Christopher R. H. Hanusa Queens College,...

136
Combinatorial interpretations in affine Coxeter groups Christopher R. H. Hanusa Queens College, CUNY Joint work with Brant C. Jones, James Madison University

Transcript of Christopher R. H. Hanusa Queens College,...

Page 1: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Combinatorial interpretations

in affine Coxeter groups

Christopher R. H. Hanusa

Queens College, CUNY

Joint work with Brant C. Jones, James Madison University

Page 2: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

What is a Coxeter group?

A Coxeter group is a group with

� Generators: S = {s1, s2, . . . , sn}� Relations: s2

i = 1,

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 2 / 37

Page 3: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

What is a Coxeter group?

A Coxeter group is a group with

� Generators: S = {s1, s2, . . . , sn}� Relations: s2

i = 1, (sisj)mi,j = 1 where mi ,j ≥ 2 or =∞

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 2 / 37

Page 4: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

What is a Coxeter group?

A Coxeter group is a group with

� Generators: S = {s1, s2, . . . , sn}� Relations: s2

i = 1, (sisj)mi,j = 1 where mi ,j ≥ 2 or =∞

� mi ,j = 2: (si sj)(si sj) = 1 −→ sisj = sjsi (they commute)

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 2 / 37

Page 5: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

What is a Coxeter group?

A Coxeter group is a group with

� Generators: S = {s1, s2, . . . , sn}� Relations: s2

i = 1, (sisj)mi,j = 1 where mi ,j ≥ 2 or =∞

� mi ,j = 2: (si sj)(si sj) = 1 −→ sisj = sjsi (they commute)� mi ,j = 3: (si sj)(si sj)(si sj) = 1→ sisj si = sj sisj (braid relation)

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 2 / 37

Page 6: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

What is a Coxeter group?

A Coxeter group is a group with

� Generators: S = {s1, s2, . . . , sn}� Relations: s2

i = 1, (sisj)mi,j = 1 where mi ,j ≥ 2 or =∞

� mi ,j = 2: (si sj)(si sj) = 1 −→ sisj = sjsi (they commute)� mi ,j = 3: (si sj)(si sj)(si sj) = 1→ sisj si = sj sisj (braid relation)� mi ,j =∞: si and sj are not related.

Why Coxeter groups?

� They’re awesome.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 2 / 37

Page 7: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

What is a Coxeter group?

A Coxeter group is a group with

� Generators: S = {s1, s2, . . . , sn}� Relations: s2

i = 1, (sisj)mi,j = 1 where mi ,j ≥ 2 or =∞

� mi ,j = 2: (si sj)(si sj) = 1 −→ sisj = sjsi (they commute)� mi ,j = 3: (si sj)(si sj)(si sj) = 1→ sisj si = sj sisj (braid relation)� mi ,j =∞: si and sj are not related.

Why Coxeter groups?

� They’re awesome.

� Discrete Geometry: Symmetries of regular polyhedra.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 2 / 37

Page 8: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

What is a Coxeter group?

A Coxeter group is a group with

� Generators: S = {s1, s2, . . . , sn}� Relations: s2

i = 1, (sisj)mi,j = 1 where mi ,j ≥ 2 or =∞

� mi ,j = 2: (si sj)(si sj) = 1 −→ sisj = sjsi (they commute)� mi ,j = 3: (si sj)(si sj)(si sj) = 1→ sisj si = sj sisj (braid relation)� mi ,j =∞: si and sj are not related.

Why Coxeter groups?

� They’re awesome.

� Discrete Geometry: Symmetries of regular polyhedra.

� Algebra: Symmetric group generalizations. (Kac-Moody, Hecke)

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 2 / 37

Page 9: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

What is a Coxeter group?

A Coxeter group is a group with

� Generators: S = {s1, s2, . . . , sn}� Relations: s2

i = 1, (sisj)mi,j = 1 where mi ,j ≥ 2 or =∞

� mi ,j = 2: (si sj)(si sj) = 1 −→ sisj = sjsi (they commute)� mi ,j = 3: (si sj)(si sj)(si sj) = 1→ sisj si = sj sisj (braid relation)� mi ,j =∞: si and sj are not related.

Why Coxeter groups?

� They’re awesome.

� Discrete Geometry: Symmetries of regular polyhedra.

� Algebra: Symmetric group generalizations. (Kac-Moody, Hecke)

� Geometry: Classification of Lie groups and Lie algebras

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 2 / 37

Page 10: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

A shorthand notation is the Coxeter graph:

� Vertices: One for every generator i

� Edges: Create an edge between i and j when mi ,j ≥ 3Label edges with mi ,j when ≥ 4.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 3 / 37

Page 11: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

A shorthand notation is the Coxeter graph:

� Vertices: One for every generator i

� Edges: Create an edge between i and j when mi ,j ≥ 3Label edges with mi ,j when ≥ 4.

Dihedral group

m ts

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 3 / 37

Page 12: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

A shorthand notation is the Coxeter graph:

� Vertices: One for every generator i

� Edges: Create an edge between i and j when mi ,j ≥ 3Label edges with mi ,j when ≥ 4.

Dihedral group

m ts

� Generators: s, t.

� Relation: (st)m = 1.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 3 / 37

Page 13: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

A shorthand notation is the Coxeter graph:

� Vertices: One for every generator i

� Edges: Create an edge between i and j when mi ,j ≥ 3Label edges with mi ,j when ≥ 4.

Dihedral group

m ts

� Generators: s, t.

� Relation: (st)m = 1.

Symmetry group of regular m-gon.

When m = 3:

s

tt

ts

s

st

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 3 / 37

Page 14: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

(Finite) n-permutations Sn

An n-permutation is a permutation of {1, 2, . . . , n}, (e.g. 2 1 4 5 3 6).

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 4 / 37

Page 15: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

(Finite) n-permutations Sn

An n-permutation is a permutation of {1, 2, . . . , n}, (e.g. 2 1 4 5 3 6).

Every n-permutation is a product of adjacent transpositions.

� si : (i)↔ (i + 1). (e.g. s4 = 123 5 4 6).

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 4 / 37

Page 16: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

(Finite) n-permutations Sn

An n-permutation is a permutation of {1, 2, . . . , n}, (e.g. 2 1 4 5 3 6).

Every n-permutation is a product of adjacent transpositions.

� si : (i)↔ (i + 1). (e.g. s4 = 123 5 4 6).

Example. Write 2 1 4 5 3 6 as s3s4s1.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 4 / 37

Page 17: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

(Finite) n-permutations Sn

An n-permutation is a permutation of {1, 2, . . . , n}, (e.g. 2 1 4 5 3 6).

Every n-permutation is a product of adjacent transpositions.

� si : (i)↔ (i + 1). (e.g. s4 = 123 5 4 6).

Example. Write 2 1 4 5 3 6 as s3s4s1.

This is a Coxeter group:

� Generators: s1, . . . , sn−1

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 4 / 37

Page 18: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

(Finite) n-permutations Sn

An n-permutation is a permutation of {1, 2, . . . , n}, (e.g. 2 1 4 5 3 6).

