CKM Physics & Beyond the Standard Model Physics with Charm

56
ICHEP04 Plenary 8/20/04 Ian Shipsey 1 CKM Physics & Beyond the Standard Model Physics with Charm Ian Shipsey, Purdue University 1) CKM Physics: Charm’s role in testing the Standard Model description of Quark Mixing & CP Violation: Lifetimes Hadronic Decays Leptonic Decays Semileptonic Decays Outli ne: K - - e + K + 2) Physics Beyond the Standard Model D mixing D CP Violation D Rare Decays Outlook & conclusion overed in this talk: D hadron spectroscopy & charmonium alk of Jin Shan. (3770)D 0 D 0 D 0 K + - , D 0 K - e +

description

CKM Physics & Beyond the Standard Model Physics with Charm. . K -. K +.  -. e +. Outline:. 1) CKM Physics : Charm’s role in testing the Standard Model description of Quark Mixing & CP Violation: Lifetimes Hadronic Decays Leptonic Decays Semileptonic Decays. Ian Shipsey, - PowerPoint PPT Presentation

Transcript of CKM Physics & Beyond the Standard Model Physics with Charm

  • CKM Physics & Beyond the Standard Model Physics with CharmIan Shipsey, Purdue University

    1) CKM Physics:Charms role in testing the Standard Model description of Quark Mixing & CP Violation: LifetimesHadronic DecaysLeptonic DecaysSemileptonic DecaysOutline:2) Physics Beyond the Standard ModelD mixingD CP ViolationD Rare Decays Outlook & conclusion Not covered in this talk: D hadron spectroscopy & charmoniumsee talk of Jin Shan.(3770)D0 D0D0K+-, D0K-e+

  • Big Questions in Flavor PhysicsDynamics of flavor?Why generations?Why a hierarchy of masses& mixings?Origin of Baryogenesis?Sakharovs criteria: Baryon number violationCP violation Non-equilibrium3 examples: Universe, kaons, beauty but Standard Model CP violation too small, need additional sources of CP violation.Connection between flavor physics & electroweak symmetry breaking?Extensions of the Standard Model (ex: SUSY) contain flavor & CP violating couplings that should show up at some level in flavor physics, but precision measurements and precision theoryare required to detect the new physics.

  • 2004The Bd system unitarity triangle is limited by systematic errors from QCD: Form factors in semileptonic () decayDecay constants in B mixingD system- the CKM matrix elements are known (tightly constrained to
  • Theoretical errorsdominatewidth ofbands2004precision QCD calculationstested with precision charmdata theory errors of afew % on B system decay constants & semileptonicform factors500 fb-1 @ BABAR/BellePrecision theory + charm = large impact+

  • Theoretical errorsdominatewidth ofbands2004precision QCD calculationstested with precision charmdata theory errors of afew % on B system decay constants & semileptonicform factors500 fb-1 @ BABAR/BellePrecision theory + charm = large impact+

  • The ExperimentsResults used in this talk have been obtained by the following Collaborations:New this year:Note:K-+ is # reconstructed in published analyses, not total collected. The B Factories and CDF now have the largest charm samples.(Pilot run)Exceptionally low background charm samples were obtained at BESII & CLEO-c ideal formeasuring absolute charm branching ratios.

    Fixed Target

    E791

    FOCUS

    LEP

    CLEO

    BaBar/Belle

    CDF

    Beam

    Hadron

    Photon

    K-(+

    ~ 2 ( 104

    ~ 2 ( 105

    ~ 104 /expt.

    ~ 2 ( 105

    ~ 106

    ~ 106

    (t

    ~ 40 fs

    ~ 40 fs

    ~ 100 fs

    ~ 140 fs

    ~ 160 fs

    ~ 50 fs

    _1152621249.unknown

    _1152621349.unknown

    _1152621350.unknown

    _1152621325.unknown

    _1152621247.unknown

    BESII

    CLEO-c

    Beam

    K-(+

    ~ 2.7 (103

    ~ 5.4 x103

    (t

    Not applicable

    Not applicable

    _1153569016.unknown

  • Charm Hadron LifetimesLifetime needed to compare Br(expt) to (theory) Interpreted within O.P.E.Spectator effects (PI.WA,WS) are O(1/mc3) but phase space enhancedD+Ds+baryonsMuon decay:Nave spectator model: (D+) ~1,000 fs (D0) ~400 fs. Gross features of lifetime hierarchy can be explained

  • Charm LifetimesCharm quarks more influenced by hadronicenvironment than beauty quarks.Errors on lifetimes are not a limiting factor in the measurement of absolute rates. D+ 7 , D0 4 , Ds 8 , c3%, 0 10%, +c 6 %, c 17% some lifetimes known as precisely as kaon lifetimes. x10x1.3PDG2004DominatedBy FOCUS2002 resultsSELEX, FOCUS, CLEO E791 E687PDG2004Charm beautyPDG2004Lifetimes are PDG2004 except Ds which is a PDG2004 + FOCUS average.

  • Status of Absolute Charm Branching Ratios Measured very precisely Poorly knownKey hadronic charm decay modes used to normalizeB physics#Ds producedis not well known.Charm produced at B Factories/Tevatron or at dedicated FT experiments allows relative rate measurements but absolute rate measurements are hard because backgrounds are sizeable & because # Ds produced is not well known. form factorsBackgrounds are large.decay constants

    ModePDG04 (%)Error (%)D+mn100Ds+mn 0.60 0.14 24D0 45DoK-p+3.800.09 2.4D+K-p+ p+ 9.20.6 6.5Ds+fp+ 3.60.9 25LcpK-p+ 5.01.3 26J/ym+m-5.88 0.10 1.7

  • Ds+ from Ds*+ Ds+ is not reconstructedPair D*- ( D0 p-) & , assume from B0 Ds*+D*-This result independent of B(Ds+ fp+) :B(B0 Ds*+D*-) = (1.85 0.09(stat) 0.16(syst) )%Data sample:124 million B pairsSignal: 7414 345New Measurement of B(Ds+ f p+)Ds+ f (K+K-) p+ fully reconstructed

    B(Ds+ f p+) = (4.71 0.47(stat) 0.35(syst))%B (B0 Ds*+ D*-) x B (Ds+ f p+) = (8.71 0.78(stat)) x10-4Divide by (A)B0 Ds*+ D*- : partial reconstruction1:2:(A) B(Ds+ f p+) = (3.6 0.9)% (PDG) Signal 212 19B0 Ds*+ D*- : full reconstructionRecoil massCLEO Similar Partial recons. B0 Ds*+ D*-ICHEP ABS11-095212.5% total error (7.5%) syst(25%)BIG improvement!

