Civil Engineering Seminar Topics_ Geopolymeric Building Materials by Synergetic Utilisation of...

download Civil Engineering Seminar Topics_ Geopolymeric Building Materials by Synergetic Utilisation of Industrial Wastes

of 10

description

Geopolymeric Building Materials by Synergetic Utilisation of Industrial Wastes

Transcript of Civil Engineering Seminar Topics_ Geopolymeric Building Materials by Synergetic Utilisation of...

  • 7/14/2015 CIVILENGINEERINGSEMINARTOPICS:GEOPOLYMERICBUILDINGMATERIALSBYSYNERGETICUTILISATIONOFINDUSTRIALWAS

    http://civilenggseminar.blogspot.in/2011/11/solidwastemanagement.html 1/10

    Home BRAINSBEHINDSEMINARREPORTS

    Addyourcivilengineeringseminarreportstothetopcivilenggseminarblogandlettheworldseeit.Contactformoredetailsandsendyourreportto:premmohantkmce@yahoo.inMoreoveryoucangetpaidwhenthepageviewsofyourreportreachesathresholdlimit.

    WEDNESDAY,NOVEMBER30,2011

    GEOPOLYMERICBUILDINGMATERIALSBYSYNERGETICUTILISATIONOFINDUSTRIALWASTES

    ABSTRACT

    Solidwastemanagement isoneamongthebasicessentialservicesprovidedbymunicipalauthorities in thecountry tokeepurbancentresclean.

    Duetorapidurbanizationandindustrializationtheproductionofvarioustypesofsolidwasteswhichposeseriousproblemtotheenvironmenthave

    been generated. So the disposal and reuse of solid industrial wastes like phosphogypsum, flurogypsum, flyash, slag and lime sludge, etc. is

    significantinviewoftheiravailabilityandpotentialapplication.

    It isestimatedthatabout300million tonnesof inorganicwaste fromindustrialandminingsectorsaregeneratedeveryyear in India.Advances in

    solidwastemanagementresulted inalternativeconstructionmaterialsasasubstitute to traditionalbuildingmaterials likebricks,blocks, tilesetc.

    Theeffortsarebeingmadeforrecyclingdifferentwastesandutilizetheminvalueaddedapplications.

    Sincealmosteverynaturalresourcesareoverexploitedandareatthevergeofextinctionitisthehightimeforallofustoliveasideourtraditional

    conservative approaches and to move forward with new alternatives which are ecofriendly and techniques that leads towards a sustainable

    development.

    SynergisticutilisationofmajorindustrialwastesgeneratedinIndia,namelyflyash,blastfurnaceslagandredmud,hasbeenexploredtodevelop

    novelbuildingcomponentsusinggeopolymerisation.Theseinclude:(a)highstrengthcements(b)selfglazedwalltiles,and(c)pavementtiles.Fly

    ashwasusedasmainsourceofsilicoaluminateforgeopolymerisation.Granulatedblastfurnaceslag(GBFS)andredmudwereusedindividuallyor

    incombinationwithflyashtotailorpropertiesofthedevelopedcomponents.Chemicalandmechanicalactivationhavebeenjudiciouslyincorporated

    in the processing schemes through an understanding of processingstructureproperty relationships. Improvement in the reactivity of fly ash by

    mechanicalactivationusinghighenergymillswasfoundtoresultsintheformationofacompactmicrostructureduringgeopolymerisationleadingto

    highcompressivestrength(above100MPa) ingeopolymercements.Thecementsalsoexhibited improvedsetting timeandavery lowautoclave

    expansion.Inselfglazedwalltiles,thehardimperviousglazedsurfacewasobtainedattemperaturelowerthan150Cbycontrollingtheparticlesize

    distribution of solid reactants, viscosity of slurry and reaction atmosphere. The selfglazed surface showed the presence of gismodine (Na

    plagioclase)phasewhichwasabsent in themainbodyof thetiles. Inpavementtiles, flyashandgranulatedblast furnaceslagwereusedtogive

    structural framework,whereas redmudwasused tosupplement the ironoxide for colouringeffectandalkalis.Thesettingandhardeningoccurred

    duetoformationofcementitiousASHandCSHgel(A=Al2O3,S=SiO2,C=CaO,H=H2O).Thetechnologieshavebeendevelopedatbench

    scaleandeffortsareunderwayforscalinguptopilotplantlevel.

