-distance set with n points.If k < Mn, then X ⊂ R2k or X ⊂ R2k+1..Proposition 1..

.

. ..

.

.

Let X ⊂ S1 be a k-distance set with n points.If k < Mn, then X ⊂ Rm for some m.

.Proposition 2..

.

. ..

.

.

Let X ⊂ Rm be a k-distance set with n points. Assume that⟨X ⟩ = Rm. If k < Mn, then m ∈ {2k, 2k + 1}.

Differences in A ⊂ Zm.A = {0, 1, 4} ⊂ Z9.A− A = {0,±1,±3,±4}.|A− A| = 7↔ 3-distance set

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 87: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Distance sets on circles.Theorem (Momihara-S., to appear in AMM)..

.

. ..

.

.

Let X ⊂ S1 be a k-distance set with n points.If k < Mn, then X ⊂ R2k or X ⊂ R2k+1..Proposition 1..

.

. ..

.

.

Let X ⊂ S1 be a k-distance set with n points.If k < Mn, then X ⊂ Rm for some m..Proposition 2..

.

. ..

.

.

Let X ⊂ Rm be a k-distance set with n points. Assume that⟨X ⟩ = Rm. If k < Mn, then m ∈ {2k, 2k + 1}.

Differences in A ⊂ Zm.A = {0, 1, 4} ⊂ Z9.A− A = {0,±1,±3,±4}.|A− A| = 7↔ 3-distance set

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 88: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Distance sets on circles.Theorem (Momihara-S., to appear in AMM)..

.

. ..

.

.

Let X ⊂ S1 be a k-distance set with n points.If k < Mn, then X ⊂ R2k or X ⊂ R2k+1..Proposition 1..

.

. ..

.

.

Let X ⊂ S1 be a k-distance set with n points.If k < Mn, then X ⊂ Rm for some m..Proposition 2..

.

. ..

.

.

Let X ⊂ Rm be a k-distance set with n points. Assume that⟨X ⟩ = Rm. If k < Mn, then m ∈ {2k, 2k + 1}.

Differences in A ⊂ Zm.A = {0, 1, 4} ⊂ Z9.A− A = {0,±1,±3,±4}.|A− A| = 7↔ 3-distance set

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 89: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Sum set (cf. B. Nathanson, Additive number theory, Inverse problmems...)

.Definition..

.

. ..

.

.

G: a finite abelian group A,B: subsets of G .A+ B = {a+ b | a ∈ A, b ∈ B}.

.Example..

.

. ..

.

.

We take subsets A,B,C of Z11 where ,A = {0, 1, 2},B = {0, 2, 4},C = {3, 4, 5}.

Then

A+ B = {0, 1, 2, 3, 4, 5, 6},A+ C = {3, 4, 5, 6, 7}.

.Remark.... ..

.

.

We may assume 0 ∈ A ∩ B.

.Theorem (Cauchy(1893)-Davenport(1935))..

.

. ..

.

.

Let G = Zp (p : prime).|A+ B| ≥ min{p, |A|+ |B| − 1}.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 90: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Vosper’s theorem

.Theorem (Cauchy(1893)-Davenport(1935))..

.

. ..

.

.

Let G = Zp (p : prime).|A+ B| ≥ min{p, |A|+ |B| − 1}.

.Theorem (Vosper(1956))..

.

. ..

.

.

Let G = Zp (p : prime). If |A+ B| = |A|+ |B| − 1, then one ofthe followings hold:

|A| = 1 or |B| = 1.

|A+ B| = p − 1.

A and B are arithmetic progressions with same commondifference.

A = {a+ id | i = 0, 1, . . . , k−1},B = {b+ id | i = 0, 1, . . . , ℓ−1}.

ThenA+ B = {a+ b + id | i = 0, 1, . . . , k + ℓ− 2}.Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 91: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Kneser’s theorem.Definition..

.

. ..

.

.

G: finite abelian group,A,B ⊂ G (subset)

A+ B = {a+ b | a ∈ A, b ∈ B}..Theorem (Cauchy-Davenport)..

.

. ..

.

.

Let G = Zp (p : prime).

|A+ B| ≥ min{p, |A|+ |B| − 1}..Theorem (Kneser)..

.

. ..

.

.

G: finite abelian group∃H < G such that

|A+ B| ≥ min{|G |, |A|+ |B| − |H|}.Corollary (Kneser)..

.

. ..

.

.

∃H < G such that

|A+ B| ≥ |A+ H|+ |B + H| − |H|Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 92: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Bounds for sizes of Rm.Corollary (Kneser)..

.

. ..

.

.

∃H < G such that

|A+ B| ≥ |A+ H|+ |B + H| − |H|.Proposition..

.

. ..

.

.

Let X be an n-subset of Zm such that ⟨X ⟩ = Zm.Then |X − X | ≥ min{m, sn}

where

sn =

{3n/2, if n ≡ 0 (mod 2),

3(n + 1)/2, if n ≡ 1 (mod 2).

|X − X | ≥ |X + H|+ |− X + H| − |H| = 2|X + H| − |H|We may assume (G : H) ≥ 2. Then |X + H| ≥ 2|H| by ⟨X ⟩ = Zm.

|X − X | ≥ 3

2|X + H| ≥ 3

2n

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 93: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Bounds for sizes of Rm.Corollary (Kneser)..

.

. ..

.

.

∃H < G such that

|A+ B| ≥ |A+ H|+ |B + H| − |H|.Proposition..

.

. ..

.

.