Every n-permutation is a product of adjacent transpositions.

� si : (i)↔ (i + 1). (e.g. s4 = 123 5 4 6).

Example. Write 2 1 4 5 3 6 as s3s4s1.

This is a Coxeter group:

� Generators: s1, . . . , sn−1

� sisj = sjsi when |i − j | ≥ 2 (commutation relation)

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 4 / 37

Page 19: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

(Finite) n-permutations Sn

An n-permutation is a permutation of {1, 2, . . . , n}, (e.g. 2 1 4 5 3 6).

Every n-permutation is a product of adjacent transpositions.

� si : (i)↔ (i + 1). (e.g. s4 = 123 5 4 6).

Example. Write 2 1 4 5 3 6 as s3s4s1.

This is a Coxeter group:

� Generators: s1, . . . , sn−1

� sisj = sjsi when |i − j | ≥ 2 (commutation relation)

� sisjsi = sjsisj when |i − j | = 1 (braid relation)

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 4 / 37

Page 20: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

(Finite) n-permutations Sn

An n-permutation is a permutation of {1, 2, . . . , n}, (e.g. 2 1 4 5 3 6).

Every n-permutation is a product of adjacent transpositions.

� si : (i)↔ (i + 1). (e.g. s4 = 123 5 4 6).

Example. Write 2 1 4 5 3 6 as s3s4s1.

This is a Coxeter group:

� Generators: s1, . . . , sn−1

� sisj = sjsi when |i − j | ≥ 2 (commutation relation)

� sisjsi = sjsisj when |i − j | = 1 (braid relation)

s1 s2 s3 ... sn�2 sn�1

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 4 / 37

Page 21: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn

� Generators: s0, s1, . . . , sn−1

� Relations:

s1 s2 s3 ... sn�2 sn�1

s0

� s0 has a braid relation with s1 and sn−1

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 5 / 37

Page 22: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn

� Generators: s0, s1, . . . , sn−1

� Relations:

s1 s2 s3 ... sn�2 sn�1

s0

� s0 has a braid relation with s1 and sn−1

� How does this impact 1-line notation?

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 5 / 37

Page 23: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn

� Generators: s0, s1, . . . , sn−1

� Relations:

s1 s2 s3 ... sn�2 sn�1

s0

� s0 has a braid relation with s1 and sn−1

� How does this impact 1-line notation?� Perhaps interchanges 1 and n?

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 5 / 37

Page 24: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn

� Generators: s0, s1, . . . , sn−1

� Relations:

s1 s2 s3 ... sn�2 sn�1

s0

� s0 has a braid relation with s1 and sn−1

� How does this impact 1-line notation?� Perhaps interchanges 1 and n?� Not quite! (Would add a relation)

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 5 / 37

Page 25: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn

� Generators: s0, s1, . . . , sn−1

� Relations:

s1 s2 s3 ... sn�2 sn�1

s0

� s0 has a braid relation with s1 and sn−1

� How does this impact 1-line notation?� Perhaps interchanges 1 and n?� Not quite! (Would add a relation)

� Better to view graph as:� Every generator is the same.

s1

s2

s3

...

sn�2

sn�1

s0

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 5 / 37

Page 26: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn (G. Lusztig 1983, H. Eriksson, 1994)

Write an element w ∈ Sn in 1-line notation as a permutation of Z.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 6 / 37

Page 27: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn (G. Lusztig 1983, H. Eriksson, 1994)

Write an element w ∈ Sn in 1-line notation as a permutation of Z.

Generators transpose infinitely many pairs of entries:si : (i) ↔ (i+1) . . . (n + i)↔ (n + i +1) . . . (−n + i)↔ (−n + i +1) . . .

In S4, · · ·w(-4) w(-3) w(-2) w(-1) w(0) w(1) w(2) w(3) w(4) w(5) w(6) w(7) w(8) w(9)· · ·

s1 · · · -4 -2 -3 -1 0 2 1 3 4 6 5 7 8 10 · · ·

s0 · · · -3 -4 -2 -1 1 0 2 3 5 4 6 7 9 8 · · ·

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 6 / 37

Page 28: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn (G. Lusztig 1983, H. Eriksson, 1994)

Write an element w ∈ Sn in 1-line notation as a permutation of Z.

Generators transpose infinitely many pairs of entries:si : (i) ↔ (i+1) . . . (n + i)↔ (n + i +1) . . . (−n + i)↔ (−n + i +1) . . .

In S4, · · ·w(-4) w(-3) w(-2) w(-1) w(0) w(1) w(2) w(3) w(4) w(5) w(6) w(7) w(8) w(9)· · ·

s1 · · · -4 -2 -3 -1 0 2 1 3 4 6 5 7 8 10 · · ·

s0 · · · -3 -4 -2 -1 1 0 2 3 5 4 6 7 9 8 · · ·

s1s0 · · · -2 -4 -3 -1 2 0 1 3 6 4 5 7 10 8 · · ·

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 6 / 37

Page 29: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn (G. Lusztig 1983, H. Eriksson, 1994)

Write an element w ∈ Sn in 1-line notation as a permutation of Z.

Generators transpose infinitely many pairs of entries:si : (i) ↔ (i+1) . . . (n + i)↔ (n + i +1) . . . (−n + i)↔ (−n + i +1) . . .

In S4, · · ·w(-4) w(-3) w(-2) w(-1) w(0) w(1) w(2) w(3) w(4) w(5) w(6) w(7) w(8) w(9)· · ·

s1 · · · -4 -2 -3 -1 0 2 1 3 4 6 5 7 8 10 · · ·

s0 · · · -3 -4 -2 -1 1 0 2 3 5 4 6 7 9 8 · · ·

s1s0 · · · -2 -4 -3 -1 2 0 1 3 6 4 5 7 10 8 · · ·

Symmetry: Can think of as integers wrapped around a cylinder.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 6 / 37

Page 30: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn (G. Lusztig 1983, H. Eriksson, 1994)

Write an element w ∈ Sn in 1-line notation as a permutation of Z.

Generators transpose infinitely many pairs of entries:si : (i) ↔ (i+1) . . . (n + i)↔ (n + i +1) . . . (−n + i)↔ (−n + i +1) . . .

In S4, · · ·w(-4) w(-3) w(-2) w(-1) w(0) w(1) w(2) w(3) w(4) w(5) w(6) w(7) w(8) w(9)· · ·

s1 · · · -4 -2 -3 -1 0 2 1 3 4 6 5 7 8 10 · · ·

s0 · · · -3 -4 -2 -1 1 0 2 3 5 4 6 7 9 8 · · ·

s1s0 · · · -2 -4 -3 -1 2 0 1 3 6 4 5 7 10 8 · · ·

Symmetry: Can think of as integers wrapped around a cylinder.

w is defined by the window [w (1), w (2), . . . , w(n)]. s1s0 = [0, 1, 3, 6]

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 6 / 37

Page 31: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn

S3

s1

s2

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 7 / 37

Page 32: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn

S3

s1

s2

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 7 / 37

Page 33: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn

S3

s1

s2

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 7 / 37

Page 34: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn

S3�

s1

s2

s0

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 7 / 37

Page 35: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn

S3�

s1

s2

s0

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 7 / 37

Page 36: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn

S3�

s1

s2

s0

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 7 / 37

Page 37: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn

S3�

s1

s2

s0

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 7 / 37

Page 38: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine n-Permutations Sn — elements correspond to alcoves.