    Thisreportaimsatstudyingtherecyclingandutilisationofindustrialwastesinmakingvalueaddedbuildingmaterials.

    CHAPTER1

    INTRODUCTION

    Theconceptofindustrialecologyisbasedonintegrationofbyproductandwastesteamsacrossindustriesleadingtoproductionofusefulproducts

    with near zero flow of material to the environment. Building industry is one of the most dynamic sectors with enormous potential of industrial

    symbiosisandsynergisticutilisationof industrialwastes.With increasingenvironmentawareness, there isgrowingconcernworldwide forupdating

    production processes, as well as development of green building materials. The green material can be defined as products made from waste,

    recycled or byproductsto conserve natural resources, circumvent toxic and other emissions, saves energy, and contribute towards a safe and

    healthyenvironment. Geopolymers, silicoaluminatematerials formed throughmimicking natural rock forming process, are fast

    emergingasnewclassofgreenbuildingconstructionmaterials.Intheprocessofgeosynthesis,silicon(Si)andaluminium(Al)atomsreacttoform

    moleculesthatarechemicallyandstructurallycomparabletothosebindingnaturalrockandallowsfornovelproductssynthesisthatexhibitthemost

    idealpropertiesofrockformingelements,i.e.,hardness,chemicalstabilityandlongevity.Flyash,blastfurnaceslagandredmudarethethreemajor

    industrialwastesinIndia.Presentlyover100milliontonnesofflyash,12milliontonnesofblastfurnaceslagandnearly4milliontonnesofredmud

    JBLT250SIOntheearHeadphone

    OurPrice:Rs.2499

    JBLHEADPHONEATRS698.(72%OFF)ONLYFORTODAYFROMTHISLINK

    Unabletoretrievespecforhttp://fcgadgets.appspot.com/spec/shareit.xml.HTTPerror404

    SHAREIT

    TOTALPAGEVIEWS

    2 4 5 6 2 4

    GetStartedNowwitheresume.netCREATERESUME

    2011(17)September(14)

    October(1)

    November(1)GEOPOLYMERICBUILDING

    MATERIALSBYSYNERGETICUTIL...

    December(1)

    2014(6)

    2015(2)

    BLOGARCHIVE

    ABOUTME

    0 More NextBlog

  • 7/14/2015 CIVILENGINEERINGSEMINARTOPICS:GEOPOLYMERICBUILDINGMATERIALSBYSYNERGETICUTILISATIONOFINDUSTRIALWAS

    http://civilenggseminar.blogspot.in/2011/11/solidwastemanagement.html 2/10

    aregenerated.It isestimatedthatproductionof thesewasteswilldouble inforeseeablefutureduetorapidexpansioncoalbasedpowergeneration,

    andincreaseintheproductionofiron&steelandaluminiumthroughprimaryprocessing.ThesewastematerialscontainSiO2andAl2O3,alongwith

    Fe2O3,CaO,MgO,MnO,etc,andhaveimmensepotentialasmanmaderawmaterialsforgeopolymers.

    During geopolymerisation process, the aluminosilicate fraction reactswith alkaline media and transform into a solid geopolymer product, via a

    dissolutionpolycondensationstructural reorganisation mechanism, to developstrength. Blast furnace slag behaves differently during

    geopolymerisationas compared to fly ashand clay.This is attributed to its higher reactivity duetomostly glassy structurewhich, leads to faster

    dissolution ofSi andAlduringgeopolymerisation. TheCaO portion of the slag particles does not necessarilyparticipate in polycondensation, but

    reactswithwaterandmayundergohydrationreaction.Ithasalsobeenreportedthatadditionofblastfurnaceslagintheconventionalsilicoaluminate

    geopolymercementandconcreteimprovessettingcharacteristics.Useof redmud ingeopolymersappearstobeanattractiveproposition fromthe

    pointofviewofitshighalkalinecontent.However,therehaveverylimitedattemptsinthisdirection.