Let X be an n-subset of Zm such that ⟨X ⟩ = Zm.Then |X − X | ≥ min{m, sn}

where

sn =

{3n/2, if n ≡ 0 (mod 2),

3(n + 1)/2, if n ≡ 1 (mod 2).

|X − X | ≥ |X + H|+ |− X + H| − |H| = 2|X + H| − |H|We may assume (G : H) ≥ 2. Then |X + H| ≥ 2|H| by ⟨X ⟩ = Zm.

|X − X | ≥ 3

2|X + H| ≥ 3

2n

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 94: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Bounds for sizes of Rm.Corollary (Kneser)..

.

. ..

.

.

∃H < G such that

|A+ B| ≥ |A+ H|+ |B + H| − |H|.Proposition..

.

. ..

.

.

Let X be an n-subset of Zm such that ⟨X ⟩ = Zm.Then |X − X | ≥ min{m, sn}

where

sn =

{3n/2, if n ≡ 0 (mod 2),

3(n + 1)/2, if n ≡ 1 (mod 2).

|X − X | ≥ |X + H|+ |− X + H| − |H| = 2|X + H| − |H|We may assume (G : H) ≥ 2. Then |X + H| ≥ 2|H| by ⟨X ⟩ = Zm.

|X − X | ≥ 3

2|X + H| ≥ 3

2n

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 95: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Bounds for sizes of Rm.Proposition (even case)..

.

. ..

.

.

Let X be an 2n-subset of Zm such that ⟨X ⟩ = Zm.Then |X − X | ≥ min{m, s2n(= 3n)}..Proposition 2 (even case)..

.

. ..

.

.

Let X be a k-distance set with 2n points on Rm with n ≥ 2.Assume ⟨X ⟩ = Rm.If k < M2n(= ⌈(3n − 1)/2⌉), then m ∈ {2k, 2k + 1}.

.Proof...

.

. ..

.

.

If X ⊂ Rm with |X | = 2n > ⌊m/2⌋, then k = ⌊m/2⌋.|X − X | ∈ {2k , 2k + 1}, since X is a k-distance set.

2k + 1 ≥ |X − X | ≥ min{m, 3n}⇐⇒ k ≥ min{⌈(m − 1)/2⌉, ⌈(3n − 1)/2⌉}⌈(m − 1)/2⌉ ≤ k < ⌈(3n − 1)/2⌉ since k < ⌈(3n − 1)/2⌉.m < 3n⇐⇒ |X | = 2n > 2

3m.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 96: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Bounds for sizes of Rm.Proposition (even case)..

.

. ..

.

.

Let X be an 2n-subset of Zm such that ⟨X ⟩ = Zm.Then |X − X | ≥ min{m, s2n(= 3n)}..Proposition 2 (even case)..

.

. ..

.

.

Let X be a k-distance set with 2n points on Rm with n ≥ 2.Assume ⟨X ⟩ = Rm.If k < M2n(= ⌈(3n − 1)/2⌉), then m ∈ {2k, 2k + 1}..Proof...

.

. ..

.

.

If X ⊂ Rm with |X | = 2n > ⌊m/2⌋, then k = ⌊m/2⌋.

|X − X | ∈ {2k , 2k + 1}, since X is a k-distance set.

2k + 1 ≥ |X − X | ≥ min{m, 3n}⇐⇒ k ≥ min{⌈(m − 1)/2⌉, ⌈(3n − 1)/2⌉}⌈(m − 1)/2⌉ ≤ k < ⌈(3n − 1)/2⌉ since k < ⌈(3n − 1)/2⌉.m < 3n⇐⇒ |X | = 2n > 2

3m.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 97: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Bounds for sizes of Rm.Proposition (even case)..

.

. ..

.

.

Let X be an 2n-subset of Zm such that ⟨X ⟩ = Zm.Then |X − X | ≥ min{m, s2n(= 3n)}..Proposition 2 (even case)..

.

. ..

.

.

Let X be a k-distance set with 2n points on Rm with n ≥ 2.Assume ⟨X ⟩ = Rm.If k < M2n(= ⌈(3n − 1)/2⌉), then m ∈ {2k, 2k + 1}..Proof...

.

. ..

.

.

If X ⊂ Rm with |X | = 2n > ⌊m/2⌋, then k = ⌊m/2⌋.|X − X | ∈ {2k , 2k + 1}, since X is a k-distance set.

2k + 1 ≥ |X − X | ≥ min{m, 3n}⇐⇒ k ≥ min{⌈(m − 1)/2⌉, ⌈(3n − 1)/2⌉}⌈(m − 1)/2⌉ ≤ k < ⌈(3n − 1)/2⌉ since k < ⌈(3n − 1)/2⌉.m < 3n⇐⇒ |X | = 2n > 2

3m.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 98: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Bounds for sizes of Rm.Proposition (even case)..

.

. ..

.

.

Let X be an 2n-subset of Zm such that ⟨X ⟩ = Zm.Then |X − X | ≥ min{m, s2n(= 3n)}..Proposition 2 (even case)..

.

. ..

.

.

Let X be a k-distance set with 2n points on Rm with n ≥ 2.Assume ⟨X ⟩ = Rm.If k < M2n(= ⌈(3n − 1)/2⌉), then m ∈ {2k, 2k + 1}..Proof...

.

. ..

.

.

If X ⊂ Rm with |X | = 2n > ⌊m/2⌋, then k = ⌊m/2⌋.|X − X | ∈ {2k , 2k + 1}, since X is a k-distance set.

2k + 1 ≥ |X − X | ≥ min{m, 3n}⇐⇒ k ≥ min{⌈(m − 1)/2⌉, ⌈(3n − 1)/2⌉}

⌈(m − 1)/2⌉ ≤ k < ⌈(3n − 1)/2⌉ since k < ⌈(3n − 1)/2⌉.m < 3n⇐⇒ |X | = 2n > 2

3m.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 99: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Bounds for sizes of Rm.Proposition (even case)..

.

. ..

.

.

