Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax =...

15
Chromospheric and Coronal Magnetic Field Tracing with IRIS and AIA Markus J. Aschwanden Bart De Pontieu (LMSAL) http://www.lmsal.com/~aschwand/2015_IRIS_Aschwanden.ppt IRIS Science Telecon, Feb 11, 2015 0.45 0.50 0.55 0.6 0.20 0.25 0.30 0.35 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0.45 0.50 0.55 0.6 0.75 0.80 0.85 0.90 20140329_170500, EVENT=592, FRAME= Slide 1

Transcript of Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax =...

Page 1: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

Chromospheric and Coronal

Magnetic Field Tracing

with IRIS and AIA

Markus J. Aschwanden Bart De Pontieu

(LMSAL)

http://www.lmsal.com/~aschwand/2015_IRIS_Aschwanden.ppt

IRIS Science Telecon, Feb 11, 2015

0.45 0.50 0.55 0.60

0.20

0.25

0.30

0.35

0

1 2

3 4 5

6

7 8 9 10

11 12

13

14 15 16 17

18 19 20

0.45 0.50 0.55 0.60

0.75

0.80

0.85

0.90

0 10 20 30 40Misalignment angle m (deg)

0

50

100

150

200

250

300 m=15.10

20140329_170500, EVENT=592, FRAME= 0 / 26, RUN=AIA_EUV_01

NOAA =12017

Hel.pos. =N11W32

FOV =0.20

[x1,x2] = 0.4134, 0.6134

[y1,y2] = 0.1954, 0.3954

wave,nsm1, = 6, 3

thresh0,2,nsig = 0.00, 0.01, 3.00

rmin,lmin,ngap = 15, 15, 0

ds,nh =0.0020, 10

dx_euv = 0.000625 Rsun

dx_mag = 0.001500 Rsun

nmag = 100 / 100

n_nlfff = 97

dprox,magwid = 5.000, 2.0

nloopw,qripple = 200, 0.50

nall,ngood,nf = 406/275/275

n1,n2,n3,n4,n5 =116/1/1/13/0

niter = 10 / 20/ 20

hmin,hmax =0.001, 0.050

nseg,mdim = 7, 2

nsmax = 200

da0 = 1.0

misalign = 15.1 deg

div-free = 9.2e-07

force-free = 4.8e-07

weight curr = 1.5e-01

qB_rebin = 1.035

qB_model = 1.233

qiso_corr = 2.467

E_P = 211.2 x 1030 erg

E_free = 1.5 x 1030 erg

E_NP/E_P = 1.007

CPU = 324.0 s Slide 1

Page 2: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

Photospheric vs. Coronal Magnetic Field Measurement Methods

PHOT-NLFFF COR-NLFFF

Input: Photospheric 3D vectors Photospheric Bz magnetogram

(Bx,By,Bz) Coronal loop coordinates

[x(s),y(s)] or [x(s),y(s),z(s)]

Method: Force-free α-parameter Forward-fitting of approximate

optimization NLFFF solution for vertical

currents

Problems: Nonforcefree photophere Sparse loops near sunspots,

( preprocessing) false loop detection in moss areas,

Misalignment of coronal loops neglects horizontal currents

Computation time:

2-12 hrs/run 1-3 min/run

Slide 2

Page 3: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

Photosphere

Chromosphere

Transition region

Corona

Non-forcefree

Forcefree

Bphot

Bphot

Bcor

Bcor

m

Misalignment angle

Observed loop and fitted field lineExtrapolated

field line

Lorentz force

Potential field: PFSS code (no free energy available for flares)

Non-Potential field: NLFFF codes (extrapolation ignores non-forcefree zones,

use vector-magnetograph LOS + transverse field,

but are misaligned to geometry of coronal loops)

(e.g. Wheatland et al. 2000; Wiegelmann 2004; Grad & Rubin 1958)

Coronal NLFFF: Forward-fitting of analytical NLFFF approximation

to coronal loops, transverse field is free parameter

and can minimize misalignment with coronal loops)

(Aschwanden 2013, Aschwanden, Sun, & Liu 2014)

Slide 3

Page 4: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

COR-NLFFF with (3D) or without stereoscopy (2D loop coordinates)

Aschwanden et al. (2012)

Slide 4

Page 5: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

Challenges:

-crossing loops

-data noise

-background confusion moss)

-saturation, pixel bleeding

-entrance filter diffraction pattern

OCCULT-2 Code:

Local curvature radius

provides guiding of

directional

changes in tracing a

curvi-linear structure Slide 5

Page 6: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

Slide 6

Page 7: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

Untwisted fields Twisted fields

Slide 7

Page 8: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

# 12 2011-02-15T01:44:00 UT, RUN 1,2,3

1.0 1.5 2.0 2.5 3.0

0

500

1000

1500

2000

Pote

ntial E

po

t[10

30 e

rg]

qEpot=1.07

# 12 2011-02-15T01:44:00 UT, RUN 1,2,3

1.0 1.5 2.0 2.5 3.0

0

100

200

300

400

500

Fre

e E

fre

e [

10

30 e

rg] qEfree= 0.22

qDE = 1.13PHOT-NLFFF: DE= 106COR-NLFFF: DE= 120+COR-NLFFF: DE= 120_ 10

# 37 2011-03-09T23:13:00 UT, RUN 1,2,3

22.5 23.0 23.5 24.0

0

500

1000

1500

2000

2500

3000

Po

tentia

l E

po

t[10

30 e

rg]

qEpot=1.10

# 37 2011-03-09T23:13:00 UT, RUN 1,2,3

22.5 23.0 23.5 24.0

0

200

400

600

800

Fre

e E

fre

e [10

30 e

rg] qEfree= 0.88

qDE = 3.54PHOT-NLFFF: DE= 75COR-NLFFF: DE= 268+COR-NLFFF: DE= 268_ 26

# 66 2011-09-06T22:12:00 UT, RUN 1,2,3

21.5 22.0 22.5 23.0

0

500

1000

1500

Pote

ntial E

po

t[10

30 e

rg]

qEpot=1.55

# 66 2011-09-06T22:12:00 UT, RUN 1,2,3

21.5 22.0 22.5 23.0

0

100

200

300

400

500

Fre

e E

fre

e [10

30 e

rg] qEfree= 0.58

qDE = 2.70PHOT-NLFFF: DE= 69COR-NLFFF: DE= 187+COR-NLFFF: DE= 187_ 9

# 67 2011-09-07T22:32:00 UT, RUN 1,2,3

22.0 22.5 23.0 23.5

0

200

400

600

800

1000

Pote

ntial E

po

t[10

30 e

rg]

qEpot=0.97

# 67 2011-09-07T22:32:00 UT, RUN 1,2,3

22.0 22.5 23.0 23.5

0

100

200

300

400

Fre

e E

fre

e [10

30 e

rg] qEfree= 1.97

qDE = 0.91PHOT-NLFFF: DE= 103COR-NLFFF: DE= 93+COR-NLFFF: DE= 93_ 7

#147 2012-03-07T00:02:00 UT, RUN 1,2,3

23.5 24.0 24.5 25.0 25.5

0

1000

2000

3000

4000

Pote

ntial E

po

t[10

30 e

rg]

qEpot=0.82

#147 2012-03-07T00:02:00 UT, RUN 1,2,3

23.5 24.0 24.5 25.0 25.5

0

500

1000

1500

2000

Fre

e E

fre

e [

10

30 e

rg] qEfree= 0.20

qDE = 0.79PHOT-NLFFF: DE= 350COR-NLFFF: DE= 275+COR-NLFFF: DE= 275_ 46

#148 2012-03-07T01:05:00 UT, RUN 1,2,3

0.5 1.0 1.5 2.0

0

1000

2000

3000

4000

Pote

ntial E

po

t[10

30 e

rg]

qEpot=0.84

#148 2012-03-07T01:05:00 UT, RUN 1,2,3

0.5 1.0 1.5 2.0

0

500

1000

1500

Fre

e E

fre

e [

10

30 e

rg] qEfree= 0.16

qDE = 14.32PHOT-NLFFF: DE= 14COR-NLFFF: DE= 200+COR-NLFFF: DE= 200_ 9

#220 2012-07-12T15:37:00 UT, RUN 1,2,3

15 16 17 18

0

2000

4000

6000

8000

Po

ten

tial E

po

t[10

30 e

rg] qEpot=0.99

#220 2012-07-12T15:37:00 UT, RUN 1,2,3

15 16 17 18

0

2000

4000

6000

8000

Fre

e E

fre

e [10

30 e

rg]

qEfree= 0.94qDE = 11.66

PHOT-NLFFF: DE= 120COR-NLFFF: DE=1399+COR-NLFFF: DE=1399_ 89

#344 2013-11-05T22:07:00 UT, RUN 1,2,3

21.5 22.0 22.5 23.0

0

1000

2000

3000

4000

5000

6000

Pote

ntial E

po

t[10

30 e

rg] qEpot=0.62

#344 2013-11-05T22:07:00 UT, RUN 1,2,3

21.5 22.0 22.5 23.0

0

200

400

600

800

Fre

e E

fre

e [10

30 e

rg]