    Thispaperisbasedonrecentresearchonthedevelopmentofawidevarietyofgeopolymericproductsusingflyashasthemainrawmaterialalong

    with granulated blast furnace slag (GBFS) and redmud. The focus is on: (a) high strength cement, (b) selfglazed tiles, and (c) pavementtiles.

    Processing,structureandpropertiesoftheproductsarehighlighted.Thecommercialisationprospectsoftheproductsarealsodiscussed.

    CHAPTER2

    MATERIALSANDMETHODS

    TheflyashandGBFSusedinthestudywereobtainedfromacementgrindingunitatChattisgarhState,India.Theredmudwasobtainedfroma

    AluminiumPlantatOrissaState,India.Thechemicalanalysisandphysicalpropertiesoftheflyash,GBFSandredmudaregiveninTable2.1.

    Table2.1.ChemicalanalysisandphysicalpropertiesofFlyash,GBFS,Redmud

    TheSiO2+Al2O3+Fe2O3contentoftheflyashwas>70%anditwasaClassFfly

    ashasperASTM.Thebasicityoftheslag(CaO/SiO2ratio)was1.06.Thebatchcompositionoftheeachproductwasselectedbasedonchemical,

    physicalandmineralogicalcharacteristicandreactivity.Thecompositionoftheproducts,intermsoftheamountsofflyash,blastfurnaceslagand

    redmudusedareindicatedintheternarydiagramshowninFig2.1.

    Figure2.1.Compositionofgeopolymercement,selfglazedtilesandpavementtiles

    The geopolymer cements were prepared using the raw as well as preprocessedfly ash. The techniques used for preprocessing include air

    classification andmechanical activation. Air classification was carried out using an air classifier 50 ATP.Mechanical activation of fly ash was

    carriedoutusinganattritionmillandavibratorymill.Sodiumhydroxidewasdissolvedinwateratleast24hoursbeforeuse.Incaseofgeopolymer

    cement,geopolymerisationwascarriedoutbykeepingthesamplesincontrolledhumidityfor24hoursat27Cfollowedbythermalcuringat60Cfor

    24hours.

    For self glazed tile, fly ash and a ball milled granulated blast furnace slag (GBFS) were used as main materials. The batch composition was

    thoroughlymixedwithalkalineactivatorandthencastedintilemould.Colourpigmentswereaddedintotheslurrybeforecastingtogetthedesired

    colouringeffects.Thecastedtileswerethenedgedfor24hoursat27Cfollowedbyheattreatmentintherangeof150300Cusingdifferentthermal

    cycle.

    Inpavement tiles, redmudwas intimatelymixedwith flyashandballmilledGBFS.Thebatchwaspreparedbyaddingcoarse,mediumand fine

    aggregatesandalkalineactivator. The slurrywas casted in rubbermouldsandallowed to set at ambient temperature. In all the cases, physical

    properties were tested as per standard procedures discussed elsewhere. The heat evolution during reactions was monitored using an

    isothermalconductioncalorimeter.XRDpatternsofsampleswererecordedonaSiemensDiffractometerusingCoKradiation.Themorphologyof

    thesampleswasexaminedusingScanningElectronMicroscope(SEM)withEDSattachmentformicroanalysis.