Let X be an 2n-subset of Zm such that ⟨X ⟩ = Zm.Then |X − X | ≥ min{m, s2n(= 3n)}..Proposition 2 (even case)..

.

. ..

.

.

Let X be a k-distance set with 2n points on Rm with n ≥ 2.Assume ⟨X ⟩ = Rm.If k < M2n(= ⌈(3n − 1)/2⌉), then m ∈ {2k, 2k + 1}..Proof...

.

. ..

.

.

If X ⊂ Rm with |X | = 2n > ⌊m/2⌋, then k = ⌊m/2⌋.|X − X | ∈ {2k , 2k + 1}, since X is a k-distance set.

2k + 1 ≥ |X − X | ≥ min{m, 3n}⇐⇒ k ≥ min{⌈(m − 1)/2⌉, ⌈(3n − 1)/2⌉}⌈(m − 1)/2⌉ ≤ k < ⌈(3n − 1)/2⌉ since k < ⌈(3n − 1)/2⌉.

m < 3n⇐⇒ |X | = 2n > 23m.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 100: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Bounds for sizes of Rm.Proposition (even case)..

.

. ..

.

.

Let X be an 2n-subset of Zm such that ⟨X ⟩ = Zm.Then |X − X | ≥ min{m, s2n(= 3n)}..Proposition 2 (even case)..

.

. ..

.

.

Let X be a k-distance set with 2n points on Rm with n ≥ 2.Assume ⟨X ⟩ = Rm.If k < M2n(= ⌈(3n − 1)/2⌉), then m ∈ {2k, 2k + 1}..Proof...

.

. ..

.

.

If X ⊂ Rm with |X | = 2n > ⌊m/2⌋, then k = ⌊m/2⌋.|X − X | ∈ {2k , 2k + 1}, since X is a k-distance set.

2k + 1 ≥ |X − X | ≥ min{m, 3n}⇐⇒ k ≥ min{⌈(m − 1)/2⌉, ⌈(3n − 1)/2⌉}⌈(m − 1)/2⌉ ≤ k < ⌈(3n − 1)/2⌉ since k < ⌈(3n − 1)/2⌉.m < 3n⇐⇒ |X | = 2n > 2

3m.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 101: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Distance sets on a half circle

d(P ,Q)←→ al(P,Q)(arc length)

Mn − 1 =

{3t − 1, if n = 4t or 4t − 1,

3t − 3, if n = 4t − 2 or 4t − 3.

X : (4m − 1)-point (3m − 1)-distance set in S1

X ′: 2m-point k-distance set in R1 for k ≤ 3m − 1

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 102: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Distance sets on a half circle

d(P ,Q)←→ al(P,Q)(arc length)

Mn − 1 =

{3t − 1, if n = 4t or 4t − 1,

3t − 3, if n = 4t − 2 or 4t − 3.

X : (4m − 1)-point (3m − 1)-distance set in S1

X ′: 2m-point k-distance set in R1 for k ≤ 3m − 1

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 103: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Distance sets on a half circle

d(P ,Q)←→ al(P,Q)(arc length)

Mn − 1 =

{3t − 1, if n = 4t or 4t − 1,

3t − 3, if n = 4t − 2 or 4t − 3.

X : (4m − 1)-point (3m − 1)-distance set in S1

X ′: 2m-point k-distance set in R1 for k ≤ 3m − 1

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 104: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Distance sets on a half circle

d(P ,Q)←→ al(P,Q)(arc length)

Mn − 1 =

{3t − 1, if n = 4t or 4t − 1,

3t − 3, if n = 4t − 2 or 4t − 3.

X : (4m − 1)-point (3m − 1)-distance set in S1

X ′: 2m-point k-distance set in R1 for k ≤ 3m − 1

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 105: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Distance sets in R1

a1 a2 a3 a4 a5 a6 a7

b1 b2 b3 b4 b5 b6

.Definition..

.

. ..

.

.

X = (b1, b2, · · · , bn−1) is rational if bi/b1 ∈ Q for 1 ≤ ∀i ≤ n − 1.X is irrational if X is not rational.

.Example..

.

. ..

.

.

(n = 8) X = (1, 1, 1, c , 1, 1, 1) (c /∈ Q)Then k = 10 since A(X ) = {1, 2, 3} ∪ {i + c | 0 ≤ i ≤ 6}.

.Lemma..

.

. ..

.

.

Let X be an irrational k-distance set with n points.Then

k ≥ ⌊3n − 3

2⌋.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 106: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Distance sets in R1

a1 a2 a3 a4 a5 a6 a7

b1 b2 b3 b4 b5 b6

.Definition..

.

. ..

.

.

X = (b1, b2, · · · , bn−1) is rational if bi/b1 ∈ Q for 1 ≤ ∀i ≤ n − 1.X is irrational if X is not rational.

.Example..

.

. ..

.

.

(n = 8) X = (1, 1, 1, c , 1, 1, 1) (c /∈ Q)Then k = 10 since A(X ) = {1, 2, 3} ∪ {i + c | 0 ≤ i ≤ 6}.

.Lemma..

.

. ..

.

.

Let X be an irrational k-distance set with n points.Then

k ≥ ⌊3n − 3

2⌋.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 107: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Distance sets in R1

a1 a2 a3 a4 a5 a6 a7

b1 b2 b3 b4 b5 b6

.Definition..

.

. ..

.

.

X = (b1, b2, · · · , bn−1) is rational if bi/b1 ∈ Q for 1 ≤ ∀i ≤ n − 1.X is irrational if X is not rational.

.Example..

.

. ..

.

.

(n = 8) X = (1, 1, 1, c , 1, 1, 1) (c /∈ Q)Then k = 10 since A(X ) = {1, 2, 3} ∪ {i + c | 0 ≤ i ≤ 6}.

.Lemma..