S3�

s1

s2

s0

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 7 / 37

Page 39: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Properties of Coxeter groups

For a elements w in a Coxeter group W ,

� w may have multiple expressions.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 8 / 37

Page 40: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Properties of Coxeter groups

For a elements w in a Coxeter group W ,

� w may have multiple expressions.� Transfer between them using relations.

Example. In S4, w = s1s2s3s1 = s1s2s1s3 = s2s1s2s3 = s2s1s2s3s1s1

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 8 / 37

Page 41: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Properties of Coxeter groups

For a elements w in a Coxeter group W ,

� w may have multiple expressions.� Transfer between them using relations.

Example. In S4, w = s1s2s3s1 = s1s2s1s3 = s2s1s2s3 = s2s1s2s3s1s1

� w has a shortest expression (this length: Coxeter length)

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 8 / 37

Page 42: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Properties of Coxeter groups

For a elements w in a Coxeter group W ,

� w may have multiple expressions.� Transfer between them using relations.

Example. In S4, w = s1s2s3s1 = s1s2s1s3 = s2s1s2s3 = s2s1s2s3s1s1

� w has a shortest expression (this length: Coxeter length)

For a Coxeter group W ,

� An induced subgraph of W ’s Coxeter graph is a subgroup W

� Every element w ∈ W can be written w = w0w , wherew0 ∈ W /W is a coset representative and w ∈W .

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 8 / 37

Page 43: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Sn as a subgroup of Sn

Key concept: View Sn as a subgroup of Sn.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 9 / 37

Page 44: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Sn as a subgroup of Sn

Key concept: View Sn as a subgroup of Sn.

� Write w = w0w , where w0 ∈ Sn/Sn and w ∈ Sn.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 9 / 37

Page 45: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Sn as a subgroup of Sn

Key concept: View Sn as a subgroup of Sn.

� Write w = w0w , where w0 ∈ Sn/Sn and w ∈ Sn.� w 0 determines the entries; w determines their order.

Example. For w = [−11, 20,−3, 4, 11, 0] ∈ S6,

w0 = [−11,−3, 0, 4, 11, 20] and w = [1, 3, 6, 4, 5, 2].

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 9 / 37

Page 46: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Sn as a subgroup of Sn

Key concept: View Sn as a subgroup of Sn.

� Write w = w0w , where w0 ∈ Sn/Sn and w ∈ Sn.� w 0 determines the entries; w determines their order.

Example. For w = [−11, 20,−3, 4, 11, 0] ∈ S6,

w0 = [−11,−3, 0, 4, 11, 20] and w = [1, 3, 6, 4, 5, 2].

Many interpretations of these minimal length coset representatives.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 9 / 37

Page 47: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Combinatorial interpretations of Sn/Sn

elements ofSn� �Sn

windownotation

abacusdiagram

corepartition

root latticepoint

boundedpartition

reducedexpression

��4,�3,7,10�

��1,2,1,�2�

s1s0s2s3s1s0s2s3s1s0

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 10 / 37

Page 48: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

An abacus model for Sn/Sn

(James and Kerber, 1981) Given w0 = [w1, . . . ,wn] ∈ Sn/Sn,

� Place integers in n runners.

17

13

9

5

1

�3

�7

�11

�15

18

14

10

6

2

�2

�6

�10

�14

19

15

11

7

3

�1

�5

�9

�13

20

16

12

8

4

0

�4

�8

�12

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 11 / 37

Page 49: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

An abacus model for Sn/Sn

(James and Kerber, 1981) Given w0 = [w1, . . . ,wn] ∈ Sn/Sn,

� Place integers in n runners.

� Circled: beads. Empty: gaps

17

13

9

5

1

�3

�7

�11

�15

18

14

10

6

2

�2

�6

�10

�14

19

15

11

7

3

�1

�5

�9

�13

20

16

12

8

4

0

�4

�8

�12

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 11 / 37

Page 50: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

An abacus model for Sn/Sn

(James and Kerber, 1981) Given w0 = [w1, . . . ,wn] ∈ Sn/Sn,

� Place integers in n runners.

� Circled: beads. Empty: gaps

� Bijection: Given w0, createan abacus where each runnerhas a lowest bead at wi .

Example: [−4,−3, 7, 10]

17

13

9

5

1

�3

�7

�11

�15

18

14

10

6

2

�2

�6

�10

�14

19

15

11

7

3

�1

�5

�9

�13

20

16

12

8

4

0

�4

�8

�12

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 11 / 37

Page 51: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

An abacus model for Sn/Sn

(James and Kerber, 1981) Given w0 = [w1, . . . ,wn] ∈ Sn/Sn,

� Place integers in n runners.

� Circled: beads. Empty: gaps

� Bijection: Given w0, createan abacus where each runnerhas a lowest bead at wi .

Example: [−4,−3, 7, 10]

These abaci are flush and balanced.

17

13

9

5

1

�3

�7

�11

�15

18

14

10

6

2

�2

�6

�10

�14

19

15

11

7

3

�1

�5

�9

�13

20

16

12

8

4

0

�4

�8

�12

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 11 / 37

Page 52: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

An abacus model for Sn/Sn

(James and Kerber, 1981) Given w0 = [w1, . . . ,wn] ∈ Sn/Sn,

� Place integers in n runners.

� Circled: beads. Empty: gaps

� Bijection: Given w0, createan abacus where each runnerhas a lowest bead at wi .

Example: [−4,−3, 7, 10]

These abaci are flush and balanced.

The generators act nicely on the abacus. 17

13

9

5

1

�3

�7

�11

�15

18

14

10

6

2

�2

�6

�10

�14

19

15

11

7

3

�1

�5

�9

�13

20

16

12

8

4

0

�4

�8

�12

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 11 / 37

Page 53: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the abacus

� si acts by interchanging runners i and i + 1.

� s0 acts by interchanging runners 1 and n, with level shifts.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 12 / 37

Page 54: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the abacus

� si acts by interchanging runners i and i + 1.

� s0 acts by interchanging runners 1 and n, with level shifts.

Example: Consider [−4,−3, 7, 10] = s1s0s2s1s3s2s0s3s1s0.

Start with id= [1, 2, 3, 4] and apply the generators one by one:

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[1, 2, 3, 4]

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 12 / 37

Page 55: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the abacus

� si acts by interchanging runners i and i + 1.

� s0 acts by interchanging runners 1 and n, with level shifts.

