Ciclo do nutrientes

16
Ciclo dos Nutrientes Ciclo do Nitrogênio O nitrogênio é um componente que entra na composição de duas moléculas orgânicas de considerável importância para os seres viventes: as proteínas e os ácidos nucléicos. Embora presente em grande concentração no ar atmosférico, essencialmente na combinação molecular N2, poucos são os organismos que o assimilam nessa forma. Apenas certas bactérias e algas cianofíceas (algas azuis) podem retirá-lo do ar na forma de N2 e incorporá-lo às suas moléculas orgânicas. Contudo, a maioria dos organismos não consegue reter e aproveitar o nitrogênio na forma molecular, obtendo esse nutriente na forma de íons amônio (NH4+), bem como íons nitrato (NO3-). Algumas bactérias nitrificantes na superfície do solo realizam a conversão do nitrogênio, transformam a amônia em nitratos, disponibilizando esse elemento diretamente às plantas e indiretamente aos animais, através das relações tróficas: produtor e consumidor. Outras bactérias também fixadoras de nitrogênio gasoso, ao invés de viverem livres no solo, vivem no interior dos nódulos formados em raízes de plantas leguminosas, como a soja e o feijão, uma interação interespecífica de mútuo benefício (simbiose). Ao fixarem o nitrogênio do ar, essas bactérias fornecem parte dele às plantas. Portanto, a adoção do cultivo das leguminosas é uma prática recomendável à agricultura, porque desta forma as leguminosas colocam em disponibilidade o nitrogênio para culturas seguintes, não empobrecendo tanto o solo quanto à questão de nutrientes disponíveis.

description

Muito bom

Transcript of Ciclo do nutrientes

Page 1: Ciclo do nutrientes

Ciclo dos Nutrientes

Ciclo do Nitrogênio

O nitrogênio é um componente que entra na composição de duas moléculas orgânicas de considerável importância para os seres viventes: as proteínas e os ácidos nucléicos.

Embora presente em grande concentração no ar atmosférico, essencialmente na combinação molecular N2, poucos são os organismos que o assimilam nessa forma. Apenas certas bactérias e algas cianofíceas (algas azuis) podem retirá-lo do ar na forma de N2 e incorporá-lo às suas moléculas orgânicas.

Contudo, a maioria dos organismos não consegue reter e aproveitar o nitrogênio na forma molecular, obtendo esse nutriente na forma de íons amônio (NH4+), bem como íons nitrato (NO3-).

Algumas bactérias nitrificantes na superfície do solo realizam a conversão do nitrogênio, transformam a amônia em nitratos, disponibilizando esse elemento diretamente às plantas e indiretamente aos animais, através das relações tróficas: produtor e consumidor.

Outras bactérias também fixadoras de nitrogênio gasoso, ao invés de viverem livres no solo, vivem no interior dos nódulos formados em raízes de plantas leguminosas, como a soja e o feijão, uma interação interespecífica de mútuo benefício (simbiose). Ao fixarem o nitrogênio do ar, essas bactérias fornecem parte dele às plantas.

Portanto, a adoção do cultivo das leguminosas é uma prática recomendável à agricultura, porque desta forma as leguminosas colocam em disponibilidade o nitrogênio para culturas seguintes, não empobrecendo tanto o solo quanto à questão de nutrientes disponíveis.

A devolução do nitrogênio à atmosfera, na forma de N2, é feita graças à ação de outras bactérias, chamadas desnitrificantes. Elas podem transformar os nitratos do solo em N2, que volta à atmosfera, fechando o ciclo.

Page 2: Ciclo do nutrientes

Visão geral

O processo pelo qual o nitrogênio ou azoto circula através das plantas e do solo pela ação de organismos vivos é conhecido como Ciclo do Nitrogênio ou ciclo do azoto. O ciclo do azoto é um dos ciclos mais importantes nos ecossistemas terrestres. O azoto é usado pelos seres vivos para a produção de moléculas complexas necessárias ao seu desenvolvimento tais como aminoácidos, proteínas e ácidos nucléicos.

O principal repositório de azoto é a atmosfera (78% desta é composta por azoto) onde se encontra sob a forma de gás (N2). Outros repositórios consistem em matéria orgânica nos solos e oceanos. Apesar de extremamente abundante na atmosfera o azoto é frequentemente o nutriente limitante do crescimento das plantas. Isto acontece porque as plantas apenas conseguem usar o azoto sob duas formas sólidas: íon de amônio (NH4

+) e íons de nitrato (NO3-), cuja existência não é tão abundante. Estes compostos são obtidos através de vários processos tais como a fixação e nitrificação. A maioria das plantas obtém o azoto necessário ao seu crescimento através do nitrato, uma vez que o íon de amônio lhes é tóxico em grandes concentrações. Os animais recebem o azoto que

Page 3: Ciclo do nutrientes

necessitam através das plantas e de outra matéria orgânica, tal como outros animais (vivos ou mortos).