.

. ..

.

.

Let X be an irrational k-distance set with n points.Then

k ≥ ⌊3n − 3

2⌋.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 108: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.Lemma.... ..

.

.

X = {a1, . . . , an}: irrational. Then |A(X ) \ A(X \ {a1, an})| ≥ 3.

We may assume d(a1, a2) = d(an−1, an) = 1.Let bs (resp. bt) be irrational interval with smallest (resp. largest)index.

bs

a1 a2 at+1 anas as+1

bt

at

d1∗

d2∗

ai aj

d1∗

Without loss of generality, we may assume d1∗ ≥ d2

∗.If there exists 2 ≤ i ≤ s and t + 1 ≤ j ≤ n − 1 such thatd(ai , aj) = d1

∗ then bt ∈ Q.Therefore @ ai , aj ∈ X ( 2 ≤ i ≤ s and t + 1 ≤ j ≤ n − 1) suchthat d(ai , aj) = d1

∗.Therefore {d(a1, an), d(a1, an−1), d

∗1} ⊂ A(X ) \ A(X \ {a1, an}).

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 109: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Irrational distance sets

n-point k-distance set in R1

k⌊3n−52 ⌋n − 1

rational setnonexistance

We classified irrational n-point k-distance set for(n, k) = (2m, 3m − 2), (2m, 3m − 1) and (2m + 1 , 3m).

.Lemma..

.

. ..

.

.

Let X be a 2m-point (3m − 1)-distance set for m ≥ 7. Then X isequivalent to one of the followings.

(1, 1, . . . , 1︸ ︷︷ ︸m

, c , 1, 1, . . . , 1︸ ︷︷ ︸m−2

).

(1 + c , 1, c , 1, c , . . . , 1, c︸ ︷︷ ︸2m−2

).

(1 + c , . . . , 1 + c︸ ︷︷ ︸m1+1

, 1, c , 1, c , . . . , c , 1︸ ︷︷ ︸2m2−1

, 1 + c , . . . , 1 + c︸ ︷︷ ︸m1−1

)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 110: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Classification of irrational distance sets

.Lemma..

.

. ..

.

.

Let X be an irrational k-distance set with n point.Then the followings hold:

(1) If (n, k) = (2m, 3m − 2) for m ≥ 2, then

X = [m] ∪ τc([m]);

(2) If (n, k) = (2m + 1, 3m) for m ≥ 5, then

X = [m + 1] ∪ τc([m]);

(3) If (n, k) = (2m, 3m − 1) for m ≥ 7, then

X = [m + 1] ∪ τc([m − 1]),

where c is any irrational number, [m] = {1, 2, . . . ,m} andτc(x) = x + c for x ∈ R.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 111: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

ℓX := (ℓ, b1, b2, . . . , bn−1).Lemma..

.

. ..

.

.

Let X = (b1, b2, . . . , bn−1) and ℓ > 0. If |D(ℓX ) \D(X )| ≤ 2, thenℓ ∈ D(X )..Lemma..

.

. ..

.

.

Let X = (b1, b2, . . . , bn−2) be a rational k-distance set with n − 1points. If ℓX is an irrational k ′-distance set, then k ′ ≥ 2n − 4..Lemma..

.

. ..

.

.

Let X be an irrational k-distance set with n points. Then thefollowings hold:

(1) If (n, k) = (3, 3), then X = (1, c);

(2) If (n, k) = (4, 4), then X = (1, c , 1);

(3) If (n, k) = (4, 5), then X = (c , 1, 1 + c), (1, 1, c);

(4) If (n, k) = (5, 6), thenX = (c , 1, c , 1), (1, 1, c , 1), (1, c , c, 1), (1 + c , 1, c , 1).

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 112: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Distance sets obtained inductively from the starter (1, c , 1)

m = 3 m = 4 m = 5 m = 6(1, 1, c , 1, 1) → (1, . . . , 1) → A–I

→ (c , . . . , c) → (1, . . . , 1) → (1, . . . , 1)→ (1 + c, . . . , 1 + c)

→ (1 + c , . . . , 1 + c) → (1, . . . , 1) → (2 + c , . . . , 2 + c)→ (2 + c , . . . , 2 + c)

Table: Distance sets obtained inductively from the starter (1, 1, c , 1, 1)

(c, 1, c, 1, c) → (1, . . . , 1) → A–II, A–III, B–III→ (1 + c, . . . , 1) → B–III→ (1 + c, . . . , 1 + c) → A–III→ (c, . . . , c)

(1 + c, 1, c, 1, 1 + c) → (1 + c, . . . , 1 + c) → A–III→ (1, . . . , 1) → (1 + c, . . . , 1 + c) → (2 + c, . . . , 2 + c)→ (2 + c, . . . , 2 + c)

(1 + c, 1, c, 1, c) → (1 + c, . . . , 1) → B–III(−1 + c, 1, c, 1,−1 + c) → (1, . . . , 1) → (c, . . . , c) → (c, . . . , c)

(2 + c, 1, c, 1, 2 + c) → ×

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 113: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Half circle with large points

.Lemma..

.

. ..

.

.

Let X be a set of n points in S1.

If n is odd, then ∃ai ∈ X such that |R(ai )|=|L(ai )|.If n is even, then ∃ai , ai+1 ∈ X such that|R(ai )| > n/2 and |L(ai+1)| > n/2.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 114: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Rational distance sets → Circular distance set.Lemma..

.

. ..

.

.

Let X = {a0, a1, . . . , an−1} be a k-distance set on S1.Assume that al(ai , ai + 1) ∈ Q for i = 1, 2, . . . , n − 1.If k < n − 1, then X ⊂ Rm for some m.