    WastewaterEngineering

    ListPrice:Rs.1340OurPrice:Rs.1230 Viewmy

    completeprofile

    JointhissitewithGoogleFriendConnect

    Members(12)

    Alreadyamember?Signin

    FOLLOWERS

  • 7/14/2015 CIVILENGINEERINGSEMINARTOPICS:GEOPOLYMERICBUILDINGMATERIALSBYSYNERGETICUTILISATIONOFINDUSTRIALWAS

    http://civilenggseminar.blogspot.in/2011/11/solidwastemanagement.html 3/10

    CHAPTER3

    GEOPOLYMERISATIONOFWASTE

    Mostproposedmechanismsofgeopolymerisationconsistofdissolutionofaluminosilicatephase,polymerisationandreprecipitationofgelphase,

    and transformation of the gel phase into geopolymer of varying crystallinity and structure.Depending upon experimental conditions, the different

    stages of geopolymer formation may overlap and even merge with each other. Isothermal conduction calorimetry was used to study the

    geopolymerisation of fly ash,mixture of (GBFS+fly ash), and themixture containing (fly ash+GBFS+redmud). The calorimetry was carried out

    underfollowingconditions:

    (i)27Cfor24h(Fig.3.1)

    (ii)60Cfor24hafterkeepingthesampleat27Cfor24h(Fig.3.2)

    Figure.3.1IsothermalConductionCalorimetrycurveshowingdissolutionofsamplesat27C

    Figure.3.2IsothermalConductionCalorimetrycurveshowinggeopolymerisationat60Cafter24hourdissolutionat27C

    Thecalorimetric response inFig.3.1 for thealkali flyashmixtureat27C isexpected to representdissolutionpolymerizationand initiationofgel

    formation. Response in Fig.3.2 signifies the conversion into geopolymer via gel formation step. Based on conduction calorimetric results, the

    followingobservationsweremade:

    (i)at27C (Fig.3.1), the initialexothermicpeak I inall thecases indicates that reactionstartedassoonas thestartingpowderswasmixedwith

    NaOHsolution.Inthecaseof(flyash+GBFS+redmud)mixture,aminorpeakwasobservedatthestart,whichafterashortinductionperiodof

    30minacceleratedtostrongerexothermicpeak.Nosuchinductionandacceleratoryperiodwasobservedinothersamples.In

    termsofmaximumreactionrate,(flyash+GBFS+redmud)mixturehasshownmaximumreactionratefollowedby(flyash+GBFS)andflyash.

    (ii)at60C,afteredgingthesampleat27Cfor24h(Fig.3.2),twopeakswereobservedinallthesamples.Firstendothermicpeak,observedduring

    0250 min, corresponds mainly to dehydration that occurred owing to the evaporation of water formed or water remained unused during gel

    formation.Theareaundertheendothermicpeakfor(flyash+GBFS)sampleshowedahigherarea,indicatinggreateramountofgelformation.After

    the endothermic peak, the broad flat exothermic peak, observed during 2401200min, corresponds to polycondensation. This peak started and

    flattens earlier in fly ash.Whereas in other cases, the peak took longer time to flattens possibly due to presence of GBFS,which resulted into

    formationofCSHgel.

  • 7/14/2015 CIVILENGINEERINGSEMINARTOPICS:GEOPOLYMERICBUILDINGMATERIALSBYSYNERGETICUTILISATIONOFINDUSTRIALWAS

    http://civilenggseminar.blogspot.in/2011/11/solidwastemanagement.html 4/10

    Figure3.3Conceptualmodelforgeopolymerisation

    CHAPTER4

    DEVELOPMENTOFNOVELBUILDINGMATERIALS

    4.1.GEOPOLYMERCEMENT

    Lowreactivityofflyashhasoftenrestrictedtheuseofflyashforgeopolymercementsduetoslowstrengthdevelopment.Thereactivityofflyash

    dependsonitsvitreousphasecontent,whichparticipatesingeopolymerisationreaction.Theremainingconstituentstakeslongertimeforreaction

    due to poor reactivity and leads to slow setting and strength development in geopolymers. Various methods such as chemical activation,

    mechanicalactivationandsizeclassificationofflyashhasbeensuggestedasameanstoimprovethereactivity.Recentlyobservationsweremade

    bythepresentauthorsthatuseofmechanicallyactivatedflyashleadstohighcompressivestrengthingeopolymers.Twodifferentapproachwere

    adoptedtoenhancereactivityofflyash:(a)airclassificationtoseparatefinerfractions,and(b)mechanicalactivationinattritionandvibratorymills.