  • Minor modifications:replaced silicon with 6 layerlow mass inner drift chamber summer 03. + B 1.5T 1.0TCLEO III Detector CLEO-c DetectorCESR (10 GeV) CESR-c (3-4GeV)Absolute Charm Branching Ratios at Threshold (CLEO-c)ICHEP ABS8-0775

  • DATA (Prelim.)~57 pb-1DATA (Prelim.)~57 pb-1 Operation at (3770) DDMeasurements use D tagging: exclusive reconstruction of 1 D Ds: large, low multiplicity, branching ratios ~1-15% high reconstruction efficiency, favorable S/N High net tagging efficiency: ~25% of all Ds produced are reconstructed (achieved).1st CLEO-c DATAD0 candidate Mass (GeV)D0 candidate Mass (GeV)57 pb-1 ~ 340,000 DD pairsICHEP ABS8-0775Single tags Single tags Absolute Charm Branching Ratios at Threshold (CLEO-c)

  • Absolute Charm Branching Ratios at ThresholdDoubly Tagged D+K-p+p+, D-K+p-p-PreliminaryPrelim.DATA ~57 pb-1D candidate mass (GeV)Tagging effectively creates a single D beamWhere # of Ds = # of tagged eventsICHEP ABS8-0775

  • Absolute Charm Hadronic Branching Ratios and Single tagged DDouble tagged DTechnique pioneered by Mark III5 modes, combined 2 fit extract 5 Bi & N(DD), convert to s with Ldt. required to estimate reach.ICHEP ABS8-0775CLEOcBESII similar analysis using 8 modes.but with less statistics comparisonCross section in agreement with Mark IIIMeson factory figure of merit:

    Parameter

    Fitted Value

    (1.98 ( 0.04 ( 0.03) ( 105

    0.0392 ( 0.0008 ( 0.0023

    0.143 ( 0.003 ( 0.010

    0.081 ( 0.002 ( 0.009

    (1.48 ( 0.06 ( 0.04) ( 105

    0.098 ( 0.004 ( 0.008

    0.0161 ( 0.0008 ( 0.0015

    3.64 ( 0.05 ( 0.17

    2.05 ( 0.03 ( 0.14

    0.164 ( 0.004 ( 0.006

    _1153923083.unknown

    _1153923096.unknown

    _1153923113.unknown

    _1153923145.unknown

    _1153923156.unknown

    _1153923103.unknown

    _1153923090.unknown

    _1153902934.unknown

    _1153923043.unknown

    _1153902573.unknown

  • Agreement BES /CLEOc /PDG is good.Absolute Hadronic Branching Ratio SummaryBESIICLEO-c.%%%%Most precise measurement.For many other modes statistical precision is similar to other measurements entering the PDG average. Outlook (my estimate) for 3 fb-1D0 D+ systematics limited.

  • fD+from Absolute Br(D+ m+n)1 track m consistent no showers~57 pb-1

    D+ m+nD-HadronictagICHEP ABS11-07768 signal candidatesBESII(2004)CLEO-cLQCD error 10%Expt. 22% BES Lattice 2004 CLEO-c Isospin Mass Splittings Potential Model Rel. Quark Model QCD Sum Rules QCD Spectral Sum Rules MILC UKQCDpreliminarypreliminary Mark III

  • HQET1) Measure D form factor in Dl. Tests LQCD D form factor calculation.2) BaBar/Belle can extract Vub using tested LQCD calc. of B form factor.3) But: need absolute Br(D l) and high quality d (D l)/dE neither exist.Absolute Charm Semileptonic Decay RatesI. Absolute magnitude & shape of form factors are a stringent test of theory. II. Absolute charm semileptonic rate gives direct measurements of Vcd and Vcs. III Key input to precise Vub bVubStat sys FFTheory error>20%.Typical exclusiveVub presentedby A. Ali.

  • Dpln/KlnRate & Form FactorA big advance in precision!ICHEP ABS8-0781stat syst CKMCLEO IIIat 10 GeVNote:absenceof kinematicseparationUse D*DpObservable: Dm=D*-Dn reconstruction1st measurement of a formfactor in Cabibbo suppressedD semilpetonic decay. (Measure of SU(3) breaking)

    Chart1

    0.1030.04110960960.04110960960.08503038390.09220439370.07785637422.11242.1131

    0.1010.02022374840.02022374840.08503038390.09220439370.07785637422.11242.1131

    0.0820.00781024970.0078102497

    pilnu/klnu

    pilnuklnu

    ratioratio lowratio hisystot err lowtot err highave errorratio/err**21/errsqsqrdev

    Cleo (95)0.1030.0390.0390.0130.04110960960.04110960960.041109609660.9467455621591.71597633140.1910692911

    E687 (96)0.1010.020.020.0030.02022374840.02022374840.0202237484246.94376528122444.98777506110.6235419012

    Cleo (04)0.0820.0060.0060.0050.00781024970.00781024970.00781024971344.26229508216393.44262295080.1505447005

    ndof2CL67.9%0.7740866017

    1652.152805925319430.14637434330.08503038390.0071740098

    00.08503038390.00717400980.09220439370.0778563742

    180.08503038390.00717400980.09220439370.0778563742

    02.11240.00072.11312.1117

    182.11240.00072.11312.1117

    pilnuklnu

    00.04110960960.041109609600000

    00.02022374840.020223748400000

    00.00781024970.00781024970

    0

    0

    0

    0

    pilnu/klnu

    Sheet1

    polemass

    polepole lowpole highsystot err lowtot err highave errorpole/err**21/errssqsqrdev

