Christopher Kelley - National Rotor Testbed Design

22
National Rotor Testbed Design Christopher L. Kelley Sandia National Laboratories st August 6

Transcript of Christopher Kelley - National Rotor Testbed Design

Page 1: Christopher Kelley - National Rotor Testbed Design

National Rotor Testbed DesignChristopher L. KelleySandia National Laboratories31st August 2016

Page 2: Christopher Kelley - National Rotor Testbed Design

Motivation• To better understand wind turbine wakes• Use SWiFT experimental facility

1

Page 3: Christopher Kelley - National Rotor Testbed Design

Aerodynamic Objective• Design wind turbine blades to be manufactured and flownfor research on wakes in an array• Create same initial conditions velocity/momentum deficit atrotor plane as fullscale machine• What shape does the blade need to produce scaled wake?

2

Page 4: Christopher Kelley - National Rotor Testbed Design

A Scaled Wake

3

Page 5: Christopher Kelley - National Rotor Testbed Design

How Is a Wake Created?

Γ′( rR

)=

Γ( rR)

RU∞=Cl

2

W

U∞

c

R

• Circulation isproportional to lift• Lift forces determineshed circulation

4

Page 6: Christopher Kelley - National Rotor Testbed Design

Objective Function, Γ′fs

• most common wind turbine in USA, GE 1.5sle, GE37c• full-scale turbine model provided by manufacturer• modeled in WT_Perf• λ = 9

• smooth surface airfoil data from wind tunnel

5

Page 7: Christopher Kelley - National Rotor Testbed Design

Objective Function, Cl

• for a given circulation, Cl determines local solidity• adequate stall margin• efficient L/D• smooth chord and twist distribution• Cl = 0.6

Γ′( rR

)=Cl

2

W

U∞

c

R

6

Page 8: Christopher Kelley - National Rotor Testbed Design

Airfoil Selection Criteria

• Rec ≈ 2,000,000• high quality, public, and low turbulence wind tunnel data• fixed transition, roughness, and unsteady data• roughness insensitivity• thickness requirements

7

Page 9: Christopher Kelley - National Rotor Testbed Design

Airfoil SelectionS814 ( tc = 0.24) and S825 ( tc = 0.17)

Cd

0 0.01 0.02 0.03

Cl

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S825 Re 1E6S825 Re 2E6S825 Re 3E6S825 Re 4E6S825 Re 6E6S814 Re 0.7E6S814 Re 1E6S814 Re 1.5E6S814 Re 2E6S814 Re 3E6

, [deg]-5 0 5 10 15 20

8

Page 10: Christopher Kelley - National Rotor Testbed Design

Inverse Design

• created inversedesign tool• solved for chord andtwist• iterate with WT_Perf

RMSE Γ

0.08 0.085 0.09 0.095 0.1

RM

SE

α

0

0.2

0.4

0.6

0.8

9

Page 11: Christopher Kelley - National Rotor Testbed Design

Circulation

10

Page 12: Christopher Kelley - National Rotor Testbed Design

Geometry

r/R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c/R

0

0.05

0.1

subscale

V27

CPmax

r/R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β [

de

g]

0

5

10

15

subscale

V27

CPmax

11

Page 13: Christopher Kelley - National Rotor Testbed Design

NRT Blade

12

Page 14: Christopher Kelley - National Rotor Testbed Design

NRT Blade

(nrtu3d.u3d)

13

Page 15: Christopher Kelley - National Rotor Testbed Design

Performance

Wind speed (m/s)4 6 8 10 12 14

Pow

er

(kW

)

0

20

40

60

80

100

120

140

160

180

200

Wind speed (m/s)4 6 8 10 12 14 16

β (

deg)

0

2

4

6

8

10

12

X: 11.11Y: 195

X: 7.65Y: 63.97

14

Page 16: Christopher Kelley - National Rotor Testbed Design

Performance

D [m] λR2 σ [%] Prated [kW] CPR2CTR2

Pr(R2) Pr(R2.5) Pr(R3) cf AEP [GWh]

27 9 6.4 195 0.462 0.863 0.49 0.30 0.05 0.30 0.51

15

Page 17: Christopher Kelley - National Rotor Testbed Design

Free Wake Vortex Simulation

16

Page 18: Christopher Kelley - National Rotor Testbed Design

Momentum Recovery

17

Page 19: Christopher Kelley - National Rotor Testbed Design

3D CFD, 11 m/s

2D BEMT agrees with 3d CFD separation location

18

Page 20: Christopher Kelley - National Rotor Testbed Design

3D CFD3D flow effects and uncertainty of root section performance notan issue

19

Page 21: Christopher Kelley - National Rotor Testbed Design

3D Printed Blade Mold at Oakridge

20

Page 22: Christopher Kelley - National Rotor Testbed Design

Conclusions

• inverse design tool implemented to design blades toproduce a specific wake• blade geometry creates scaled wake of commercial 1.5 MWturbine• 3D CFD indicates no issues in using 2D for blade root forthis design• NRT blade to be flown at SWiFT and used for wakeexperiments

21