Processos do ciclo do azoto

Fixação

A fixação é o processo através do qual o azoto é capturado da atmosfera em estado gasoso (N2) e convertido em formas úteis para outros processos químicos, tais como amoníaco (NH3), nitrato (NO3-) e nitrito (NO2-). Esta conversão pode ocorrer através de vários processos, os quais são descritos nas secções seguintes.

Fixação Biológica

Algumas bactérias têm a capacidade de capturar moléculas de azoto (N2) e transformá-las em componentes úteis para os restantes seres vivos. Entre estas, existem bactérias que estabelecem uma relação de simbiose com algumas espécies de plantas (leguminosas) e bactérias que vivem livres no solo. A simbiose é estabelecida através do consumo de amoníaco por parte das plantas; amoníaco este que é produzido pelas bactérias que vivem nos caules das mesmas plantas.

Fixação Atmosférica

A fixação atmosférica ocorre através dos relâmpagos, cuja elevada energia separa as moléculas de nitrogênio e permite que os seus átomos se liguem com moléculas de oxigênio existentes no ar formando monóxido de nitrogênio (NO). Este é posteriormente dissolvido na água da chuva e depositado no solo.

A fixação atmosférica contribui com cerca de 5-8% de todo o nitrogênio fixado.

Fixação Industrial

Através de processos industriais (nomeadamente o processo de Haber-Bosch) é possível produzir amoníaco (NH3) a partir de azoto (N2) e hidrogênio (H2). O amoníaco é produzido principalmente para uso como fertilizante cuja aplicação sustenta cerca de 40% da população mundial.

Combustão de combustíveis fósseis

Page 4: Ciclo do nutrientes

A combustão decorrente dos motores dos automóveis e de centrais de energia liberta monóxido e dióxido de azoto (NOx). Estes gases são posteriormente dissolvidos na água da chuva e depositados no solo.

Assimilação

Os nitratos formados pelo processo de nitrificação são absorvidos pelas plantas e transformados em compostos carbonados para produzir aminoácidos e outros compostos orgânicos de nitrogênio.

A incorporação do nitrogênio em compostos orgânicos ocorre em grande parte nas células jovens em crescimento das raízes.

Mineralização

Através da mineralização (ou decomposição) a matéria orgânica morta é transformada no ião de amônio (NH4+) por intermédio de bactérias aeróbicas, anaeróbicas e alguns fungos.

Nitrificação

A oxidação do amoníaco, conhecida como nitrificação, é um processo que produz nitratos a partir do amoníaco (NH3). Este processo é levado a cabo por bactérias (bactérias nitrificantes) em dois passos: numa primeira fase o amoníaco é convertido em nitritos (NO2-) e numa segunda fase (através de outro tipo de bactérias nitrificantes) os nitritos são convertidos em nitratos (NO3-) prontos a ser assimilados pelas plantas.

Desnitrificação

A desnitrificação é o processo pelo qual o azoto volta à atmosfera sob a forma de gás quase inerte (N2). Este processo ocorre através de algumas espécies de bactérias (tais como Pseudomonas e Clostridium) em ambiente anaeróbico. Estas bactérias utilizam nitratos alternativamente ao oxigênio como forma de respiração e libertam azoto em estado gasoso (N2).

Eutrofização

A eutrofização corresponde a alterações de um corpo de água como resultado de adição de azoto ou fósforo.

Os compostos de azoto existentes no solo são transportados através dos cursos de água, aumentando a concentração nos depósitos de água, o que pode fazer com que estes sejam sobre-populados por certas espécies de algas podendo ser nocivo para o ecossistema envolvente.

Repositórios de Azoto

Page 5: Ciclo do nutrientes

Os principais repositórios de azoto são a Atmosfera, plantas, animais, solos e os oceanos.

Atmosfera

A atmosfera comporta a maior parte do azoto existente na Terra. Este encontra-se principalmente sob a forma de N2. Estima-se que existam 3.9-4.0 x 109 TgN ( TgN = Teragrama de N = 1012 g de N ) na atmosfera. O tempo de residência médio de uma molécula de N2 na atmosfera é de 10 milhões de anos.

O Azoto encontra-se na atmosfera também sob a forma de monóxido ou dióxido de azoto (NOx) e sob a forma de óxido nitroso (N2O). Sob a forma de NOx existem 1.3-1.4 TgN com um tempo de residência médio de 1 mês. Sob a forma de óxido nitroso (N2O) existem cerca de 1.4 x 103 TgN com um tempo de residência de 100 anos.

Plantas e animais

Existem cerca de 3 x 104 TgN em plantas e animais, com um tempo de residência de 50 anos.

Solos

Os solos contêm cerca de 9.5 x 104 TgN, com um tempo de residência médio de 2000 anos.