Since k < n − 1,∃ai , aj ∈ X such that al(a0, ai ) = al(a0, aj)

Then al(a0, a1) = al(a0, ai )− al(a1, ai )

= al(a0, aj)− al(a1, ai ) ∈ Q>0

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 115: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Rational distance sets → Circular distance set

odd even

.Proposition..

.

. ..

.

.

Let X be a k-distance set with n points on S1 with k < Mn.

If n is even, then X ⊂ Rm for some m.

If n is odd and both L(ai ) and R(ai ) are rational, thenX ⊂ Rm.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 116: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Irrational distance set → Circular distance set

.Proposition..

.

. ..

.

.

Let X be a k-distance set with n points on S1 with k < Mn.Then both R(ai ) and L(ai ) are rational.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 117: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Irrational distance set → Circular distance set

.Proposition..

.

. ..

.

.

Let X be a k-distance set with n points on S1 with k < Mn.Then both R(ai ) and L(ai ) are rational.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 118: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Irrational distance set → Circular distance set

.Proposition..

.

. ..

.

.

Let X be a k-distance set with n points on S1 with k < Mn.Then both R(ai ) and L(ai ) are rational.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 119: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Main results for distance sets on circles

Mn =

{3t, if n = 4t or 4t − 1,

3t − 2, if n = 4t − 2 or 4t − 3

.Theorem (Momihara-S. to appear in AMM)..

.

. ..

.

.

Let X ⊂ S1 be a k-distance set with n points.If k < Mn, then X ⊂ R2k or X ⊂ R2k+1.

.Problem..

.

. ..

.

.

k , d : given.

Determine gd(k).Classify k-distance sets in Rd with gd(k) points or close togd(k) points.When are there finitely many k-distance sets in Rd

d , n: given . . .

n, k: given . . .

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 120: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Contents

Connections of two topics

Distance sets

DefinitionsConvex planar distance sets (survey)Planar distance sets (survey, S.)Three-distance sets in R3 (S.)Two-distance sets in Rd (Nozaki-S.)Distance sets on circles (Momihara-S.)

Families of sets

Erdos-Ko-Rado’s theorem and Katona’s proof (survey)Some generalizations of Erdos-Ko-Rado’s theorem (survey)Union families (Frankl-Tokushige)r -wise union families (Frankl-S.-Tokushige)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 121: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Intersecting families.Definition..

.

. ..

.

.

A family F is called intersecting (resp. t-intersecting) ifF ∩ F ′ = ∅ (resp. |F ∩ F ′| ≥ t)

holds for all F ,F ′ ∈ F ..Example (Fano plane)..

.

. ..

.

.

F = {{1, 2, 6}, {1, 3, 7}, {1, 4, 5},{2, 3, 5}, {2, 4, 7}, {3, 4, 6}, {5, 6, 7}}

.Example (trivial intersecting family)..

.

. ..

.

.

F0 =

{[t] ∪ F | F ∈

([n] \ [t]k − t

)}.

Then F0 is a t-intersecting family with |F| =(n−tk−t

).

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 122: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Erdos-Ko-Rado’s theorem.Theorem (Erdos-Ko-Rado(1961))..

.

. ..

.

.

F ⊂([n]k

): intersecting

If n ≥ 2k, then

|F| ≤(n − 1

k − 1

).

.Definition..

.

. ..

.

.

For a circular permutation C = (a1, a2, . . . , an) on [n],

C (k) := {{ai , ai+1, · · · , ai+k−1} | 1 ≤ i ≤ n}.

Let C = (1, 5, 7, 2, 4, 6, 3).

C (3) = {{1, 5, 7}, {2, 5, 7}, {2, 4, 7},{2, 4, 6}, {3, 4, 6}, {1, 3, 6}, {1, 3, 5}}.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 123: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Katona’s proof

.Lemma..

.

. ..

.

.

Let n ≥ 2k. Let C be a cyclic permutation on [n]. If F ⊂ C (k) isintersecting, then |F| ≤ k.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 124: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Katona’s proof

By a double counting of

p(F) := |{(C ,F ) | F ∈ F ,C is a circ . perm. on [n],F ∈ C (k)}| .

|F| · (n − k)! · k! = p(F) ≤ (n − 1)! · k.

|F| ≤ (n − 1)! · k(n − k)! · k!

=(n − 1)!

(k − 1)!(n − k)!=

(n − 1

k − 1

).

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 125: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Contents

Connections of two topics

Distance sets

DefinitionsConvex planar distance sets (survey)Planar distance sets (survey, S.)Three-distance sets in R3 (S.)Two-distance sets in Rd (Nozaki-S.)Distance sets on circles (Momihara-S.)

Families of sets

Erdos-Ko-Rado’s theorem and Katona’s proof (survey)Some generalizations of Erdos-Ko-Rado’s theorem (survey)Union families (Frankl-Tokushige)r -wise union families (Frankl-S.-Tokushige)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 126: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Erdos-Ko-Rado’s theorem (general case)

.Theorem (Erdos-Ko-Rado(1961))..

.

. ..

.

.

F ⊂([n]k

): t-intersecting family

If n ≥ n0(k , t), then|F| ≤

(n − t

k − t

).

.Theorem (Frankl (1978))..

.

. ..

.

.

The best possible bound for n0(k, t) is (k − t + 1)(t + 1) fort ≥ 15.

.Theorem (Wilson (1984)).... ..

.

.

The best possible bound for n0(k, t) is (k − t + 1)(t + 1) for all t.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 127: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Intersecting families when n < (k − t + 1)(t + 1)

.Example (non-trivial t-intersecting family)..

.

. ..

.

.

Fi = {S ∈([n]

k

)| |S ∩ [t + 2i ]| ≥ t + i} (0 ≤ i ≤ ⌊(n − t)/2⌋)

is t intersecting.