    MK31.80.20.50.250.32015621190.55901699440.43958660319.31501606835.17500892680.0522823718

    E6912.10.20.40.20.28284271250.44721359550.36502815415.76037585887.50494088510.2986596982

    Cleo 912.1000.2000.4000.2500.32015621190.47169905660.395927634213.3963863776.37923160810.2538620112

    Cleo 9320.120.120.180.21633307650.21633307650.216333076542.73504273521.36752136750.2114886735

    E687 tag1.970.220.430.070.23086792760.43566041820.333264172917.73735957589.00373582530.04347406922.40566041821.7391320724

    E687 inc1.870.080.110.070.10630145810.13038404810.1183427531133.52367273371.40303354710.0664791588

    Cleo 041.890.050.050.0350.06103277810.06103277810.0610327781507.3825503356268.45637583890.0296704579

    ndof6CL98.9%0.9036340687

    739.8504036836389.28984799891.90051296610.0506831339

    01.90051296610.05068313391.95119611.8498298322

    181.90051296610.05068313391.95119611.8498298322

    02.11240.00072.11312.1117

    182.11240.00072.11312.1117

    polemass

    00.55901699440.320156211900000

    00.44721359550.282842712500000

    00.47169905660.32015621190

    00.21633307650.2163330765

    00.43566041820.2308679276

    00.13038404810.1063014581

    00.06103277810.0610327781

    pole mass

  • Absolute D0 Semileptonic Branching Ratios at ThresholdPreliminary ICHEP ABS8-0781First Observation+Note:kinematicseparation.CABIBBO ALLOWEDCABIBBO SUPPRESSED

  • Hep-ex/0406028Phys. Lett. B597 (2004) 39-46Absolute D0 & D+ Semileptonic Branching Ratios at BESIIpreliminaryLongstanding puzzle in charm decay, ratio should be unity (Isospin),New BES II result moves ratio in the right direction.GeVpreliminary

    Experiment

    BES II

    MARK III

    PDG2004

    1.15 ( 0.29 ( 0.09

    1.44 ( 0.62

    1.4 ( 0.2

    _1154936947.unknown

  • Absolute D0 & D+ Semileptonic Branching Ratios Summary BESII & CLEO-cBES II/CLEO-c analyses in good agreement but statistics limited. For p e n CLEO-c is already more precise than PDG. With 3fb-1 stat error on pen will approach 1%.D0r0en has been observed for the first time: useful for Grinsteins Double Ratio. %%

    Experiment

    (%)

    (%)

    (%)

    BES

    3.82 ( 0.40 ( 0.27

    0.33 ( 0.13 ( 0.03

    8.47 ( 1.92 ( 0.66

    CLEO-c

    3.52 ( 0.10 ( 0.25

    0.25 ( 0.03 ( 0.02

    --

    MARK III

    3.4 ( 0.5 ( 0.4

    PDG 04

    3.58 ( 0.18

    6.7 ( 0.9

    _1154352811.unknown

    _1154352850.unknown

    _1154352899.unknown

    _1154353002.unknown

    _1154352821.unknown

    _1154352753.unknown

  • U = Emiss - PmissCLEO-c/BESIII PS PS & PS V absolute form factor magnitudes & slopes to a few%. Note: LQCD most precise where data is least but full q2 range calculable. Need LQCD FF with few % precision before these measurements are made.D0 plnD0 KlnCLEO-c MCLattice QCDD0 plnD0 plnCLEO-c MC1fb-1(D+ ln) / (D+ ln) independent of Vcd tests amplitudes ~2% (Dshln) / (Dsln) independent of Vcs tests amplitudes ~ 2% Vcs /Vcs = 1.6% (now ~10%) Vcd /Vcd = 1.7% (now: 7%)Testing the Lattice with (semi)leptonic Charm DecaysTested lattice to calc. B semileptonic form factor, B factories use Bplv for precise Vub Bplv shape is an additional cross check.3fb-1

  • Unitarity Tests Using Charm2nd row: |Vcd|2 + |Vcs|2 + |Vcb|2 = 1 ??CLEO c: test to ~3% (if theory D K/ln good to few %)& 1st column: |Vud|2 + |Vcd|2 + |Vtd|2 = 1 ?? with similarprecision to 1st rowCompare ratio of long sides to 1.3%|VubVcb*||VudVcd*||VusVcs*|uc*=0uc* (3fb-1)

  • Charm Inclusive Semileptonic Decay at Threshold Stat. Uncertainty ~0.5%PDG: BR = (6.750.29)%Stat. Uncertainty ~ 0.6%PDG: BR = (17.21.9)%CLEO-c DATAElectron Momentum (GeV/c) Electron Momentum (GeV/c) Number Of event /(50MeV/c) Number Of event /(50MeV/c)CLEO-c DATAD0 Xe+n D+ Xe+n From 57 pb-1 of (3770) CLEO-c data: PreliminaryICHEP ABS11-0777PR PLOTS NOBr YET

  • Charm As a Probe of Physics Beyond theStandard ModelThe existence of multiple fermion generations appears to originate at high mass scales can only be studied indirectly.Why charm? in the charm sector the SM contributions to these effects are small large window to search for new physicsCP violation, mixing and rare decays may investigate the physics at these new scales through intermediate particles entering loops.charm is the unique probe of the up-type quark sector (down quarks in the loop). CP asymmetry10-3 D0 - D0 mixing 10-2Rare decays 10-6

    High statistics instead of High EnergyCan we find violations of the Standard Model at low energies? Example Decay missing energy W (100 GeV mass scale) from experiments at the MeV mass scale.