Oceanos

Nos oceanos o azoto encontra-se tanto na superfície como no fundo em forma de sedimentos (4-5 x 108 TgN) . À superfície encontra-se dissolvido organicamente (2 x 105 TgN).

O azoto transita entre os vários repositórios a diferentes taxas. A tabela seguinte apresenta os fluxos do azoto entre a atmosfera e os outros repositórios (nomeadamente plantas e solos).

  Mundo

Habitantes [milhões] 6600

Área terrestre [103 km2] 148939.1

Área arável % 13.13

   

Input TgN/ano

Page 6: Ciclo do nutrientes

Fixação biológica 30

Importações (rações) 40

Fertilizantes sintéticos 80

Fixação atmosférica 60

   

Output TgN/ano

Produtos vegetais  

Produtos animais  

Emissões gasosas (animais)  

Desnitrificação (solos) 12.2

Emissões gasosas (solos) 6.9

Emissões aquáticas 122

Emissões industriais 20

Influência Humana

Como resultado da utilização intensiva de fertilizantes e da poluição resultante dos veículos e centrais energéticas, o Homem aumentou significativamente a taxa de produção de azoto utilizável biologicamente. Esta alteração leva a alterações da concentração deste nutriente, moderadamente em depósitos de água (através da eutrofização), e ao excessivo crescimento de determinadas espécies deteriorando o ambiente que as rodeia.

Poluição

Poluição provocada pelas influências antropogênicas do ciclo do azoto pode manifestar-se através de (Naturlink 2000):

Óxido nitroso (N2O), gás libertado essencialmente por via da combustão e o fato de ser pouco reativo na troposfera permite exercer os seus efeitos nocivos durante muitos anos. O seu efeito na estratosfera assenta na deterioração da camada protetora de ozônio com influências das radiações ultravioletas.

Óxidos do Azoto (NOx), particularmente o monóxido e o dióxido do azoto são altamente reativos, com vidas relativamente curtas, por isso as alterações atmosféricas são apenas detectadas a nível local e regional. Estas alterações manifestam-se

Page 7: Ciclo do nutrientes

principalmente através de nevoeiro fotoquímico, que tem conseqüências perigosas para a saúde humana, assim como para a produtividade dos ecossistemas. O dióxido do azoto transformado em ácido nítrico compõem a chuva ácida, que destrói monumentos e acidifica solos e sistemas aquáticos, desencadeando profundas alterações na composição das suas comunidades bióticas

Nitratos (NO3-), que contaminam águas que ao serem ingeridas provocam várias disfunções fisiológicas.

Apesar dos ecossistemas terrestres serem vulneráveis ao excesso de azoto, os sistemas aquáticos são os que mais sofrem, porque são os receptores finais do excedente do azoto que chega por escoamento superficial ou através de descargas diretas de efluentes não tratados.

Fósforo é um elemento químico que brilha no escuro e pega fogo em contato com o ar. Por isso fósforo em grego significa “aquele que traz a luz”. Esse elemento químico também faz parte do DNA. Encontra-se na sua maior parte nas rochas e se dissolve com a água da chuva, sendo levado até os rios e mares, por isso peixes e animais marinhos são ricos em fósforo.

Boa parte do fósforo de que precisamos são ingeridos quando nos alimentamos de peixe. Nossos ossos armazenam cerca de 750 g de fósforo sob a forma de fosfato de

Page 8: Ciclo do nutrientes

cálcio. A falta de fósforo provoca o raquitismo nas crianças e nos adultos tornando seus ossos quebradiços.

Com a morte das plantas e animais este fósforo retorna ao solo e é absorvido por novas plantas. Nas rochas fosfáticas é retirado o fosfato, usado em fertilizantes e na fabricação de detergentes. O uso doméstico desses detergente é a maior causa da poluição dos rios pelo fósforo. Mesmo a água tratada de esgotos, que volta aos rios, pode ainda conter fosfatos.

Ciclo do Fósforo

Substâncias químicas (nutrientes) são também necessárias para os depósitos e processos de um ecossistema. Um dos nutrientes mais importantes para a construção de organismos é o fósforo. Geralmente o fósforo é mais escasso que outros nutrientes, tais como o nitrogênio e o potássio. Se o sistema florestal não reciclasse o fósforo, este poderia ficar tão escasso, que limitaria o crescimento das plantas da floresta.

A entrada e a reciclagem do fósforo pode mostrar-se por separado retirando do diagrama os itens que não contém fósforo. Na Figura abaixo se mostram os caminhos e depósitos restantes como o diagrama do Ciclo do Fósforo.