    Smallsizecenospherecoolsfasterduringtheirformationincoalcombustionprocessandseparationoffinerfractionbyairclassificationresultsin

    increase in theglasscontentsvisvis raw flyash.Mechanicalactivation resultsdue tocombinedeffectofparticlebreakage (surfacearea)and

    otherbulkandsurfacephysicochemicalchangesinducedbytheprocessofmilling.

    Thechange in reactivityof flyashdue to increasedglasscontentandmechanicalactivationwasassessedvisvis raw flyash.Fig.4.1shows

    typicalparticlesizedistributionof rawflyash(RFA),classified flyash(CFA),attritionmilled flyash(AMFA)andvibratorymilled flyash(VMFA).

    Basedonmedianparticlesize(X50),thesamplescanbearrangedinfollowingdescendingorder:RFA(36.2m)>VMFA(5.99m)>AMFA(4.85

    m)>CFA(2.79m).

    Figure.4.1particlesizedistributionofRFA,CFA,AMFAandVMFA

  • 7/14/2015 CIVILENGINEERINGSEMINARTOPICS:GEOPOLYMERICBUILDINGMATERIALSBYSYNERGETICUTILISATIONOFINDUSTRIALWAS

    http://civilenggseminar.blogspot.in/2011/11/solidwastemanagement.html 5/10

    Figure.4.2XRDpatternofRFA,CFA,AMFAandVMFAbasedgeopolymersshowingformationofaluminasilicategelandhydroxysodalite

    Figure.4.3SEMmicrographshowingcompactstructureobservedinVMFAbasedgeopolymers

    Figure.4.4Geopolymercementandconcretecubes

    Figure.4.2 showsXRDpattern ofRFA,CFA,AMFAandVMFAbased geopolymers.Similar nature of XRDpatterns suggests formation of same

    phasesinallthesamples.TheXRDpatternsshowabroadpeakintherangeof1016correspondingtoaluminosilicategel.Inaddition,presenceof

    hydroxyl sodalitephase is observed indicatinggeopolymerisation.Themost compactmicrostructurewasobtained inVMFAbasedgeopolymers

    withhighproportionofreactionproduct(Fig.4.3).Basedontherelativeamountofgeopolymerproductformedandcompactnessofmicrostructure,

    thereactivityofflyashsamplesdecreasesinfollowingorder:VMFA>AMFA>CFA>RFA.InspiteofhigherparticlesizeofVMFAandAMFA(5

    6m)ascomparedtoCFA(~3m),higherreactivityofmechanicallyactivatedsampleswasinteresting.

    ThephysicalpropertiesofthegeopolymercementaregiveninTable2.ThehigherstrengthinAMFAandVMFAisattributedtohigherreactivitydue

    to mechanical activation that leads to enhanced geopolymerisation and more compact microstructure. Significantly higher strength of samples

    preparedusingVMFAovercorrespondingAMFAsampleshighlightsthe importanceofmechanicalactivationdevice.Theotherproperties,suchas

    setting time,autoclaveexpansion,etc. indicate that thedevelopedgeopolymercementsmeet thespecificationsdrawn forhydrauliccements like

    ordinaryPortlandcement,PortlandslagcementandPortlandpozzolanacement.

    Table4.1Propertiesofgeopolymercement

    4.2.SELFGLAZEDTILE

    Conventionallyceramic tilesareproducedbyhigh temperaturesintering/vitrificationofaluminosilicateandsilicatemineralssuchasclay,quartz,

    feldspar,etc.Thestrengthandotherpropertiesof tilesaredevelopeddue to formationofceramicbonds.Developmentofstoneware tilesat250

    400C by geopolymerisation of aluminosilicate minerals has been reported. The processing involved reaction between aluminosilicate mineral

    kaoliniteandNaOHat100C150Cresultingintotheformationofhydrosodalite

    Si2O5,Al2(OH)4+NaOHNa(SiOAlO)n

    kaolinitehydrosodalite

    Inthealkaliactivationofflyashandslagmixtureatambienttemperature,flyash/slagratioisthemostrelevantfactoronthestrengthdevelopment.