Example: Consider [−4,−3, 7, 10] = s1s0s2s1s3s2s0s3s1s0.

Start with id= [1, 2, 3, 4] and apply the generators one by one:

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[1, 2, 3, 4]

s0→

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[0, 2, 3, 5]

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 12 / 37

Page 56: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the abacus

� si acts by interchanging runners i and i + 1.

� s0 acts by interchanging runners 1 and n, with level shifts.

Example: Consider [−4,−3, 7, 10] = s1s0s2s1s3s2s0s3s1s0.

Start with id= [1, 2, 3, 4] and apply the generators one by one:

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[1, 2, 3, 4]

s0→

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[0, 2, 3, 5]

s1→

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[0, 1, 3, 6]

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 12 / 37

Page 57: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the abacus

� si acts by interchanging runners i and i + 1.

� s0 acts by interchanging runners 1 and n, with level shifts.

Example: Consider [−4,−3, 7, 10] = s1s0s2s1s3s2s0s3s1s0.

Start with id= [1, 2, 3, 4] and apply the generators one by one:

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[1, 2, 3, 4]

s0→

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[0, 2, 3, 5]

s1→

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[0, 1, 3, 6]

s3→

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[−1, 1, 4, 6]

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 12 / 37

Page 58: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the abacus

� si acts by interchanging runners i and i + 1.

� s0 acts by interchanging runners 1 and n, with level shifts.

Example: Consider [−4,−3, 7, 10] = s1s0s2s1s3s2s0s3s1s0.

Start with id= [1, 2, 3, 4] and apply the generators one by one:

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[1, 2, 3, 4]

s0→

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[0, 2, 3, 5]

s1→

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[0, 1, 3, 6]

s3→

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[−1, 1, 4, 6]

s0→

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

[−1, 0, 5, 6]

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 12 / 37

Page 59: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Combinatorial interpretations of Sn/Sn

elements ofSn� �Sn

windownotation

abacusdiagram

corepartition

root latticepoint

boundedpartition

reducedexpression

��4,�3,7,10�

��1,2,1,�2�

s1s0s2s3s1s0s2s3s1s0

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 13 / 37

Page 60: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Integer partitions and n-core partitions

For an integer partition λ = (λ1, . . . , λk) drawn as a Ferrers diagram,

The hook length of a box is # boxes below and to the right.10 9 6 5 2 1

7 6 3 2

6 5 2 1

3 2

2 1

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 14 / 37

Page 61: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Integer partitions and n-core partitions

For an integer partition λ = (λ1, . . . , λk) drawn as a Ferrers diagram,

The hook length of a box is # boxes below and to the right.10 9 6 5 2 1

7 6 3 2

6 5 2 1

3 2

2 1

An n-core is a partition with no boxes of hook length dividing n.

Example. λ is a 4-core, 8-core, 11-core, 12-core, etc.λ is NOT a 1-, 2-, 3-, 5-, 6-, 7-, 9-, or 10-core.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 14 / 37

Page 62: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Core partitions for Sn/Sn

Elements of Sn/Sn are in bijection with n-cores.

Bijection: {abaci} ←→ {n-cores}

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 15 / 37

Page 63: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Core partitions for Sn/Sn

Elements of Sn/Sn are in bijection with n-cores.

Bijection: {abaci} ←→ {n-cores}Rule: Read the boundary steps of λ from the abacus:

� A bead ↔ vertical step � A gap ↔ horizontal step

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

←→

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 15 / 37

Page 64: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Core partitions for Sn/Sn

Elements of Sn/Sn are in bijection with n-cores.

Bijection: {abaci} ←→ {n-cores}Rule: Read the boundary steps of λ from the abacus:

� A bead ↔ vertical step � A gap ↔ horizontal step

13

9

5

1

�3

�7

�11

14

10

6

2

�2

�6

�10

15

11

7

3

�1

�5

�9

16

12

8

4

0

�4

�8

←→

Fact: Abacus flush with n-runners ↔ partition is n-core.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 15 / 37

Page 65: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the core partition

� Label the boxes of λ with residues.

� si acts by adding or removing boxes with residue i .

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 16 / 37

Page 66: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the core partition

� Label the boxes of λ with residues.

� si acts by adding or removing boxes with residue i .

Example: Let’s see the deconstruction of s1s0s2s1s3s2s0s3s1s0:

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

Applying generator s1removes all removable 1-boxes.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 16 / 37

Page 67: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the core partition

� Label the boxes of λ with residues.

� si acts by adding or removing boxes with residue i .

Example: Let’s see the deconstruction of s1s0s2s1s3s2s0s3s1s0:

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

Applying generator s0removes all removable 0-boxes.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 16 / 37

Page 68: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the core partition

� Label the boxes of λ with residues.

� si acts by adding or removing boxes with residue i .

Example: Let’s see the deconstruction of s1s0s2s1s3s2s0s3s1s0:

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

Applying generator s2removes all removable 2-boxes.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 16 / 37

Page 69: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the core partition

� Label the boxes of λ with residues.

� si acts by adding or removing boxes with residue i .

Example: Let’s see the deconstruction of s1s0s2s1s3s2s0s3s1s0:

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

Applying generator s1removes all removable 1-boxes.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 16 / 37

Page 70: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the core partition

� Label the boxes of λ with residues.

� si acts by adding or removing boxes with residue i .

Example: Let’s see the deconstruction of s1s0s2s1s3s2s0s3s1s0:

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

Applying generator s3removes all removable 3-boxes.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 16 / 37

Page 71: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the core partition

� Label the boxes of λ with residues.

� si acts by adding or removing boxes with residue i .

Example: Let’s see the deconstruction of s1s0s2s1s3s2s0s3s1s0:

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

Applying generator s2removes all removable 2-boxes.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 16 / 37

Page 72: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the core partition

� Label the boxes of λ with residues.

� si acts by adding or removing boxes with residue i .

Example: Let’s see the deconstruction of s1s0s2s1s3s2s0s3s1s0:

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

Applying generator s0removes all removable 0-boxes.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 16 / 37

Page 73: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the core partition

� Label the boxes of λ with residues.

� si acts by adding or removing boxes with residue i .

Example: Let’s see the deconstruction of s1s0s2s1s3s2s0s3s1s0:

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

Applying generator s3removes all removable 3-boxes.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 16 / 37

Page 74: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the core partition

� Label the boxes of λ with residues.

� si acts by adding or removing boxes with residue i .

Example: Let’s see the deconstruction of s1s0s2s1s3s2s0s3s1s0:

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

Applying generator s1removes all removable 1-boxes.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 16 / 37

Page 75: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the core partition

� Label the boxes of λ with residues.

� si acts by adding or removing boxes with residue i .

Example: Let’s see the deconstruction of s1s0s2s1s3s2s0s3s1s0:

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

Applying generator s0removes all removable 0-boxes.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 16 / 37

Page 76: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Action of generators on the core partition

� Label the boxes of λ with residues.

� si acts by adding or removing boxes with residue i .

