Chemistry, Synthesis, and Applications Edited by · 2020. 1. 31. · 1.3.5 Estolides 12 1.3.6...

12
Fatty Acids Chemistry, Synthesis, and Applications Edited by Moghis U. Ahmad Jina Pharmaceuticals, Inc., Libertyville, IL, United States & ADCS PRESS ACADEMIC PRESS An imprint of Elsevier

Transcript of Chemistry, Synthesis, and Applications Edited by · 2020. 1. 31. · 1.3.5 Estolides 12 1.3.6...

Page 1: Chemistry, Synthesis, and Applications Edited by · 2020. 1. 31. · 1.3.5 Estolides 12 1.3.6 Dimerand Trimer CyclicFatty Acids 13 1.3.7 Hydroformylation of Fatty Acids 14 1.3.8 OzonolysisofFattyAcids

Fatty Acids

Chemistry, Synthesis, and Applications

Edited by

Moghis U. Ahmad

Jina Pharmaceuticals, Inc., Libertyville, IL, United States

&ADCSPRESS

ACADEMIC PRESS

An imprint of Elsevier

Page 2: Chemistry, Synthesis, and Applications Edited by · 2020. 1. 31. · 1.3.5 Estolides 12 1.3.6 Dimerand Trimer CyclicFatty Acids 13 1.3.7 Hydroformylation of Fatty Acids 14 1.3.8 OzonolysisofFattyAcids

Contents

List of Contributors xvii

Meet the Editor xix

Preface xxi

1. History of Fatty Acids ChemistryGary R. List, James A. Kenar and Bryan R. Moser

1.1 Introduction 2

1.2 Early Fatty Acid History 2

1.3 Major Developments in the Oleochemical Industry 9

1.3.1 Fat Splitting 9

1.3.2 Catalytic Hydrogenation 10

1.3.3 Fatty Acid Distillation 11

1.3.4 Fatty Alcohols 11

1.3.5 Estolides 12

1.3.6 Dimer and Trimer Cyclic Fatty Acids 13

1.3.7 Hydroformylation of Fatty Acids 14

1.3.8 Ozonolysis of Fatty Acids and Triglycerides 14

1.4 Contributions of Analytical Chemistry to Fatty Acids 15

1.5 Recent Developments in Fatty Acids 16

1.6 Conclusion 17

References 18

2. Naturally Occurring Fatty Acids: Source,

Chemistry, and Uses

James A. Kenar, Bryan R. Moser and Gary R. List

2.1 Introduction 24

2.2 Production of Naturally Occurring Fatty Acids 28

2.2.1 Chemical Splitting 29

2.2.2 Lipase Splitting 30

2.3 Purification of Fatty Acids 31

2.3.1 Simple Distillation 31

2.3.2 Fractional Distillation 32

2.3.3 Molecular Distillation 35

2.3.4 Crystallization 35

2.3.5 Urea Fractionation 36

v

Page 3: Chemistry, Synthesis, and Applications Edited by · 2020. 1. 31. · 1.3.5 Estolides 12 1.3.6 Dimerand Trimer CyclicFatty Acids 13 1.3.7 Hydroformylation of Fatty Acids 14 1.3.8 OzonolysisofFattyAcids