  • D Mixing Mixing has been fertile ground for discoveries:CKM factors c2 same order as kaoni.e.s u Mixing rate 1Mixing rate (1958) used to bound c quark mass discovery(1974). CPV part of transition , K (1964), was a crucial clue top quark existed discovery (1994).dominated by top (mt2 - mc,u2) )/mW2 LargeB lifetime Cabibbo suppressed Vcb2Mixing also Cabibbo suppressed (Vtd2)Mixing rate early indication m top largeMixing rate 1CKM factors c2 ~ 0.05(b-quark VubVcb negligible)But D not Cabbibo suppressed (Vcs~1)Additional suppression: Mixing (ms2 - md2)/ mW2 = 0 SU(3) limit.SM mixing small c2 x [SU(3) breaking]2
  • (A. Petrov, hep/ph 0311371)

    x=DM/Gy=DG/2Gx=DM/Gmixing rate = |amplitude|2mixing rate = |amplitude|2New Physics Mixing Predictionscurrent experimental sensitivityTheoretical GuidanceSM Mixing PredictionsNo CP-violating effects expected in SM. CP violation in mixing would thereforebe an unambiguous signal of New Physics.y (long-range) mixing: SM background.x mixing: Channel for New Physics.New physics will enhance x but not y.SM mixing predictions ~ bounded by box diagram rate & expt. sensitivity. New Physics predictions span same large range mixing is not a clear indication of New Physics.

  • Easier, measure CP-even decay relative to D0->K-p+: (1/2 CP even CP odd)Early FOCUS measurement with non zero yCP:More recent analyses allow forCP violation comparing:No evidence for CPV is found. The observables become:I take =0 in the average:Status of y

    Chart1

    0.83.067572333.067572330.90704319261.32900980650.48507657861

    3.41.56524758421.56524758420.90704319261.32900980650.4850765786

    -1.12.86530975642.8653097564

    -0.51.28062484751.2806248475

    0.80.60207972890.6020797289

    1.150.78771822370.7877182237

    YCP (%)

    pilnuklnu

    YCPratio lowratio hisystot err lowtot err highave errorratio/err**21/errsqsqrdev

    E7910.82.92.913.067572333.067572333.067572330.08501594050.10626992560.0012176669

    FOCUS3.41.41.40.71.56524758421.56524758421.56524758421.3877551020.40816326532.5366667934

    CLEO-1.1002.5002.5001.4002.86530975642.86530975642.8653097564-0.13398294760.12180267970.4906482798

    Belle 01-0.5110.81.28062484751.28062484751.2806248475-0.30487804880.60975609761.207177162

    BABAR0.80.40.40.450.60207972890.60207972890.60207972892.20689655172.75862068970.0316089519

    Belle 031.150.690.690.380.78771822370.78771822370.78771822371.85334407741.61160354550.0951297506

    ndof5CL49.9%4.3612309377

    5.09415067525.61621620330.90704319260.421966614

    00.90704319260.4219666141.32900980650.4850765786

    180.90704319260.4219666141.32900980650.4850765786

    0

    pilnuklnu

    3.067572333.067572331

    1.56524758421.5652475842

    2.86530975642.8653097564

    1.28062484751.2806248475

    0.60207972890.6020797289

    0.78771822370.7877182237

    YCP (%)

    Ian Shipsey:BABAR eero is +.5-.4I have taken the average

    yCP

    E791

    (0.8 ( 2.9 ( 1.0)%

    FOCUS

    (3.4 ( 1.4 ( 0.7)%

    CLEO

    ((1.1 ( 2.5 ( 1.4)%

    Belle 01

    BABAR

    (0.8 ( 0.4 +0.5-0.4)%

    Belle 03

    (1.15( 0.69 ( 0.38)%

    _1154419059.unknown

  • D*+ decays: D*+ D0p+Flavor at birth is tagged by pion from D* decayFlavor at decay is tagged by leptonQuadratic time dependencemixing rateSearch for D Mixing in Semileptonic Decays Two new measurements presented at this conference sensitive toBelle 140 fb-1Neutrino reconstructionThe mixing rate is given byICHEP ABS11-0703

  • unmixedmixedSearch for D Mixing in Semileptonic Decays

  • Unbinned extended maximum likelihood fit to transverse lifetime and M = M(D*)-M(D0) with 15 floated parameters DK and K* e v continuum events 80fb-1 ON 7.1fb-1 OFF DM signal region Unmixed D0 yield: 49620 324 evts (stat)N(mix): 114 61 (~5% probability of getting a larger result for Rmix=0)UnmixedmixedNote verydifferenthorizontal& verticalscalesSearch for D Mixing in Semileptonic Decays ICHEP ABS11-0629

  • D Mixing Semileptonic SummaryFOCUS result is unpublishedM. Hosack Fermilab Thesis 2002-25.BABAR & Belle are addingmore data and expect to publishimproved upper limits soon.

  • Need to fit proper decay time in order to distinguish mixing (both x and y) from doubly Cabibbo-suppressed (DCS) decays:Complication: phase difference, dKp, between CF and DCS amplitudes can lead to observable quantities x and y, related to x and y by a rotation. right-sign (RS) => Cabibbo-favored decays wrong-sign (WS) => Mixing or doubly Cabibbo-suppressed decays.Search for D Mixing in DKp Sensitive to both x and y, and linear in y.Best constraints come from this mode.CP Violating effects are measuredby fitting ICHEP ABS11-0704

  • The Wrong Sign Ratex2 statistics of previousmeasurements.Observables:

    Rws [%]

    AD [%]

    E791 (66)

    5.6K

    not quoted

    (

    ALEPH (67)

    1038

    19

    1.84 ( 0.59 ( 0.07

    (

    FOCUS (68)

    37K

    150

    0.404 ( 0.085 ( 0.025

    (

    CLEO (61)

    13.5K

    45

    Belle (63)

    83K

    845

    BaBar (62)