O diagrama mostra a chuva e as rochas como fontes externas de fósforo. O fósforo está presente como fosfatos inorgânicos que as plantas usam para produzir compostos orgânicos necessários para a vida. O fósforo nestes compostos, participa da biomassa que regressa a formas inorgânicas mediante os consumidores, quando eles usam a biomassa como alimento. O fósforo inorgânico liberado se torna parte do depósito de nutrientes no solo. Assim, o fósforo se move em um ciclo. Parte flui para fora do sistema com as águas que saem pela superfície do solo ou percolam para o lençol freático. O fósforo não tem fase gasosa em seu ciclo.

Ciclo do Fósforo

ciclo do fósforo

Page 9: Ciclo do nutrientes

Além da água, do carbono, do nitrogênio e do oxigênio, o fósforo também é importante para os seres vivos. Esse elemento faz parte, por exemplo, do material hereditário e das moléculas energéticas de ATP.

Em certos aspectos, o ciclo do fósforo é mais simples do que os ciclos do carbono e do nitrogênio, pois não existem muitos compostos gasosos de fósforo e, portanto, não há passagem pela atmosfera. Outra razão para a simplicidade do ciclo do fósforo é a existência de apenas um composto de fósforo realmente importante para os seres vivos: o íon fosfato.

As plantas obtêm fósforo do ambiente absorvendo os fosfatos dissolvidos na água e no solo. Os animais obtêm fosfatos na água e no alimento.

A decomposição devolve o fósforo que fazia parte da matéria orgânica ao solo ou à água.

Daí, parte dele é arrastada pelas chuvas para os lagos e mares, onde acaba se incorporando às rochas. Nesse caso, o fósforo só retornará aos ecossistemas bem mais tarde, quando essas rochas se elevarem em conseqüência de processos geológicos e, na superfície, forem decompostas e transformadas em solo.

Assim, existem dois ciclos do fósforo que acontecem em escalas de tempo bem diferentes. Uma parte do elemento recicla-se localmente entre o solo, as plantas, consumidores e decompositores, em uma escala de tempo relativamente curta, que podemos chamar “ciclo de tempo ecológico”. Outra parte do fósforo ambiental sedimenta-se e é incorporada às rochas; seu ciclo envolve uma escala de tempo muito mais longa, que pode ser chamada “ciclo de tempo geológico”.

Page 10: Ciclo do nutrientes

CICLO DO CÁLCIOO Ca é um elemento químico muito importante para os seres vivos. No vegetais, ele participa principalmente como ativador de enzimas, além de participar como componente estrutural de sais de compostos pécticos da lamela média.

A maior participação do cálcio nos animais está relacionada com a formação de esqueletos, pois ele é parte constituinte dos exoesqueletos de invertebrados e conchas. Além disso, atua em processos metabólicos: sua participação é fundamental no processo de coagulação do sangue, além de ser muito útil no processo de contração muscular.

A fonte primária de cálcio na natureza são, sem dúvida, as rochas calcárias, que, devido à ação de agentes diversos, sofrem intemperismo, o qual provoca erosão, levando os sais de cálcio para o solo, de onde são carregados pelas chuvas para os rios e mares. Assim como ocorre com o fósforo, o cálcio tende a se acumular no fundo do mar.

Page 11: Ciclo do nutrientes

O intemperismo pode ser entendido como o conjunto de processos mecânicos, químicos e biológicos que ocasionam a destruição física e química das rochas, formando os solos. Mais uma vez, fica muito claro a grande participação que a água exerce nos ciclos biogeoquímicos; no ciclo do cálcio, como no ciclo das rochas, sua presença é de suma importância para que os ciclos possam ser reiniciados. O mecanismo que rege o ciclo do cálcio segue mais ou menos os seguintes passos. Inicialmente o CO2 atmosférico dissolve-se na água da chuva, produzindo H2CO3. Essa solução ácida, nas águas superficiais ou subterrâneas, facilita a erosão das rochas silicatadas e provoca a liberação de Ca2+ e HCO3–, entre outros produtos, que podem ser lixiviados para o oceano. Nos oceanos, Ca2+ e HCO3– são absorvidos pelos animais que o utilizam na confecção de conchas carbonatadas, que são os principais constituintes dos seus exoesqueletos. Com a morte desses organismos, seus esqueletos se depositam no fundo do mar, associam-se a outros tipos de resíduos e originam uma rocha sedimentar, depois de um longo período de tempo. Esses sedimentos de fundo, rico em carbonato, participando do ciclo tectônico, podem migrar para uma zona de pressão e temperatura mais elevadas, fundindo parcialmente os carbonatos. As mudanças lentas e graduais da crosta terrestre podem fazer com que essas rochas sedimentares alcancem a superfície, completando o ciclo.

Os vegetais absorvem do solo os sais de cálcio, e os animais o  obtêm através da cadeia alimentar. Com a decomposição dos animais e vegetais mortos, o cálcio retorna ao solo.

Resumindo temos:

Page 12: Ciclo do nutrientes

ou ainda....