    Themainreactionproduct isahydratedcalciumsilicatewithhighamountoftetracoordinatedAl in itsstructure.Theadditionsofcalciumcontent

    increase the degree of geopolymerisation at elevated temperature and results into higher strength. Beneficial effect of slag on fly ash

    geopolymerisationwasexploitedinthedevelopmentofselfglazedwalltiles.

    TheglazedsurfaceandthebodyoftilesshoweddistinctlydifferentmicrostructureasrevealedbySEMmicrographsshowninFig4.5aandFig4.5b,

    respectively.

    Theglazedsurfaceischaracterizedbywellknittedgrainsgivingrisetocompactmicrostructurewithverylowporosity(Fig.4.5a).Themorphology

    ofthetilebodyshowsthewellreactedporousbody.XRDstudiesindicatedthepresenceofgismodine(Naplagioclase)phaseintheglazedsurface

  • 7/14/2015 CIVILENGINEERINGSEMINARTOPICS:GEOPOLYMERICBUILDINGMATERIALSBYSYNERGETICUTILISATIONOFINDUSTRIALWAS

    http://civilenggseminar.blogspot.in/2011/11/solidwastemanagement.html 6/10

    (Fig.4.5c).

    Figure4.5a.Closelyknittedmicrostructureofglazedsurface,b.wellreactedmicrostructureoftilebody,c.XRDpatternofglazedandbodyoftile,

    andd.tilesofdifferentcolour

    TwotypeofbulkreactionproductswereidentifiedbyEDXstudies:(a)alowcrystallinecalciumsilicatehydraterichinAl,whichincludesNaintoits

    structureandresultsfromthealkaliactivationofslag,and(b)anamorphousalkalinealuminosilicatehydrateresultingfromthealkaliactivationoffly

    ash.Criticalcontrolonparticlesizedistribution,chemicalcomposition,rheologyofslurryandreactionenvironmentisnecessaryfortheformationof

    requiredphasesintheglazedsurface.

    ThepropertiesofglazedgeopolymertilearesummarisedinTable4.2.

    Table4.2Propertiesofgeopolymertile

    ThetilesdevelopedconformtotheEuropeanNation(EN)specificationforwalltiles.Thenaturalcolourofthetileswaslightgreybutdifferentcolour

    anddesignswereproducedusingcolourpigments.Unlike thefiredceramic tiles,nocrazingandotherglazedefectswereobserved.Althoughthe

    surfaceofthetilewasimpervious,theporosityofbodywas1317%,whichisgoodforbondingwithcement.

    4.3PAVEMENTTILES

    Pavementtilesaresmallcementstructuresingeometricalshapesthatareusuallylaidonpathwaysoronanyopengroundasasolidplatform.As

    these tilesarenot cementedandonly laid closelyover abedof loose sand, they canbeeasily removed, storedand reusedasmany timesas

    possible.InIndia,thepavementtilesaremostlyvibrocastand/orpressedcementmortarorconcretehydratedfor28days.Thestrengthisobtained

    due to hardening of cement. Earlier research on alkalislagredmudcement (ASRC) has indicated high early and ultimate strength togetherwith

    excellent resistanceagainst chemical attacks. This was achieved by introduction of solidcomposite alkali activator into slagred mud mixture

    systeminsteadofliquidwaterglass.ThehydrationproductsofASRCcementweremostlyCSHgelwithlowCa/Siratiointherangeof0.8to1.2.

    Inthepresentworkflyash,GBFSandredmudwasusedtodevelopcementitiousphasesbyalkaliactivationatambienttemperature.Redmudwas

    usedtogivecolouringeffecttothetilesfrompresenceof ironoxides,andalsopartlysupplementalkaliesforreaction.Similartoselfglazedtiles,

    twomajorreactionproductswereidentifiedinXRD(Fig4.6)andEDXstudies.CSHgelwithNainitsstructurefromtheactivationofGBFS,and

    amorphousalkalinealuminosilicatehydrateresultedfromtheactivationofflyash.Alsopresenceofironoxideandhydroxideresultedfromaddition

    ofredmud.