Example: Let’s see the deconstruction of s1s0s2s1s3s2s0s3s1s0:

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 16 / 37

Page 77: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Combinatorial interpretations of Sn/Sn

elements ofSn� �Sn

windownotation

abacusdiagram

corepartition

root latticepoint

boundedpartition

reducedexpression

��4,�3,7,10�

��1,2,1,�2�

s1s0s2s3s1s0s2s3s1s0

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 17 / 37

Page 78: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Bounded partitions for Sn/Sn

A partition β = (β1, . . . , βk) is b-bounded if βi ≤ b for all i .

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 18 / 37

Page 79: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Bounded partitions for Sn/Sn

A partition β = (β1, . . . , βk) is b-bounded if βi ≤ b for all i .

Elements of Sn/Sn are in bijection with (n− 1)-bounded partitions.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 18 / 37

Page 80: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Bounded partitions for Sn/Sn

A partition β = (β1, . . . , βk) is b-bounded if βi ≤ b for all i .

Elements of Sn/Sn are in bijection with (n− 1)-bounded partitions.

Bijection: (Lapointe, Morse, 2005)

{n-cores λ} ↔ {(n − 1)-bounded partitions β}

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 18 / 37

Page 81: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Bounded partitions for Sn/Sn

A partition β = (β1, . . . , βk) is b-bounded if βi ≤ b for all i .

Elements of Sn/Sn are in bijection with (n− 1)-bounded partitions.

Bijection: (Lapointe, Morse, 2005)

{n-cores λ} ↔ {(n − 1)-bounded partitions β}� Remove all boxes of λ with hook length ≥ n

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 18 / 37

Page 82: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Bounded partitions for Sn/Sn

A partition β = (β1, . . . , βk) is b-bounded if βi ≤ b for all i .

Elements of Sn/Sn are in bijection with (n− 1)-bounded partitions.

Bijection: (Lapointe, Morse, 2005)

{n-cores λ} ↔ {(n − 1)-bounded partitions β}� Remove all boxes of λ with hook length ≥ n� Left-justify remaining boxes.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 18 / 37

Page 83: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Bounded partitions for Sn/Sn

A partition β = (β1, . . . , βk) is b-bounded if βi ≤ b for all i .

Elements of Sn/Sn are in bijection with (n− 1)-bounded partitions.

Bijection: (Lapointe, Morse, 2005)

{n-cores λ} ↔ {(n − 1)-bounded partitions β}� Remove all boxes of λ with hook length ≥ n� Left-justify remaining boxes.

10 9 6 5 2 1

7 6 3 2

6 5 2 1

3 2

2 1

λ = (6, 4, 4, 2, 2)

−→ −→

β = (2, 2, 2, 2, 2)

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 18 / 37

Page 84: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Canonical reduced expression for Sn/Sn

Given the bounded partition, read off the reduced expression:

Method: (Berg, Jones, Vazirani, 2009)

� Fill β with residues i

� Tally si reading right-to-left in rows from bottom-to-top

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 19 / 37

Page 85: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Canonical reduced expression for Sn/Sn

Given the bounded partition, read off the reduced expression:

Method: (Berg, Jones, Vazirani, 2009)

� Fill β with residues i

� Tally si reading right-to-left in rows from bottom-to-top

Example. [−4,−3, 7, 10] = s1s0s2s1s3s2s0s3s1s0.

17

13

9

5

1

�3

�7

18

14

10

6

2

�2

�6

19

15

11

7

3

�1

�5

20

16

12

8

4

0

�4

−→ −→ −→0 1

3 0

2 3

1 2

0 1

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 19 / 37

Page 86: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Canonical reduced expression for Sn/Sn

Given the bounded partition, read off the reduced expression:

Method: (Berg, Jones, Vazirani, 2009)

� Fill β with residues i

� Tally si reading right-to-left in rows from bottom-to-top

Example. [−4,−3, 7, 10] = s1s0s2s1s3s2s0s3s1s0.

17

13

9

5

1

�3

�7

18

14

10

6

2

�2

�6

19

15

11

7

3

�1

�5

20

16

12

8

4

0

�4

−→ −→ −→0 1

3 0

2 3

1 2

0 1

� The Coxeter length of w is the number of boxes in β.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 19 / 37

Page 87: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Fully commutative elements

Definition. An element in a Coxeter group is fully commutative ifit has only one reduced expression (up to commutation relations).

NO BRAIDS ALLOWED!

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 20 / 37

Page 88: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Fully commutative elements

Definition. An element in a Coxeter group is fully commutative ifit has only one reduced expression (up to commutation relations).

NO BRAIDS ALLOWED!

Example. In S4, s1s2s3s1 is not fully commutative because

s1s2s3s1OK= s1s2s1s3

BAD= s2s1s2s3

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 20 / 37

Page 89: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Fully commutative elements

Definition. An element in a Coxeter group is fully commutative ifit has only one reduced expression (up to commutation relations).

NO BRAIDS ALLOWED!

Example. In S4, s1s2s3s1 is not fully commutative because

s1s2s3s1OK= s1s2s1s3

BAD= s2s1s2s3

Question: What is s1s2s1 in 1-line notation?

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 20 / 37

Page 90: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Fully commutative elements

Definition. An element in a Coxeter group is fully commutative ifit has only one reduced expression (up to commutation relations).

NO BRAIDS ALLOWED!

Example. In S4, s1s2s3s1 is not fully commutative because

s1s2s3s1OK= s1s2s1s3

BAD= s2s1s2s3

Question: What is s1s2s1 in 1-line notation?

Answer: 1 2 3 4 5 6 . . .

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 20 / 37

Page 91: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Fully commutative elements

Definition. An element in a Coxeter group is fully commutative ifit has only one reduced expression (up to commutation relations).

NO BRAIDS ALLOWED!

Example. In S4, s1s2s3s1 is not fully commutative because

s1s2s3s1OK= s1s2s1s3

BAD= s2s1s2s3

Question: What is s1s2s1 in 1-line notation?

Answer: 2 1 3 4 5 6 . . .

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 20 / 37

Page 92: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Fully commutative elements

Definition. An element in a Coxeter group is fully commutative ifit has only one reduced expression (up to commutation relations).

NO BRAIDS ALLOWED!

Example. In S4, s1s2s3s1 is not fully commutative because

s1s2s3s1OK= s1s2s1s3

BAD= s2s1s2s3

Question: What is s1s2s1 in 1-line notation?

Answer: 2 3 1 4 5 6 . . .

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 20 / 37

Page 93: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Fully commutative elements

Definition. An element in a Coxeter group is fully commutative ifit has only one reduced expression (up to commutation relations).

NO BRAIDS ALLOWED!

Example. In S4, s1s2s3s1 is not fully commutative because

s1s2s3s1OK= s1s2s1s3

BAD= s2s1s2s3

Question: What is s1s2s1 in 1-line notation?

Answer: 3 2 1 4 5 6 . . .

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 20 / 37

Page 94: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Enumerating fully commutative elements

Question: How many fully commutative elements are there in Sn?