1 · · · i i + 1 · · · 2i 1 + 2i · · · t + 2i · · · n

× · · · × ⃝ · · · ⃝× · · · × ⃝ · · · ⃝

.Theorem (Ahlswede-Khachatrian (1996))..

.

. ..

.

.

Let F ⊂([n]k

)be a t-intersecting. Then

|F| ≤ max0≤i≤ n−t

2

|Fi |

holds. Moreover, equality holds only for F = Fi for some i.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 128: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Other problems

t-intersecting family F ⊂([n]k

).

Non-trivial intersecting family for n > n0(k, t).(Hilton-Milner(1967), Ahlswede-Khachatrian(1996))r -wise t-intersecting family (Brace-Daykin(1971),Frankl-Tokushige(2002,2005), Tokushige(2005,2007,2010))

Other situations

Intersecting family for F ⊂ 2[n] (Katona(1964))Multisets (Furedi-Gerbner-Vizer(2014))Cross-intersecting familyJohnson graph, Hamming graph (other (Q-polynomial)distance regular graphs)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 129: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Contents

Connections of two topics

Distance sets

DefinitionsConvex planar distance sets (survey)Planar distance sets (survey, S.)Three-distance sets in R3 (S.)Two-distance sets in Rd (Nozaki-S.)Distance sets on circles (Momihara-S.)

Families of sets

Erdos-Ko-Rado’s theorem and Katona’s proof (survey)Some generalizations of Erdos-Ko-Rado’s theorem (survey)Union families (Frankl-Tokushige)r -wise union families (Frankl-S.-Tokushige)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 130: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Intersecting families and Union families

.Theorem (Erdos-Ko-Rado(1961), Frankl (1978), Wilson (1984))..

.

. ..

.

.

Given n ≥ k ≥ t > 0 and a t-intersecting family F ⊂([n]k

). If

n ≥ (k − t + 1)(t + 1), then|F| ≤

(n − t

k − t

).

.Definition..

.

. ..

.

.

A family F is called s-union if|F ∪ F ′| ≤ s

holds for all F ,F ′ ∈ F ..Remark..

.

. ..

.

.

Let F ⊂([n]k

). Since |F ∪ F ′| = 2k − |F ∩ F ′| for F ,F ′ ∈

([n]k

),

F : t-intersecting ⇐⇒ F : (2k − t)-union.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 131: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Union for q-ary codes

1 2 3 4 5

x 1 1 0 0 1

y 1 0 1 0 0

x ∨ y = (1, 1, 1, 0, 1), where(x ∨ y)i := max{xi , yi}

12

4

35

x y[5]

.Definition (join)..

.

. ..

.

.

For x, y ∈ {0, 1, . . . , q − 1}n, x ∨ y is defined by(x ∨ y)i := max{xi , yi}

(2, 3, 1) (1, 2, 2) (2, 3, 2)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 132: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Union families in Nn ({0, 1, . . . , q − 1}nfor large q])

.Definition..

.

. ..

.

.

N = {0, 1, 2, . . .}.For a = (a1, a2, . . . , an) ∈ Nn, |a| := a1 + a2 + · · ·+ an.

For a,b ∈ Nn, we define the join a ∨ b by

(a ∨ b)i := max{ai , bi}.A ⊂ Nn is s-union if

|a ∨ b| ≤ s for all a,b ∈ A.

wn(s) := max{|A| | A ⊂ Nn is s-union}.For a,b ∈ Nn, we let a ≺ b iff ai ≤ bi for all 1 ≤ i ≤ n.

a ∈ A is maximal if @ b ∈ A such that a ≺ b.

For x ∈ Nn, D(x) := {y ∈ Nn | y ≺ x} (down set)..Remark..

.

. ..

.

.

If A ⊂ Nn is s-union, then (D(A) :=)∪a∈AD(a) is also s-union.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 133: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. D(a) and balanced partition

D(x) := {y ∈ Nn | y ≺ x}

.Example (10-union in N3)..

.

. ..

.

.

Let a = (4, 3, 3). Then D(a) is 10-union with|D(a)| = (4 + 1)× (3 + 1)2 = 80. Therefore w3(10) ≥ 80.

.Definition (balanced partition)..

.

. ..

.

.

b = (b1, b2, . . . , bn) ∈ Nn is called a balanced partition iff|bi − bj | ≤ 1 for 1 ≤ i < j ≤ n.

.Lemma..

.

. ..

.

.

If b is a balanced partition and a is not a balanced partition with|b| = |a|, then

|D(a)| < |D(b)|.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 134: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Balanced partition

.Proposition..

.

. ..

.

.

wn(s) := max{|A| | A ⊂ Nn is s-union}.

w1(s) = |D(a1)| = s + 1,

w2(2s) = |D(a2)| = (s + 1)2,

w2(2s + 1) = |D(a3)| = (s + 2)(s + 1).

where ai is a balanced partition with |ai | = s, 2s, 2s + 1,respectively. i. e. a1 = (s), a2 = (s, s), a3 = (s + 1, s).

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 135: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Examples and upper set S(a, d).Example (Another example of 10-union)..

.

. ..

.

.

A := {(4, 2, 2), (2, 4, 2), (2, 2, 4), (3, 3, 3)}.Then A is 10-union. (We will check soon.) Moreover,

|D(A)| = |{(i , j , k) : i , j , k ∈ {0, 1, 2, 3}}|+ |{(4, j , k) : j , k ∈ {0, 1, 2}}| × 3

= 43 + 33 = 91 > 80 = |D((4, 3, 3))|.

A = {a+ 2e1, a+ 2e2, a+ 2e3} ∪ {a+ 1},where ei is the i-the standard base of Rn, 1 :=

∑ei , a = (2, 2, 2).

.Definition (upper set at distance d from a ∈ Nn)..