qEfree= 0.19

qDE = 3.10

PHOT-NLFFF: DE= 88

COR-NLFFF: DE= 273+COR-NLFFF: DE= 273_ 66

#349 2013-11-08T04:20:00 UT, RUN 1,2,3

3.5 4.0 4.5 5.0

0

1000

2000

3000

4000

5000

6000

Pote

ntial E

po

t[10

30 e

rg] qEpot=1.61

#349 2013-11-08T04:20:00 UT, RUN 1,2,3

3.5 4.0 4.5 5.0

0

200

400

600

800

Fre

e E

fre

e [10

30 e

rg]

qEfree= 0.82

qDE = 3.51

PHOT-NLFFF: DE= 72

COR-NLFFF: DE= 252+COR-NLFFF: DE= 252_ 29

#351 2013-11-10T05:08:00 UT, RUN 1,2,3

4.5 5.0 5.5 6.0

0

1000

2000

3000

4000

Pote

ntial E

po

t[10

30 e

rg] qEpot=1.17

#351 2013-11-10T05:08:00 UT, RUN 1,2,3

4.5 5.0 5.5 6.0

0

200

400

600

800

Fre

e E

fre

e [1

03

0 e

rg]

qEfree= 0.53qDE = 4.55

PHOT-NLFFF: DE= 55COR-NLFFF: DE= 254+COR-NLFFF: DE= 254_ 51

#384 2014-01-07T18:04:00 UT, RUN 1,2,3

17.5 18.0 18.5 19.0 19.5

0

2000

4000

6000

8000

10000

Pote

ntia

l E

pot[1

03

0 e

rg] qEpot=0.64

#384 2014-01-07T18:04:00 UT, RUN 1,2,3

17.5 18.0 18.5 19.0 19.5

0

500

1000

1500

2000

2500

Fre

e E

fre

e [10

30 e

rg]

qEfree= 0.59qDE = 1.78

PHOT-NLFFF: DE= 164COR-NLFFF: DE= 292+COR-NLFFF: DE= 292_ 74

Comparison of time evolution PHOT-NLFFF vs. COR-NLFFF results

Slide 8

Page 9: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

NSO IBIS G-band

Slide 9

Page 10: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

AIA_EUV: 211 A

Automated Tracing of Coronal Loop Structures

Slide 10

Page 11: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

AIA_UV: 304 A

IRIS_UV: 2796 A

Automated Tracing of Chromospheric Structures

Slide 11

Page 12: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

0.45 0.50 0.55 0.60

0.20

0.25

0.30

0.35

0

1 2

3 4 5

6

7 8 9 10

11 12

13

14 15 16 17

18 19 20

0.45 0.50 0.55 0.60

0.75

0.80

0.85

0.90

0 10 20 30 40Misalignment angle m (deg)

0

50

100

150

200

250

300 m=15.10

20140329_170500, EVENT=592, FRAME= 0 / 26, RUN=AIA_EUV_01

NOAA =12017

Hel.pos. =N11W32

FOV =0.20

[x1,x2] = 0.4134, 0.6134

[y1,y2] = 0.1954, 0.3954

wave,nsm1, = 6, 3

thresh0,2,nsig = 0.00, 0.01, 3.00

rmin,lmin,ngap = 15, 15, 0

ds,nh =0.0020, 10

dx_euv = 0.000625 Rsun

dx_mag = 0.001500 Rsun

nmag = 100 / 100

n_nlfff = 97

dprox,magwid = 5.000, 2.0

nloopw,qripple = 200, 0.50

nall,ngood,nf = 406/275/275

n1,n2,n3,n4,n5 =116/1/1/13/0

niter = 10 / 20/ 20

hmin,hmax =0.001, 0.050

nseg,mdim = 7, 2

nsmax = 200

da0 = 1.0

misalign = 15.1 deg

div-free = 9.2e-07

force-free = 4.8e-07

weight curr = 1.5e-01

qB_rebin = 1.035

qB_model = 1.233

qiso_corr = 2.467

E_P = 211.2 x 1030 erg

E_free = 1.5 x 1030 erg

E_NP/E_P = 1.007

CPU = 324.0 s

0.45 0.50 0.55 0.60

0.20

0.25

0.30

0.35

0

1

2 3 4 5

6

7 8 9

10 11

12 13 14 15 16 17

18

19

20

0.45 0.50 0.55 0.60

0.75

0.80

0.85

0.90

0 10 20 30 40Misalignment angle m (deg)