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 21 / 37

Page 95: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Enumerating fully commutative elements

Question: How many fully commutative elements are there in Sn?

Answer: Catalan many!

S1: 1. id

S2: 2. id, s1

S3: 5. id, s1, s2, s1s2, s2s1

S4: 14. id, s1, s2, s3, s1s2, s2s1, s2s3, s3s2, s1s3,s1s2s3, s1s3s2, s2s1s3, s3s2s1, s2s1s3s2

Key idea: (Billey, Jockusch, Stanley, 1993)

w is fully commutative ⇐⇒ w is 321-avoiding.

(Knuth, 1973) These are counted by the Catalan numbers.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 21 / 37

Page 96: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Enumerating fully commutative elements

Question: How many fully commutative elements are there in Sn?

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 22 / 37

Page 97: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Enumerating fully commutative elements

Question: How many fully commutative elements are there in Sn?

Answer: Infinitely many! (Even in S3.)

id, s1, s1s2, s1s2s0, s1s2s0s1, s1s2s0s1s2, . . .

Multiplying the generators cyclically does not introduce braids.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 22 / 37

Page 98: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Enumerating fully commutative elements

Question: How many fully commutative elements are there in Sn?

Answer: Infinitely many! (Even in S3.)

id, s1, s1s2, s1s2s0, s1s2s0s1, s1s2s0s1s2, . . .

Multiplying the generators cyclically does not introduce braids.

This is not the right question.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 22 / 37

Page 99: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Enumerating fully commutative elements

Question: How many fully commutative elements are there in Sn,with Coxeter length �?

In S3: id,s0s1s2

,s0s1 s0s2s1s0 s1s2s2s0 s2s1

,s0s1s2 s0s2s1s1s0s2 s1s2s0s2s0s1 s2s1s0

, . . .

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 23 / 37

Page 100: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Enumerating fully commutative elements

Question: How many fully commutative elements are there in Sn,with Coxeter length �?

In S3: id,s0s1s2

,s0s1 s0s2s1s0 s1s2s2s0 s2s1

,s0s1s2 s0s2s1s1s0s2 s1s2s0s2s0s1 s2s1s0

, . . .

Question: Determine the coefficient of q� in the generating function

fn(q) =∑

ew ∈fSFCn

q�(w).

f3(q) = 1q0 + 3q1 + 6q2 + 6q3 + . . .

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 23 / 37

Page 101: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Enumerating fully commutative elements

Question: How many fully commutative elements are there in Sn,with Coxeter length �?

In S3: id,s0s1s2

,s0s1 s0s2s1s0 s1s2s2s0 s2s1

,s0s1s2 s0s2s1s1s0s2 s1s2s0s2s0s1 s2s1s0

, . . .

Question: Determine the coefficient of q� in the generating function

fn(q) =∑

ew ∈fSFCn

q�(w).

f3(q) = 1q0 + 3q1 + 6q2 + 6q3 + . . .

Answer: Consult your friendly computer algebra program.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 23 / 37

Page 102: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

DdddaaaaAAAAaaaaTTaaaaAA

Brant calls up and says: “Hey Chris, look at this data!”

f3(q) = 1 + 3q + 6q2 + 6q3 + 6q4 + 6q5 + · · ·

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 24 / 37

Page 103: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

DdddaaaaAAAAaaaaTTaaaaAA

Brant calls up and says: “Hey Chris, look at this data!”

f3(q) = 1 + 3q + 6q2 + 6q3 + 6q4 + 6q5 + · · ·f4(q) = 1 + 4q + 10q2 + 16q3 + 18q4 + 16q5 + 18q6 + · · ·

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 24 / 37

Page 104: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

DdddaaaaAAAAaaaaTTaaaaAA

Brant calls up and says: “Hey Chris, look at this data!”

f3(q) = 1 + 3q + 6q2 + 6q3 + 6q4 + 6q5 + · · ·f4(q) = 1 + 4q + 10q2 + 16q3 + 18q4 + 16q5 + 18q6 + · · ·f5(q) = 1+5q+15q2 +30q3 +45q4 +50q5 +50q6 +50q7 +50q8 + · · ·

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 24 / 37

Page 105: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

DdddaaaaAAAAaaaaTTaaaaAA

Brant calls up and says: “Hey Chris, look at this data!”

f3(q) = 1 + 3q + 6q2 + 6q3 + 6q4 + 6q5 + · · ·f4(q) = 1 + 4q + 10q2 + 16q3 + 18q4 + 16q5 + 18q6 + · · ·f5(q) = 1+5q+15q2 +30q3 +45q4 +50q5 +50q6 +50q7 +50q8 + · · ·f6(q) = 1 + 6q + 21q2 + 50q3 + 90q4 + 126q5 + 146q6 +

150q7 + 156q8 + 152q9 + 156q10 + 150q11 + 158q12 +150q13 + 156q14 + 152q15 + 156q16 + 150q17 + 158q18 + · · ·

f7(q) = 1 + 7q + 28q2 + 77q3 + 161q4 + 266q5 + 364q6 + 427q7 +462q8 +483q9 +490q10 +490q11 +490q12 +490q13 + · · ·

Notice:� The coefficients eventually repeat.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 24 / 37

Page 106: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

DdddaaaaAAAAaaaaTTaaaaAA

Brant calls up and says: “Hey Chris, look at this data!”

f3(q) = 1 + 3q + 6q2 + 6q3 + 6q4 + 6q5 + · · ·f4(q) = 1 + 4q + 10q2 + 16q3 + 18q4 + 16q5 + 18q6 + · · ·f5(q) = 1+5q+15q2 +30q3 +45q4 +50q5 +50q6 +50q7 +50q8 + · · ·f6(q) = 1 + 6q + 21q2 + 50q3 + 90q4 + 126q5 + 146q6 +

150q7 + 156q8 + 152q9 + 156q10 + 150q11 + 158q12 +150q13 + 156q14 + 152q15 + 156q16 + 150q17 + 158q18 + · · ·

f7(q) = 1 + 7q + 28q2 + 77q3 + 161q4 + 266q5 + 364q6 + 427q7 +462q8 +483q9 +490q10 +490q11 +490q12 +490q13 + · · ·

Notice:� The coefficients eventually repeat.

Goals: � Find a formula for the generating function fn(q).� Understand this periodicity.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 24 / 37

Page 107: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Pattern Avoidance Characterization

Key idea: (Green, 2002)

w is fully commutative ⇐⇒ w is 321-avoiding.

Example. [−4,−1, 1, 14] is NOT fully commutative because:

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 25 / 37

Page 108: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Pattern Avoidance Characterization

Key idea: (Green, 2002)

w is fully commutative ⇐⇒ w is 321-avoiding.

Example. [−4,−1, 1, 14] is NOT fully commutative because:

· · ·w(-4) w(-3) w(-2) w(-1) w(0) w(1) w(2) w(3) w(4) w(5) w(6) w(7) w(8) w(9)· · ·

w · · · 6 -8 -5 -3 10 -4 -1 1 14 0 3 5 18 4 · · ·

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 25 / 37

Page 109: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Game plan

Goal: Enumerate 321-avoiding affine permutations w .