    120K

    430

    0.357 ( 0.022 ( 0.027

    9.5 ( 6.1 ( 8.3

    Average

    0.368 ( 0.021

    _1152624650.unknown

    _1152624756.unknown

    _1153670131.unknown

    _1153670837.unknown

    _1152624757.unknown

    _1152624755.unknown

    _1152601644.unknown

    Chart1

    0.680.33734255590.33734255590.36809653710.38843158610.34776148821

    1.840.68095521140.68095521140.36809653710.38843158610.3477614882

    0.4040.08860022570.0886002257

    0.3320.07547184910.0754718491

    0.3720.02795084970.0279508497

    0.3570.03482814950.0348281495

    RWS (%)

    pilnuklnu

    RWSratio lowratio hisystot err lowtot err highave errorratio/err**21/errsqsqrdev

    E7910.680.330.330.070.33734255590.33734255590.33734255595.97539543068.78734622140.85486617

    ALEPH1.840.590.590.340.68095521140.68095521140.68095521143.96808281222.15656674574.6722014319

    FOCUS0.4040.0850.0850.0250.08860022570.08860022570.088600225751.4649681529127.38853503180.1642112924

    CLEO0.3320.0640.0640.040.07547184910.07547184910.075471849158.2865168539175.56179775280.2287499988

    Belle0.3720.0250.0250.01250.02795084970.02795084970.0279508497476.1612800.0195033886

    BABAR0.3570.0220.0220.0270.03482814950.03482814950.0348281495294.3116240725824.40230832650.1015112419

    ndof5CL39.4%5.1861773537

    890.16658732212418.29655407830.36809653710.0203350489

    00.36809653710.02033504890.38843158610.3477614882

    180.36809653710.02033504890.38843158610.3477614882

    0

    pilnuklnu

    0.33734255590.33734255591

    0.68095521140.6809552114

    0.08860022570.0886002257

    0.07547184910.0754718491

    0.02795084970.0279508497

    0.03482814950.0348281495

    RWS (%)

    Ian Shipsey:BABAR eero is +.5-.4I have taken the average

  • SimulationCourtesy : Ji LinData (decay)(Mixing)Fit to WSThis is a substantial improvement on previous results.

  • Mixing SummaryCombining all results:G. Burdman and I. Shipsey Ann. Rev. Nucl. Part. Sci. 53 431 (2003) arXivhep-ph/0310076 (updated August 20 2004).2004 update for ICHEPWorld95% CL yWorld 95%CLx-yCP conservationis assumed.Important to measure can be done at a charm factory.CDF expect a mixingresult using D K soon.No statistically significant evidence for mixing has yet beenfound.

  • G( ) G( )CPV via interference between mixing & decay (D0 only)Very small in charm since mixing is suppressed (i.e. good hunting ground for New Physics).G( ) G( )Direct CPV:CPV in D Decaysstrong phase-shift2 weak amplitudes with phase differenceIll ignore CP violation in mixing (as it is negligible).Time dependent sincemixing is involvedExperiment concentrates on this

  • cduW+uW+different weak phasesdifferent strong phasesare likelyStandard Model Contribution ACP ~ 10-3 New Physics up to ~1%If CP~1% observed:is it NP or hadronic enhancement of SM? Strategy: analyzemany channels to elucidate source of CPV.1) Consider D0 p+p- (same for K+K-, K+K-p+, fp+,K*K K+K-p0, p+p-p+, p+p-p0, etc...) Since this decay is Singly Cabibbo Suppressedwe can modify its topology in a simple way to get a penguin.In Standard Model Direct CPV only for SinglyCabibbo suppressed decays. Direct CP Violation

  • Three ACP measurements: (1) KK (2) f , (3) K*K ~43,000 eventsrelative to Ds+ KK as control [Cabibbo favored hence no CP].%% %M(KKp)79.9 fb-1ICHEP ABS11-0629

  • Most recent (& precise) result.D* to tag D0 flavor. Measure relative to D0K Cabibbo allowed mode (Acp=0) as control).Time integratedTime dependent measurements can distinguish direct & indirect CPV. CDF plan this. BABAR/Belle (2003)found no evidence for indirect CP at the 1% level (see y status slide).123pb-1ICHEP ABS11-0535

    ModeD0D0KK8190 1408030 140366069367468

    Chart1

    1.93.29848450053.29848450051.28322362152.53203360790.0344136351

    -4.98.19084855198.19084855191.28322362152.53203360790.034413635

    4.84.63249392884.6324939288

    1.021.43178210631.4317821063

    ACPpipi(%)

    pilnuklnu

    ACPPIPIratio lowratio hisystot err lowtot err highave errorratio/err**21/errsqsqrdev

    Cleo1.93.23.20.83.29848450053.29848450053.29848450050.17463235290.09191176470.0349644394

    E791-4.97.87.82.58.19084855198.19084855198.1908485519-0.073036220.0149053510.5698651715

    FOCUS4.8003.9003.9002.5004.63249392884.63249392884.63249392880.22367194780.04659832250.5763148228

    CDF1.021.31.30.61.43178210631.43178210631.43178210630.49756097560.4878048780.033798378

    ndof3CL75.8%1.1799783722

    0.82282905640.64122031621.28322362151.2488099864

    01.28322362151.24880998642.53203360790.034413635

    181.28322362151.24880998642.53203360790.034413635

    0

    pilnuklnu

    3.29848450053.29848450051

    8.19084855198.1908485519

    4.63249392884.6324939288

    1.43178210631.4317821063

    ACPpipi(%)

    Chart1

    02.34093998212.34093998211.1517249862.19521973110.10823024091

    -15.04479930235.04479930231.1517249862.19521973110.1082302409

    -0.12.66270539112.6627053911

    21.34164078651.3416407865

    ACPKK(%)

    pilnuklnu

    ACPKKratio lowratio hisystot err lowtot err highave errorratio/err**21/errsqsqrdev