.

. ..

.

.

S(a, d) = {a+ ϵ : ϵ ∈ Nn, |ϵ| = d}

D(A) = D (S(a, 2)) ∪ D (S(a+ 1, 0)) where a = (2, 2, 2).

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 136: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. D(A) = D (S(a, 2)) ∪ D (S(a+ 1, 0)) where a = (2, 2, 2)

If p,q ∈ D (S(a+ 1, 0)), then clearly |p ∨ q| ≤ 9.

If p,q ∈ D (S(a, 2)), thenp ∨ q ∈ D (S(a, 2 + 2)) .

Therefore |p ∨ q| ≤ 10.

If p ∈ D (S(a, 2)) and q ∈ D (S(a+ 1, 0)),

p ∨ q ∈ D (S(a+ 1, 2− (3− 2))) .

Therefore |p ∨ q| ≤ 10..Definition..

.

. ..

.

.

Kn(a, d) :=

⌊ dn−1

⌋∪i=0

D (S (a+ i1, d − (n − 1)i)) .

K3(a, 2) =1∪

i=0

D (S (a+ i1, 2− 2i)) where a = (2, 2, 2).

.Proposition.... ..

.

.

Kn(a, d) is (|a|+ 2d)-union.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 137: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Good construction of s-union

Kn(a, d) :=

⌊ dn−1

⌋∪i=0

D (S (a+ i1, d − (n − 1)i))

.Proposition.... ..

.

.

Kn(a, d) is (|a|+ 2d)-union..Proof...

.

. ..

.

.

Let 0 ≤ i ≤ j ≤ ⌊ dn−1⌋, and

b ∈ D (S (a+ i1, d − (n − 1)i)) ,c ∈ D (S (a+ j1, d − (n − 1)j)) .

|b \ c| : =∑

1≤l≤n

max{bl − cl , 0}

≤ d − (n − 1)i − (j − i),

|b ∨ c| = |c|+ |b \ a|≤ (|a|+ d + j) + d − (n − 2)i − j

≤ |a|+ 2d − (n − 2)i ≤ |a|+ 2d .

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 138: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. |Kn(a, d)| and balanced partition b

.Lemma..

.

. ..

.

.

|Kn(a, d)| =n∑

j=0

(d + j

j

)σn−j(a)

+

⌊ dn−1

⌋∑i=1

((d − (n − 1)i + n

n

)−

(d − (n − 1)i + n − 1

n

)).

whereσk(a) =

∑K∈([n]k )

∏i∈K

ai .

.Lemma..

.

. ..

.

.

Let |a| = |b|. If b is a balanced partition, then|Kn(a, d)| ≤ |Kn(b, d)|.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 139: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Known Fact

.Conjecture (Frankl-Tokushige, to appear in JCTA)..

.

. ..

.

.

Let n,s be given. Then it follows that

wn(s) = max0≤d≤⌊s/2⌋

|Kn(a, d)|

where a ∈ Nn is a balanced partition with |a| = s − 2d .

.Remark..

.

. ..

.

.

Frankl-Tokushige[1] verified the conjecture for the following cases:

(i) s = 3, (It is somewhat surprising that the case n = 3 is not so easy,

and the formula for w3(s) is rather involved.)

(ii) n > n0(s),

(iii) Under two suppositions;

a is well-defined{P1,P2, . . . ,Pn} ⊂ A

where a and Pi ’s are defined from an s-union family A ⊂ Nn.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 140: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Polytope Pn(a, d) with |a| = s − nd

Let n, s be given, and a = (a1, a2, . . . , an) ∈ Nn with |a| = s − 2dfor some d ∈ N. We define convex polytope P = Pn(a, d) ⊂ Rn bythe following equations:

xi ≥ 0 (1 ≤ i ≤ n),

xi ≤ ai + d (1 ≤ i ≤ n),

xi + xj ≤ ai + aj + d (1 ≤ i < j ≤ n).

L = Ln(a, d) := {x ∈ Nn : x ∈ P}.Lemma.... ..

.

.Two set K and L are the same, and s-union.

Kn(a, d) =

⌊ dn−1

⌋∪i=0

D (S (a+ i1, d − (n − 1)i))

In [1], they prove K = L by (i) K ⊂ L and (ii) |K | = |L|.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 141: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Definition of Pi ’s for s-union A(⊂ Nn)

m = m(A) := (m1,m2, . . . ,mn) where mi := max{xi : x ∈ A}

d = d(A) :=|m| − s

n − 2. (d ∈ N?)

a = a(A) := (a1, a2, . . . , an) where ai = mi − d . (a ∈ Nn?)

Then s = |a|+ 2d since d =|m| − s

n − 2and |a| = |m|+ nd .

Pi := a+ dei .

.Remark.... ..

.

.If ai < 0, then Pi is not defined. For n = 3, we have ai ≥ 0.

WLOG, we may assume that m1 ≥ m2 ≥ m3. Then a1 ≥ a2 ≥ a3.Since A is s-union, m1 +m2 ≤ s. Then |m| − s ≤ m3.d = |m| − s ≤ m3. Therefore a3 ≥ m3 − d ≥ 0.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 142: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. A ⊂ L3(a, d)

L = L3(a, d) := {x ∈ N3 : x satisfies (1), (2), (3)}xi ≥ 0 (1 ≤ i ≤ 3), (1)

xi ≤ ai + d (1 ≤ i ≤ 3), (2)

xi + xj ≤ ai + aj + d (1 ≤ i < j ≤ 3). (3)

mi := max{xi : x ∈ A}, d = |m|−s, ai := mi−d , s = |a|+2d ..Lemma..

.

. ..

.

.

Let A ⊂ N3 be s-union, and a := a(A) and d := d(A). Then

A ⊂ L3(a, d)..Proof...