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 26 / 37

Page 110: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Game plan

Goal: Enumerate 321-avoiding affine permutations w .

� Write w = w0w , where w0 ∈ Sn/Sn and w ∈ Sn.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 26 / 37

Page 111: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Game plan

Goal: Enumerate 321-avoiding affine permutations w .

� Write w = w0w , where w0 ∈ Sn/Sn and w ∈ Sn.� w 0 determines the entries; w determines their order.

Example. For w = [−11, 20,−3, 4, 11, 0] ∈ S6,

w0 = [−11,−3, 0, 4, 11, 20] and w = [1, 3, 6, 4, 5, 2].

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 26 / 37

Page 112: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Game plan

Goal: Enumerate 321-avoiding affine permutations w .

� Write w = w0w , where w0 ∈ Sn/Sn and w ∈ Sn.� w 0 determines the entries; w determines their order.

Example. For w = [−11, 20,−3, 4, 11, 0] ∈ S6,

w0 = [−11,−3, 0, 4, 11, 20] and w = [1, 3, 6, 4, 5, 2].

� Determine which w0 are 321-avoiding.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 26 / 37

Page 113: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Game plan

Goal: Enumerate 321-avoiding affine permutations w .

� Write w = w0w , where w0 ∈ Sn/Sn and w ∈ Sn.� w 0 determines the entries; w determines their order.

Example. For w = [−11, 20,−3, 4, 11, 0] ∈ S6,

w0 = [−11,−3, 0, 4, 11, 20] and w = [1, 3, 6, 4, 5, 2].

� Determine which w0 are 321-avoiding.

� Determine the finite w such that w0w is still 321-avoiding

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 26 / 37

Page 114: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Normalized abacus and 321-avoiding criterion for Sn/Sn

We use a normalized abacus diagram;shifts all beads so that the first gap isin position n + 1; this map is invertible.

17

13

9

5

1

�3

�7

18

14

10

6

2

�2

�6

19

15

11

7

3

�1

�5

20

16

12

8

4

0

�4

�17

13

9

5

1

�3

�7

18

14

10

6

2

�2

�6

19

15

11

7

3

�1

�5

20

16

12

8

4

0

�4

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 27 / 37

Page 115: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Normalized abacus and 321-avoiding criterion for Sn/Sn

We use a normalized abacus diagram;shifts all beads so that the first gap isin position n + 1; this map is invertible.

17

13

9

5

1

�3

�7

18

14

10

6

2

�2

�6

19

15

11

7

3

�1

�5

20

16

12

8

4

0

�4

�17

13

9

5

1

�3

�7

18

14

10

6

2

�2

�6

19

15

11

7

3

�1

�5

20

16

12

8

4

0

�4

Theorem. (H–J ‘09) Given a normalized abacus for w0 ∈ Sn/Sn,where the last bead occurs in position i ,

w0 isfully commutative

⇐⇒ lowest beads in runners only occur in{1, . . . , n} ∪ {i−n+1, . . . , i}

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 27 / 37

Page 116: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Normalized abacus and 321-avoiding criterion for Sn/Sn

We use a normalized abacus diagram;shifts all beads so that the first gap isin position n + 1; this map is invertible.

17

13

9

5

1

�3

�7

18

14

10

6

2

�2

�6

19

15

11

7

3

�1

�5

20

16

12

8

4

0

�4

�17

13

9

5

1

�3

�7

18

14

10

6

2

�2

�6

19

15

11

7

3

�1

�5

20

16

12

8

4

0

�4

Theorem. (H–J ‘09) Given a normalized abacus for w0 ∈ Sn/Sn,where the last bead occurs in position i ,

w0 isfully commutative

⇐⇒ lowest beads in runners only occur in{1, . . . , n} ∪ {i−n+1, . . . , i}

Idea: Lowest beads in runners ↔ entries in base window.

w(-n+1) w(-n+2) . . . w(-1) w(0) w(1) w(2) . . . w(n-1) w(n) w(n+1) w(n+2) . . . w(2n-1) w(2n)

lo lo . . . hi hi lo lo . . . hi hi lo lo . . . hi hi

lo lo med hi hi lo lo med hi hi lo lo med hi hi

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 27 / 37

Page 117: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Long versus short elements

Partition Sn into long and short elements:

Short elementsLowest bead in position i ≤ 2n

Finitely manyHard to count

17

13

9

5

1

18

14

10

6

2

19

15

11

7

3

20

16

12

8

4

17

13

9

5

1

18

14

10

6

2

19

15

11

7

3

20

16

12

8

4

Long elementsLowest bead in position i > 2n

Come in infinite familiesEasy to count

Explain the periodicity

17

13

9

5

1

18

14

10

6

2

19

15

11

7

3

20

16

12

8

4

17

13

9

5

1

18

14

10

6

2

19

15

11

7

3

20

16

12

8

4

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 28 / 37

Page 118: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Enumerating long elements

For long elements w ∈ Sn, the base window for w0 is[a, a, . . . , a, b, b, . . . , b] where 1 ≤ a ≤ n, and n + 2 ≤ b.

17

13

9

5

1

18

14

10

6

2

19

15

11

7

3

20

16

12

8

4

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 29 / 37

Page 119: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Enumerating long elements

For long elements w ∈ Sn, the base window for w0 is[a, a, . . . , a, b, b, . . . , b] where 1 ≤ a ≤ n, and n + 2 ≤ b.

17

13

9

5

1

18

14

10

6

2

19

15

11

7

3

20

16

12

8

4

Question: Which permutations w ∈ Sn can be multiplied into a w0?

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 29 / 37

Page 120: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Enumerating long elements

For long elements w ∈ Sn, the base window for w0 is[a, a, . . . , a, b, b, . . . , b] where 1 ≤ a ≤ n, and n + 2 ≤ b.

17

13

9

5

1

18

14

10

6

2

19

15

11

7

3

20

16

12

8

4

Question: Which permutations w ∈ Sn can be multiplied into a w0?

� We can not invert any pairs of a’s, nor any pairs of b’s.(Would create a 321-pattern with an adjacent window)

� Only possible to intersperse the a’s and the b’s.

How many ways to intersperse (k) a’s and (n − k) b’s?(nk

)

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 29 / 37

Page 121: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Enumerating long elements

For long elements w ∈ Sn, the base window for w0 is[a, a, . . . , a, b, b, . . . , b] where 1 ≤ a ≤ n, and n + 2 ≤ b.

17

13

9

5

1

18

14

10

6

2

19

15

11

7

3

20

16

12

8

4

Question: Which permutations w ∈ Sn can be multiplied into a w0?

� We can not invert any pairs of a’s, nor any pairs of b’s.(Would create a 321-pattern with an adjacent window)

� Only possible to intersperse the a’s and the b’s.