    Cleo02.22.20.82.34093998212.34093998212.340939982100.18248175180.2420566502

    E791-14.94.91.25.04479930235.04479930235.0447993023-0.03929273080.03929273080.1819222167

    FOCUS-0.1002.2002.2001.5002.66270539112.66270539112.6627053911-0.01410437240.14104372360.2209894839

    CDF21.21.20.61.34164078651.34164078651.34164078651.11111111110.55555555560.3997613886

    ndof3CL84.9%0.8026730891

    1.05771400790.91837376181.1517249861.0434947451

    01.1517249861.04349474512.19521973110.1082302409

    181.1517249861.04349474512.19521973110.1082302409

    0

    pilnuklnu

    2.34093998212.34093998211

    5.04479930235.0447993023

    2.66270539112.6627053911

    1.34164078651.3416407865

    ACPKK(%)

    ACP

    ACP

    CLEO

    (0.0 ( 2.2 ( 0.8)%

    (1.9 ( 3.2 ( 0.8)%

    E791

    ((1.0 ( 4.9 ( 1.2)%

    ((4.9 ( 7.8 ( 2.5)%

    FOCUS

    ((0.1 ( 2.2 ( 1.5)%

    (4.8 ( 3.9 ( 2.5)%

    CDF

    (2.0 ( 1.7 ( 0.6)%

    (1.0 ( 1.3 ( 0.6)%

    _1152625209.unknown

    _1153688606.unknown

  • Rare DecaysFCNC modes are suppressed by the GIM mechanism:The lepton flavor violating mode is strictly forbidden.Beyond the Standard Model, New Physics may enhance these, e.g.,

    R-parity violating SUSY:(Burdman et al., Phys. Rev. D66, 014009).

  • standard model rate ~ 10-3standard model rate ~ 10-13 (10-23 )mass(p+,p-) (GeV)Reference channel:~ 10,000 events in search window(depending on final state).Search channelsLarge backgrounds, only D0 final states are tractable in e+e- at 10 GeV so far.Use D*D0 tag.Measure relative to D .3 evt1 evt0 evtICHEP ABS11-0964BigImprovement!

  • Rare Decay SummaryFor D+ all charged final states are well-suited to fixedtarget experiments FOCUS has best limitsExpt. sensitivity 10-5-10-6Just beginning to confrontmodels of New Physics inan interesting way.Outlook: brightCDF, B factories,charm factories,BTeV.Presented atthis conferenceAugust2004Close to Long Distance PredictionsSets MSSM constraintStill plenty of roomfor New Physics.

  • BEPCII/BESIII Project Design Two ring machine 93 bunches each Luminosity 1033 cm-2 s-1 @1.89GeV 6 1032 cm-2 s-1 @1.55GeV 6 1032 cm-2 s-1 @ 2.1GeV New BESIIIStatus and Schedule Most contracts signed Linac installed 2004 Ring installed 2005 BESIII in place 2006 Commissioning BEPCII/BESIII beginning of 2007

  • SummaryThis comes at a fortuitous time, recent breakthroughs in precision lattice QCD need detailed data to test against. Charm can provide that data. If the lattice passes the charm test it can be used with increased confidence by: BABAR/Belle/CDF/D0//LHC-b/ATLAS/CMS/BTeV to achieve precision determinationsof the CKM matrix elements Vub, Vcb, Vts, and Vtd thereby maximizing the sensitivityof heavy quark flavor physics to physics beyond the Standard Model. New Physics searches in D mixing, D CP violation and in rare decays by BABAR, Belle and CDF have become considerably more sensitive in the past year, however all results are null. In charms role as a natural testing ground for QCD techniques there has beensolid progress. The start of data taking at the y(3770) by BESII and CLEO-c(and later BESIII) promises an era of precision absolute charm branching ratios.

    The precision with which the charm decay constant fD+ is known has already improvedfrom 100% to ~20%. A reduction in errors for decay constants and form factors to the few % level is promised.Charm is enabling quark flavor physics to reach its full potential. Or in pictures.

  • Theoretical errorsdominatewidth ofbands2004Precision theory + charm = large impact

  • 2004precision QCD calculationstested with precision charmdata theory errors of afew % on B system decay constants & semileptonicform factors500 fb-1 @ BABAR/BellePrecision theory + charm = large impact+

  • Results I did not have time to cover:Measurement of [11-0953]Relative BF of Cabibbo-suppressed decay modes [11-0963]Study of and [11-0938](See excellent talk by Matt Charles in Parallel Session 11 HQ(5) for details.)S. Bianco, F. L. Fabbri, D. Benson & I. Bigi, hep-ex/0309021.G. Burdman & I. Shipsey, Ann. Rev. Nucl. Part. Sci., 2003, hep-ph/0310076. Thanks to the BABAR, Belle, BES II, CDF, CLEO/CLEO-c, and FOCUS collaborations for producing such beautiful results. For their help providing plots and information for this talk thanks to: BABAR: Matt Charles, Milind Purohit, Jeff Richman.Belle: Tom Browder, Ji Lin, Bruce Yablsey.BESII: Jiangchuan Chen, Fred Harris, Gang Rong, Li Weiguo.CDF: Alex Cerri, Stefano Giagu.CLEO-c Yongsheng Gao, Nabil Meena, Anders Ryd, Batbold Sanghi, Seunghee Son, Victor Pavlunin.FOCUS: John Cumalat, Will Johns, Daniele Pedrini, Jim Wiss.CKM Fitter: Andreas Hoecker, Lydia Roos.For more detail on results presented see talks in HQ(5) & HQ(6) by: Alex Cerri, Matt Charles, Jiangchuan Chen, Yongsheng Gao, Ji Lin, Milind Purohit, Gang Rong, and Anders Ryd. Two recent reviews:

  • Additional Slides

  • high precision determination Vub, Vcb, Vts, Vtd, Vcs, Vcd, & associated phases. Over-constrain the Unitarity Triangles - Inconsistencies New physics !Precision measurements in charm, especially absolute rates can calibrate QCD techniques that will enable precise new measurements at Bfactories/Tevatron to be translated into greatly improved CKM precision.Precision Quark Flavor Physics CKMMatrixCurrentStatus:NcVud, Vus & Vcb best determined due to flavor symmetries: I, SU(3), HQS. Charm (Vcd & Vcs) beauty (Vub, Vtd, Vts) poorly determined. theoretical errors dominate.The goalstatus Solution 111leibeigFree/bound

  • Bd & Bs mixing & Charm Decay ConstantsfB2BB = (223 33 12)2 MeV2 |Vtd|.|Vtb| = (9.2 1.4 0.5) 10 3(15-20% error)TypicalLattice valueALEPH,CDF,DELPHI,OPAL.SLDWorld AverageDms
  • Role of precision absolute charm branching ratios As B Factory data sets grow, & calculation of F improve a limiting systematic:dB(DK)/dB(DK) dVcb/Vcb=1.2%Vcb Zero recoil in B D*l+ & B Dl+Lattice & sum rule ALEPH, DELPHI,L3,OPAL.BABAR/BELLE,ARGUS/CLEOHQET spin symmetry test:Test factorization with B DDsUnderstanding charm content of B decay (nc)Precision Z bb and Z cc (Rb & Rc)At LHC/LC H bb H cc (HFAG Summer 2004)

  • CKM matrix elements Vcs Vcd at BESIIBES use current theoretical predictions with errors estimated at ~10%Vcd/Vcd 7%1.3%13%Note: Goal of lattice QCD few % error on PDGVcs/Vcs ~10%Vcd/Vcd =23%Best Determinationwith KlnNot yetcompetitiveVcsVcdVcs ~1Vcd =sinqc

    |Vcs|(Expt) (theory)

    |Vcd|(Expt) (theory)

    BES(QCDSR)

    1.0 ( 0.05 ( 0.15

    0.25 ( 0.05 ( 0.05

    BES(LQCD(1 )

    BES(LQCD(2))

    0.29 ( 0.06 ( 0.03

    PDG2004

    0.97 ( 0.11(W(cs)

    0.224 ( 0.012

    _1154351979.unknown

    _1154372847.unknown

    _1154351804.unknown

  • D+ K*mn & Ds fmn form factor ratiosResults are getting very precise and more calculations are needed. Absolute values of indivudual form factiors soon with improved precision promised by CLEO-c.circa 1999Dsfln form factor should be within 10% of D K*ln R2 for Dsfln was 2 higher than D K*ln until FOCUS (2004) . circa 2004

    Chart2

    1.570.31400636940.31400636940.7927388490.86600390640.71947379151.58849165721.82725557291.3497277415

    1.40.58309518950.58309518950.7927388490.86600390640.71947379151.58849165721.82725557291.3497277415

    2.10.58523499550.5852349955

    1.10.80622577480.8062257748

    0.780.170.17

    0.330.330.33

    1.300

    R2

    Sheet4

    kstarlnu

    BEAT1.450.230.070.240416305625.086505190317.301038062310.150.030.152970585442.73504273542.735042735

    E791exp1.870.080.070.1063014581165.486725663788.49557522120.730.060.080.173100

    E6871.740.270.280.388973006811.50033046936.60938532720.780.180.10.205912602818.396226415123.5849056604

    E65320.330.160.366742416414.86988847587.43494423790.820.220.110.245967477513.553719008316.5289256198

    E69120.60.30.67082039324.44444444442.222222222200.50.20.538516480703.4482758621

    ISGW2QM201.3

    ISGW1.4001

    WSB1.4001.3

    KS1001

    AW/GS2000.8

    Stech1.55001.06

    BKSLG1.990.220.330.39661064030.70.160.170.2334523506

    LMMS1.60.200.20.40.40.4

    LANL1.750.0900.090.870.210.21

    ECL1.30.200.20.60.30.3

    APE1.60.300.30.70.40.4

    UKQCD1.40.3500.350.90.20.2

    BBD2.20.20.21.20.20.2

    221.3878942436122.06316507081.81371582590.0905123179147.6849881584186.29714987730.7927388490.0732650575

    01.81371582590.09051231791.90422814371.72320350800.7927388490.07326505750.86600390640.7194737915

    191.81371582590.09051231791.90422814371.723203508190.7927388490.07326505750.86600390640.7194737915

    BBD

    kstarlnu

    00.24041630560.2404163056000

    00.10630145810.1063014581000

    00.38897300680.3889730068

    00.36674241640.3667424164

    00.67082039320.6708203932

    000

    000

    000

    000

    000

    000

    00.39661064030.3966106403

    00.20.2

    00.090.09

    00.20.2

    00.30.3

    00.350.35

    00.20.2

    0

    Rv

    philnu

    00.15297058540.1529705854000

    00.10.1000

    00.20591260280.2059126028

    00.24596747750.2459674775

    00.53851648070.5385164807

    0

    0

    0

    0

    0

    0

    00.23345235060.2334523506

    00.40.4

    00.210.21

    00.30.3

    00.40.4

    00.20.2

    00.20.2

    R2

    Sheet3

    E791exp2.270.350.220.413400532213.2826214165.85137507311.570.250.190.314006369415.922920892510.1419878296

    CLEO0.90.60.30.670820393222.22222222221.40.50.30.58309518954.11764705882.9411764706

    E6531.310.41.07703296141.12068965520.86206896552.10.550.20.58523499556.13138686132.9197080292

    E6871.80.90.20.92195444572.11764705881.17647058821.10.80.10.80622577481.69230769231.5384615385

    BKSLGT20.190.220.29068883710.780.080.150.17

    LMMS1.650.210.210.330.330.33

    ISGW2Quark2.101.30

    18.5209581310.11213684911.83155730650.314469500527.864262504917.54133386791.58849165720.2387639157

    01.83155730650.31446950052.1460268071.51708780601.58849165720.23876391571.82725557291.3497277415