.

. ..

.

.

(1) Trivial since A ⊂ N3.(2) For any x ∈ (x1, x2, x3) ∈ A, xi ≤ mi = ai + d .(3) For any x ∈ (x1, x2, x3) ∈ A, take y = (∗, ∗,m3) ∈ A.Then |a|+ 2d = s ≥ x1 + x2 +m3 = x1 + x2 + a3 + d .This implies a1 + a2 + d ≥ x1 + x2.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 143: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Summary for s-union family in Nn

.Lemma..

.

. ..

.

.

Ln(a, d) = Kn(a, d) and they are (|a|+ 2d)-union.

Let |a| = |b|. If b is a balanced partition, then|Kn(a, d)| ≤ |Kn(b, d)|.

1. If A ⊂ Ln(a, d), then

2. A ⊂ Kn(a, d) since Ln(a, d) = Kn(a, d).

3. |A| ≤ |Kn(b, d)| for a balanced partition b with |b| = |a|.

|A| ≤ |Ln(a, d)| = |Kn(a, d)| ≤ |Kn(b, d)|

|m|−sn−2 ∈ N? mi − d ≥ 0? {Pi} ⊂ A? A ⊂ L!=⇒

Yes=⇒Yes

=⇒Yes

⇓ ⇓ ⇓? |A|:small? |A|:small?No No No

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 144: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Contents

Connections of two topics

Distance sets

DefinitionsConvex planar distance sets (survey)Planar distance sets (survey, S.)Three-distance sets in R3 (S.)Two-distance sets in Rd (Nozaki-S.)Distance sets on circles (Momihara-S.)

Families of sets

Erdos-Ko-Rado’s theorem and Katona’s proof (survey)Some generalizations of Erdos-Ko-Rado’s theorem (survey)Union families (Frankl-Tokushige)r -wise union families (Frankl-S.-Tokushige)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 145: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. r -wise union families in Nn

.Definition..

.

. ..

.

.

a,b, . . . , z ∈ Nn, we define the join a ∨ b ∨ · · · ∨ z by

(a ∨ b ∨ · · · ∨ z)i := max{ai , bi , . . . , zi}.A ⊂ Nn is r -wise s-union if

|a1 ∨ · · · ∨ ar | ≤ s for all a1, a2, . . . ar ∈ A.

.Definition..

.

. ..

.

.

Kn(r , a, d) :=

⌊d/u⌋∪i=0

D (S (a+ i1, d − ui))

where u = n − r + 1.

.Conjecture..

.

. ..

.

.

Let r ≥ 2 and A be a r -wise s-union in Nn. Then

|A| ≤ max0≤d≤⌊s/r⌋

|Kn(r , a, d)|

where a ∈ Nn is a balanced partition with |a| = s − 2d .

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 146: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. r -wise s-union families in Nk for k ≤ r

.Proposition (s-union family for n ≤ 2)..

.

. ..

.

.

wn(s) := max{|A| | A ⊂ Nn is s-union}.w1(s) = |D(a1)| = s + 1,

w2(2s) = |D(a2)| = (s + 1)2,

w2(2s + 1) = |D(a3)| = (s + 2)(s + 1).

where ai is a balanced partition with |ai | = s, 2s, 2s + 1,respectively. i. e. a1 = (s), a2 = (s, s), a3 = (s + 1, s).

.Proposition..

.

. ..

.

.

Let A be r-wise s-union in Nk for k ≤ r . Then

|A| ≤ |D(a)|

where a ∈ Nn is a balanced partition with |a| = s.

Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 147: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Main Theorem.Theorem (Framkl-Tokushige)..

.

. ..

.

.

Conjecture for s-union is true for the following cases:

(i) s = 3,

(ii) n > n0(s),

(iii) Under two suppositions;

a is well-defined{P1,P2, . . . ,Pn} ⊂ A

where a and Pi ’s are defined from A..Theorem (Frankl-S-Tokushige)..

.

. ..

.

.

Conjecture for r -wise s-union is true for the following cases:(i) s = r + 1,

(ii) n > n0(r , s),

(iii) Under two suppositions;

a is well-defined{P1,P2, . . . ,Pn} ⊂ A

where a and Pi ’s are defined from A.Masashi Shinohara(Shiga University) Classification problems of distance sets and families

Page 148: Classi cation problems of good distance sets and classi cation …sv2-mat.ist.osaka-u.ac.jp/~higashitani/20160416.pdf · 2016. 4. 16. · Masashi Shinohara(Shiga University) Classification

. . . . . .

.. Correspondence table

u := n − r + 1

(2-wise) s-union 2-wise s-union|a1 ∨ a2| ≤ s (∀a1, a2 ∈ A) |a1 ∨ · · · ∨ ar | ≤ s (∀a1, . . . , ar ∈ A)

K

⌊ dn−1 ⌋∪i=0

D (S (a+ i1, d − (n − 1)i))

⌊ du ⌋∪

i=0

D (S (a+ i1, d − ui))

Lxi ≥ 0 (1 ≤ i ≤ n),xi ≤ ai + d (1 ≤ i ≤ n),xi+xj ≤ ai+aj+d (1 ≤ i < j ≤ n)

xi ≥ 0(1 ≤ i ≤ n),∑i∈I

xi ≤∑i∈I

ai + d

(1 ≤ I ≤ n − r + 1, I ⊂ [n]),

d |m|−sn−2

|m|−sn−r

|a| s + 2d s + rd

|Kn(r , a, d)| =n∑

j=0

(d + j

j

)σn−j(a)

+

⌊d/u⌋∑i=1

n∑j=u+1

((d − ui + j

j

)−(d − ui + u

j

))σn−j(a+ i1)

Masashi Shinohara(Shiga University) Classification problems of distance sets and families