How many ways to intersperse (k) a’s and (n − k) b’s?(nk

)BUT: We must also keep track of the length of these permutations.This is counted by the q-binomial coefficient:

[nk

]q[n

k

]q

= (q)n(q)k (q)n−k

, where qn = (1 − q)(1 − q2) · · · (1− qn)

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 29 / 37

Page 122: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Enumerating long elements

After we:

� Enumerate by length all possible w0 with (k) a’s and (n − k) b’s.

� Combine the Coxeter lengths by �(w) = �(w0) + �(w).

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 30 / 37

Page 123: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Enumerating long elements

After we:

� Enumerate by length all possible w0 with (k) a’s and (n − k) b’s.

� Combine the Coxeter lengths by �(w) = �(w0) + �(w).

Then we get:

Theorem. (H–J ’09) For a fixed n ≥ 0, the generating function bylength for long fully commutative elements w ∈ SFC

n is

∑q�(ew) =

qn

1− qn

n−1∑k=1

[n

k

] 2

q

.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 30 / 37

Page 124: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Periodicity of fully commutative elements in Sn

Corollary. (H–J ’09) The coefficients of fn(q) are eventuallyperiodic with period dividing n.

Proof. For i sufficiently large, all elements of length i are long.Our generating function is simply some polynomial over (1− qn):

qn

1− qn

n−1∑k=1

[n

k

] 2

q

=P(q)

1− qn= P(q)(1 + qn + q2n + · · · )

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 31 / 37

Page 125: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Periodicity of fully commutative elements in Sn

Corollary. (H–J ’09) The coefficients of fn(q) are eventuallyperiodic with period dividing n.

When n is prime, the period is 1: ai = 1n

((2nn

)− 2).

Proof. For i sufficiently large, all elements of length i are long.Our generating function is simply some polynomial over (1− qn):

qn

1− qn

n−1∑k=1

[n

k

] 2

q

=P(q)

1− qn= P(q)(1 + qn + q2n + · · · )

When n is prime, an extra factor of (1 + q + · · · + qn−1) cancels;

1

1− q

[qn

1 + q + · · · + qn−1

n−1∑k=1

[n

k

] 2

q

]As suggested by a referee, we know that ai = P(1) = 1

n

∑n−1k=1

(nk

)2.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 31 / 37

Page 126: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Short elements are hard

For short elements w ∈ Sn, the base window for w0 is[a, . . . , a, b, . . . , b, c , . . . , c], and there is more interaction:

9

5

1

10

6

2

11

7

3

12

8

4

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 32 / 37

Page 127: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Short elements are hard

For short elements w ∈ Sn, the base window for w0 is[a, . . . , a, b, . . . , b, c , . . . , c], and there is more interaction:

9

5

1

10

6

2

11

7

3

12

8

4

No a can invert with an a or b. No c can invert with a b or c .

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 32 / 37

Page 128: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Short elements are hard

For short elements w ∈ Sn, the base window for w0 is[a, . . . , a, b, . . . , b, c , . . . , c], and there is more interaction:

9

5

1

10

6

2

11

7

3

12

8

4

No a can invert with an a or b. No c can invert with a b or c .

� Count w where some a intertwines with some c .

� Count w w/o intertwining and 0 descents in the b’s.� Count w w/o intertwining and 1 descent in the b’s.

� Not so hard to determine the acceptable finite permutations w .

� Such as∑

M≥0 xL+M+R∑M−1

µ=1

([Mµ

]q− 1

)[L+µ

µ

]q

[R+M−µ

M−µ

]q

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 32 / 37

Page 129: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Short elements are hard

For short elements w ∈ Sn, the base window for w0 is[a, . . . , a, b, . . . , b, c , . . . , c], and there is more interaction:

9

5

1

10

6

2

11

7

3

12

8

4

No a can invert with an a or b. No c can invert with a b or c .

� Count w where some a intertwines with some c .

� Count w w/o intertwining and 0 descents in the b’s.� Count w w/o intertwining and 1 descent in the b’s.

� Not so hard to determine the acceptable finite permutations w .

� Such as∑

M≥0 xL+M+R∑M−1

µ=1

([Mµ

]q− 1

)[L+µ

µ

]q

[R+M−µ

M−µ

]q

� Count w w/o intertwining and 2 descents in the b’s.� Count w which are finite permutations. (Barcucci et al.)

� Solve functional recurrences (Bousquet-Melou)� Such as D(x , q, z, s) =

N(x , q, z, s) + xqs1−qs

(D(x , q, z, 1)− D(x , q, z, qs)

)+ xsD(x , q, z, s)

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 32 / 37

Page 130: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Future Work

� Extend to Bn, Cn, and Dn

� Develop combinatorial interpretations� 321-avoiding characterization?

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 33 / 37

Page 131: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Future Work

� Extend to Bn, Cn, and Dn

� Develop combinatorial interpretations�� 321-avoiding characterization?

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 33 / 37

Page 132: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Combinatorial interpretations of Sn/Sn

elements ofSn� �Sn

windownotation

abacusdiagram

corepartition

root latticepoint

boundedpartition

reducedexpression

��4,�3,7,10�

��1,2,1,�2�

s1s0s2s3s1s0s2s3s1s0

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 34 / 37

Page 133: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Combinatorial interpretations of C/C , B/B , B/D, D/D

elements ofW� � W

windownotation

abacusdiagram

corepartition

root latticepoint

boundedpartition

reducedexpression

��11,�9,�1,8,16,18�

�1,2,�2�

s0s1s0s3s2s1s0s2s3

s2s1s0s2s3s2s1s0

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 35 / 37

Page 134: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Future Work

� Extend to Bn, Cn, and Dn

� Develop combinatorial interpretations�� 321-avoiding characterization?

� Heap interpretation of fully commutative elements� Can use Viennot’s heaps of pieces theory� Better bound on periodicity

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 36 / 37

Page 135: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Future Work

� Extend to Bn, Cn, and Dn

� Develop combinatorial interpretations�� 321-avoiding characterization?

� Heap interpretation of fully commutative elements� Can use Viennot’s heaps of pieces theory� Better bound on periodicity

� More combinatorial interpretations for W /W� What do you know?

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 36 / 37

Page 136: Christopher R. H. Hanusa Queens College, CUNYpeople.qc.cuny.edu/.../research/Documents/talks/affineFClong-slides.pdf · Generators: S = {s 1,s 2,...,s n} Relations: s2 i =1, Combinatorial

Coxeter Groups Interpretations Application Future work

Thank you!

Slides available: people.qc.cuny.edu/chanusa > Talks

Anders Bjorner and Francesco Brenti.Combinatorics of Coxeter Groups, Springer, 2005.

Christopher R. H. Hanusa and Brant C. Jones.The enumeration of fully commutative affine permutationsEuropean Journal of Combinatorics. Vol 31, 1342–1359. (2010)

Christopher R. H. Hanusa and Brant C. Jones.Abacus models for parabolic quotients of affine Coxeter groups

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa Queens College, CUNY May 12, 2011 37 / 37