0

20

40

60

80

100

120 m=14.90

20140329_182300, EVENT=592, FRAME=26 / 26, RUN=AIA_UV_05

NOAA =12017

Hel.pos. =N11W32

FOV =0.20

[x1,x2] = 0.4257, 0.6257

[y1,y2] = 0.1954, 0.3954

wave,nsm1, = 2, 3

thresh0,2,nsig = 0.00, 0.05, 3.00

rmin,lmin,ngap = 15, 10, 0

ds,nh =0.0020, 10

dx_euv = 0.000634 Rsun

dx_mag = 0.001500 Rsun

nmag = 100 / 100

n_nlfff = 97

dprox,magwid = 5.000, 2.0

nloopw,qripple = 200, 0.50

nall,ngood,nf = 204/102/102

n1,n2,n3,n4,n5 =78/0/0/24/0

niter = 10 / 20/ 20

hmin,hmax =0.001, 0.200

nseg,mdim = 7, 2

nsmax = 200

da0 = 1.0

misalign = 14.9 deg

div-free = 7.2e-07

force-free = 6.4e-05

weight curr = 7.7e-01

qB_rebin = 1.034

qB_model = 1.180

qiso_corr = 2.467

E_P = 197.2 x 1030 erg

E_free = 7.6 x 1030 erg

E_NP/E_P = 1.038

CPU = 134.7 s

Non-linear Force Free Field (COR-NLFFF) before and after flare

Slide 12

Page 13: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

AIA_UV: 304 A AIA_EUV: 211 A

IRIS_UV: 2796 A

20140329_175300

Free energy

HMI

17.2 17.4 17.6 17.8 18.0 18.2 18.4

0

10

20

30

40

Efr

ee [

10

30 e

rg] AIA_UV

AIA_EUVIRIS_UV

17.2 17.4 17.6 17.8 18.0 18.2 18.4Time [hrs]

10-7

10-6

10-5

10-4

GO

ES

flu

x [

10

30 e

rg]

Slide 13

Page 14: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

17.2 17.4 17.6 17.8 18.0 18.2 18.4Time [hrs of day 2014-03-29]

0

10

20

30

Efr

ee [10

30 e

rg]

AIA_EUV: 094,131,171,193,211,335 A

17.2 17.4 17.6 17.8 18.0 18.2 18.4Time [hrs of day 2014-03-29]

0

10

20

30

40

Efr

ee [10

30 e

rg]

AIA_UV: 304,1600 A

17.2 17.4 17.6 17.8 18.0 18.2 18.4Time [hrs of day 2014-03-29]

0

10

20

30

40

Efr

ee [10

30 e

rg]

IRIS_UV: 1400,2832,2796 A

17.2 17.4 17.6 17.8 18.0 18.2 18.4Time [hrs of day 2014-03-29]

10-7

10-6

10-5

10-4

10-3

GO

ES

flu

x [1

03

0 e

rg]

X1.0

Time evolution

of free energy:

GOES 1-8 A flux

& time derivative

Coronal (AIA-EUV)

Chromospheric (AIA-UV)

Chromospheric (IRIS)

Slide 14

Page 15: Chromospheric and Coronal E NP/E P with IRIS and AIA · 2020. 1. 1. · nseg,mdim = 7, 2 nsmax = 200 da0 = 1.0 misalign = 15.1 deg div-free = 9.2e-07 force-free = 4.8e-07 weight curr

Conclusions:

(1)The evolution of the free magnetic energy during the

2014 Mar 29 flare reaches a peak value of

Efree=(26±5) 1030 erg

and shows a step-wise decrease after the flare by

ΔEfree=(19±2) 1030 erg

(2)The evolution of the free energy is measured with the

COR-NLFFF method consistently from coronal loop

tracing (AIA EUV: 94, 131, 171, 193, 211, 335 A),

as well as from chromospheric tracing of magnetically

aligned structures (AIA UV: 304 A He II, 1600 A C IV,

IRIS 1400 A (C II, Si IV), 2832, 2796 A (Mg II).

(3)IRIS SJI images (with 4 times higher resolution than AIA)

are very useful to constrain the non-potential magnetic

field and the dissipated magnetic energy during flares.

http://www.lmsal.com/~aschwand/2015_IRIS_Aschwanden.ppt Slide 15