    Figure4.6XRDpatternofpavementtiles

  • 7/14/2015 CIVILENGINEERINGSEMINARTOPICS:GEOPOLYMERICBUILDINGMATERIALSBYSYNERGETICUTILISATIONOFINDUSTRIALWAS

    http://civilenggseminar.blogspot.in/2011/11/solidwastemanagement.html 7/10

    The SEM studies (Fig4.7) have shown a dense microstructure including numerous fibrous structures corresponding to CSH gel with Na in

    structure.

    Figure4.7Densemicrostructurewithnumerousfibers

    Figure4.8Pavementtiles

    Table4.3Propertiesofpavementtile

    Thetiles,althoughproducedatambienttemperature(2735C),exhibitsgoodcompressiveandflexuralstrength.

    CHAPTER5

    SYNERGETICUSEOFINDUSTRIALWASTE

    Synergisticuseof industrialwaste isanemergingconceptwherebycombinationof twoormorewastes isused todevelopausefulproduct.The

    mainadvantageof thesynergy is thedeficiencyofconstituents fromonewaste iscompensatedbyusingsecondor thirdwaste,which is rich in

    deficient constituent. Synergistic use also includes industrial symbiosis where physical exchange of waste/byproducts between geographically

    close industries is exploited. In the present work, waste from three industries, fly ash from thermal power plants, fly ash and granulated blast

    furnaceslagfromSteelPlants,andflyashandredmudfromAluminiumplants,hasbeenused.

    Flyashwasusedforthedevelopmentofgeopolymerscement,combinationofflyashandblastfurnaceslagwasusedforselfglazedtilesandall

    three wastes fly ash, GBFS and red mud was used for pavement tiles. From the point of view of zero or minimum flow into environment,

    geopolymer cement is best suited for thermal power plant, where fly ash is themain byproduct. Selfglazed tiles and pavement tiles aremore

    suitableforiron&steelandaluminiumindustryrespectively.Fig.5.1showsthesynergymapofthesewastes.

    Figure.5.1SynergymapfortheUtilisationofdifferenttypeofIndustrialwastes

    CHAPTER6

    ECONOMICSANDCOMMERCIALPOTENTIAL

  • 7/14/2015 CIVILENGINEERINGSEMINARTOPICS:GEOPOLYMERICBUILDINGMATERIALSBYSYNERGETICUTILISATIONOFINDUSTRIALWAS

    http://civilenggseminar.blogspot.in/2011/11/solidwastemanagement.html 8/10

    PostedbyPremMohanat9:42PM

    Reactions: funny (0) interesting (0) cool (0)

    Thecostofmost industrialproduction is increasingly influencedbytheoperationsrequiredfortheadequatedisposalofbyproducts.Thedisposal

    costasperregulationsmayadd510%oftheproductioncostdependingonvolumeandnatureofwastegenerated.Themajorbenefitofsynergistic

    useof industrialwaste is reduction inproduct cost.Thegeopolymerisationprocess is low temperatureprocessand thus thepotential forenergy

    savings issubstantial.Cementclinker isnormallyproducedat~1400Candceramic tilesareproducedat9501200C.Whereasthegeopolymers

    cementandselfglazedtilesrequire60150Ctemperature.Thissignificantreductionintemperatureisexpectedtosaveupto70%inenergycost.In

    addition,therewillbeenormoussavingincapitalcostasnohightemperatureprocessingkilnsarerequired.

    Producersofgeopolymersproductsmayalsobenefit fromrawmaterialcostsbecausethemainreagentsarewastematerial. In India, flyashand

    redmudarefreeofcostandonlytransportationcostisinvolved.ThecostofgranulatedblastfurnaceslagisaroundRs.400500pertonne.Based

    onthevariousinputs,atechnoeconomiccalculationwascarriedoutasfollows(Table.6.1):

    Table.6.1Technoeconomicsfortheproductionofgeopolymerproducts

    Thetechnoeconomicsbasedonlaboratoryresultsindicatehighcommercialization

    potential.Effortsareunderway in thisdirection throughsettingupofapilotplant tooptimizemanufacturingparametersandpropertiesona larger

    scale.