    181.83155730650.31446950052.1460268071.517087806181.58849165720.23876391571.82725557291.3497277415

    01.81371582590.09051231791.90422814371.72320350800.7927388490.07326505750.86600390640.7194737915

    191.81371582590.09051231791.90422814371.723203508190.7927388490.07326505750.86600390640.7194737915

    Sheet3

    00.41340053220.4134005322000000

    00.67082039320.6708203932000000

    01.07703296141.0770329614

    00.92195444570.9219544457

    00.29068883710.2906888371

    00.210.21

    000

    RV

    00.31400636940.3140063694000000

    00.58309518950.5830951895000000

    00.58523499550.5852349955

    00.80622577480.8062257748

    00.170.17

    00.330.33

    000

    R2

    Chart2

    0.7129350.33357520440.33357520440.8299548150.88417034290.77573928711.29188047141.48603404841.0977268945

    1.570.31400636940.31400636940.8299548150.88417034290.77573928711.29188047141.48603404841.0977268945

    1.40.58309518950.5830951895

    2.10.58523499550.5852349955

    1.10.80622577480.8062257748

    0.780.170.17

    0.330.330.33

    1.300

    R2

    Sheet4

    kstarlnu

    Focus1.5040.0570.0390.0690651866315.3039832285209.643605870.8750.0490.0640.0806039701134.6775434816153.9171925504

    BEAT1.450.230.070.240416305625.086505190317.301038062310.150.030.152970585442.73504273542.735042735

    E791exp1.870.080.070.1063014581165.486725663788.49557522120.730.060.080.173100

    E6871.740.270.280.388973006811.50033046936.60938532720.780.180.10.205912602818.396226415123.5849056604

    E65320.330.160.366742416414.86988847587.43494423790.820.220.110.245967477513.553719008316.5289256198

    E69120.60.30.67082039324.44444444442.222222222200.50.20.538516480703.4482758621

    ISGW2QM201.3

    ISGW1.4001

    WSB1.4001.3

    KS1001

    AW/GS2000.8

    Stech1.55001.06

    BKSLG1.990.220.330.39661064030.70.160.170.2334523506

    LMMS1.60.200.20.40.40.4

    LANL1.750.0900.090.870.210.21

    ECL1.30.200.20.60.30.3

    APE1.60.300.30.70.40.4

    UKQCD1.40.3500.350.90.20.2

    BBD2.20.20.21.20.20.2

    536.6918774721331.70677094081.61797082390.0549063826282.36253164340.21434242770.8299548150.0542155279

    01.61797082390.05490638261.67287720651.563064441300.8299548150.05421552790.88417034290.7757392871

    201.61797082390.05490638261.67287720651.5630644413190.8299548150.05421552790.88417034290.7757392871

    BBD

    kstarlnu

    00.06906518660.0690651866000

    00.24041630560.2404163056000

    00.10630145810.1063014581

    00.38897300680.3889730068

    00.36674241640.3667424164

    00.67082039320.6708203932

    000

    000

    000

    000

    000

    000

    00.39661064030.3966106403

    00.20.2

    00.090.09

    00.20.2

    00.30.3

    00.350.35

    00.20.2

    Rv

    philnu

    00.08060397010.0806039701000

    00.15297058540.1529705854000

    00.10.1

    00.20591260280.2059126028

    00.24596747750.2459674775

    00.53851648070.5385164807

    0

    0

    0

    0

    0

    0

    00.23345235060.2334523506

    00.40.4

    00.210.21

    00.30.3

    00.40.4

    00.20.2

    00.20.2

    R2

    Sheet3

    Focus1.5490.2500.1450.288812405418.567673196111.98859565160.7130.2020.2660.33357520446.40711345598.9869531668

    E791exp2.270.350.220.413400532213.2826214165.85137507311.570.250.190.314006369415.922920892510.1419878296

    CLEO0.90.60.30.670820393222.22222222221.40.50.30.58309518954.11764705882.9411764706

    E6531.310.41.07703296141.12068965520.86206896552.10.550.20.58523499556.13138686132.9197080292

    E6871.80.90.20.92195444572.11764705881.17647058821.10.80.10.80622577481.69230769231.5384615385

    BKSLGT20.190.220.29068883710.780.080.150.17

    LMMS1.650.210.210.330.330.33

    ISGW2Quark2.101.30

    37.088631326222.10073250071.67816298960.212714289734.271375960926.52828703461.29188047140.1941535769

    01.67816298960.21271428971.89087727941.465448699901.29188047140.19415357691.48603404841.0977268945

    181.67816298960.21271428971.89087727941.4654486999181.29188047140.19415357691.48603404841.0977268945

    01.61797082390.05490638261.67287720651.563064441300.8299548150.05421552790.88417034290.7757392871

    201.61797082390.05490638261.67287720651.5630644413190.8299548150.05421552790.88417034290.7757392871

    Sheet3

    00.28881240540.2888124054000000

    00.41340053220.4134005322000000

    00.67082039320.6708203932

    01.07703296141.0770329614

    00.92195444570.9219544457

    00.29068883710.2906888371

    00.210.21

    000

    RV

    00.33357520440.3335752044000000

    00.31400636940.3140063694000000

    00.58309518950.5830951895

    00.58523499550.5852349955

    00.80622577480.8062257748

    00.170.17

    00.330.33

    000

    R2

  • mass(m+,m-) (GeV)mass(m+,m-) (GeV)Reference channel:with similar kinematics.Search channel:3 events insearch windowB(J/ym+,m-) = (5.88 0.10) %+need to know relative production crosssection for J/y and D18 eventsBR(D0+) < 2.010-6 (90% CL)3 evt6 eventshep-ex/0405059,

  • Three Types of CP Violationf D0 D0 D0 D0 f Df 222f f f D0 D0 D0 D0 D0f 2D02++Mixing (AM)Interference between mixing and decay (f)Decay (AD)|Af| |Af |SM: Extremely small SM: Small becausemixing is smallExperiments focus mostly on AD