    CHAPTER7

    CONCLUSION

    DuetotheirabilitytopolycondenseSiliconandAluminiumintosolidmonolithicceramiclikestructureduringalkaliactivation,geopolymershavethe

    potential of utilization of industrial wastes rich in silicoaluminates such as fly ash,GBFS, redmud, etc. Novel buildingmaterials such as high

    strengthgeopolymerscementcanbedevelopedbyadditionalprocessingsuchasmechanicalactivation,andselfglazedtileandpavementtilescan

    be developed by synergistic use of industrial waste namely fly ash, GBFS and red mud. The developed geopolymer products qualify as new

    membersinthespectrumofecofriendlyconstructionmaterialsduetoeasyandsimpleprocessing,lowenergyrequirementandnoCO2emission.

    Theproductshavegoodcommercialisationpotentialwithsignificantreturns.

    REFERENCES

    1.SanjayKumar,RakeshKumaar,A.Bandopadhyay,S.PMehrotra(2007)Novelgeopolymericbuildingmaterialsthroughsynergeticutilisationof

    industrialwaste,NationalMetallurgicallaboratory,Jamshedpur,India.

    2.S.D.Muduli,P.K.Rout,S.Pany,S.M.Mustakim,B.DNayak,B.KMishra(2010) InnovativeProcess inManufactureofColdSettingBuilding

    brickfromMiningandIndustrialwastes,IMMT(CSIR),Bhubaneswar.

    3.C.Casco,A.Alvarez,N.Navarro,L.Yague,AdvantageanddisadvantagesofusingPhosphogysumasbuildingmaterialRadiologicalaspects,

    CSIC,Madrid,Spain.

    4.P.Duxson,A.Fernandez,J.CProvis,G.CLukey(2006)Geopolymertechnology:thecurrentstateofart,ARC,Australia

    5.www.wikipedia.com

    Recommend this on Google

    4comments:

    ShaswatSwain August16,2013at7:15AM

    Hicanuprovidemethedetailsaboutgeopolymericflyashbricks

    Reply

    AbhishekKumar May24,2014at9:03PM

    ***VERYUSEFUL***###################MUSTSHARE###################VisitthissiteforCivilEngineeringNotesdownloadforfree.http://freecivilnotes.blogspot.in

    ***VERYUSEFUL***###################MUSTSHARE###################VisitthissiteforCivilEngineeringNotesdownloadforfree.http://freecivilnotes.blogspot.in

    Reply

  • 7/14/2015 CIVILENGINEERINGSEMINARTOPICS:GEOPOLYMERICBUILDINGMATERIALSBYSYNERGETICUTILISATIONOFINDUSTRIALWAS

    http://civilenggseminar.blogspot.in/2011/11/solidwastemanagement.html 9/10

    NewerPost OlderPostHome

    Subscribeto:PostComments(Atom)

    Enteryourcomment...

    Commentas: GoogleAccount

    Publish Preview

    CreateaLink

    AlvinChan December31,2014at1:25AM

    LookingforBuildingMaterialslikeFlooringTilesandWallTiles?Checkthiswebsiteandyouwillfindalots:www.HudsonChina.com

    Reply

    100Bricks May11,2015at4:47AM

    NICEBLOG!!!Thanksforsharinganiceinformation.YoucanalsovisitBuildingMaterialinIndia>

    Reply

    Linkstothispost

    GETFREEBOOKS

    PictureWindowtemplate.PoweredbyBlogger.

  • 7/14/2015 CIVILENGINEERINGSEMINARTOPICS:GEOPOLYMERICBUILDINGMATERIALSBYSYNERGETICUTILISATIONOFINDUSTRIALWAS

    http://civilenggseminar.blogspot.in/2011/11/solidwastemanagement.html 10/10