vi Contents

2.4 Sources and Types of Naturally Occurring Fatty Acids 37

2.4.1 Saturated Fatty Acids 38

2.4.2 Unsaturated Fatty Acids 39

2.4.3 Hydroxy Fatty Acids 43

2.4.4 Acetylenic Fatty Acids 45

2.4.5 Allenic and Cumulenic Fatty Acids 47

2.5 Chemistry of Naturally Occurring Fatty Acids 49

2.5.1 Reactions at the Carboxylic Acid Group 50

2.5.2 Reactions at Unsaturated Sites 57

2.6 Conclusion 71

References 71

3. Epoxy Fatty Acids: Chemistry and Biological Effects

Amis Kuksis and Waldemar Pruzanski

3.1 Introduction 83

3.2 Natural Occurrence and Structure of Epoxy Fatty Acids 84

3.2.1 Oleic and Linoleic Acid Monoepoxides and Hydroxides 84

3.2.2 Arachidonic Acid Monoepoxides 85

3.2.3 Eicosapentaenoic Acid and Docosahexaenoic Acid

Monoepoxides 85

3.3 Chemical Synthesis 88

3.3.1 Direct Epoxidation 88

3.3.2 Chemo-Enzymatic Perhydrolysis 89

3.3.3 Other Chemo-Enzymatic Epoxidations 90

3.4 Biosynthesis of Epoxy Fatty Acids 90

3.4.1 Oxygenases and Lipoxygenases 91

3.4.2 Peroxygenases91

3.4.3 Cytochrome P450-Like Oxygenases 92

3.5 Analysis of Epoxy Fatty Acids 94

3.5.1 Resolution of Regioisomers 95

3.5.2 Resolution of Enantiomers 97

3.5.3 GC/MS and LC/MS Identification of Lipid Epoxides 103

3.6 Biological Effects 104

3.6.1 Lipid Signaling104

3.6.2 Cellular Effects 105

3.6.3 Systemic Effects 107

3.7 Pathological Effects 108

3.7.1 Toxicity108

3.7.2 Inflammation and Pain 108

3.7.3 Angiogenesis and Cardiovascular Disease 110

3.7.4 Cancer 111

3.8 Conclusion 112

Abbreviations 112

References 113

Page 4: Chemistry, Synthesis, and Applications Edited by · 2020. 1. 31. · 1.3.5 Estolides 12 1.3.6 Dimerand Trimer CyclicFatty Acids 13 1.3.7 Hydroformylation of Fatty Acids 14 1.3.8 OzonolysisofFattyAcids

Contents vii

4. Acetylenic Epoxy Fatty Acids: ChemistrySynthesis, and Their Pharmaceutical ApplicationsValery M. Dembitsky and Dmitry V. Kuklev

4.1 Introduction 121

4.2 Occurrence Epoxy Acetylenic Fatty Acids in Nature 122

4.3 Lipids Containing Epoxy Acetylenic Fatty Acids 125

4.4 Epoxy Acetylenic Furanoid and Thiophene Fatty Acid and

Derivatives 128

4.5 Pyranone and Macrocyclic Epoxides 129

4.6 Acetylenic Cyclohexanoid Epoxy Fatty Acids 130

4.7 Determination or Epoxy Acetylenic Lipids 131

4.8 Synthesis of Epoxy Acetylenic Lipids 136

4.9 Concluding Remarks 141

References 142

Further Reading 146

5. Carbocyclic Fatty Acids: Chemistry and BiologicalPropertiesMoghis U. Ahmad, Shoukath M. AH, Ateeq Ahmad,Saifuddin Sheikh and Imran Ahmad

5.1 Introduction 148

5.2 Naturally Occurring Cyclopropene Fatty Acids 150

5.2.1 The Halphen Test 151

5.2.2 Isolation of Cyclopropene Fatty Acids From Seed Oils 152

5.2.3 Chemical Characterization 152

5.3 Synthesis and Characterization of Sterculic Acid 156

5.3.1 Characterization of Dihydrosterculic Acid 158

5.3.2 Total Synthesis of c/s-Cyclopropane Fatty Acids 160

5.3.3 Deuterated Cyclopropene Fatty Acids 161

5.4 Biosynthesis of Cyclopropane and Cyclopropene Fatty Acids 163

5.5 Mass Spectrometry of Cyclopropene Fatty Acids 165

5.5.1 Gas Chromatography-Mass Spectrometry Analysis of

Cyclopropene Fatty Acids 166

5.5.2 Gas Chromatography-Mass Spectrometry Analysis of

Cyclopropane Fatty Acids 171

5.6 Physiological Properties of Cyclopropene Fatty Acids 171

5.7 Cyclopropaneoctanoic Acid 2-Hexyl in Human AdiposeTissue and Serum 173

5.7.1 Cyclopropaneoctanoic Acid 2-Hexyl in Patients With

Hypertriglyceridemia 175

5.8 Leishmania Cyclopropane Fatty Acid Synthetase 176

5.8.1 Leishmania: A Fungal Infection 177

5.9 Conclusion 178

References 179

Further Reading 185

Page 5: Chemistry, Synthesis, and Applications Edited by · 2020. 1. 31. · 1.3.5 Estolides 12 1.3.6 Dimerand Trimer CyclicFatty Acids 13 1.3.7 Hydroformylation of Fatty Acids 14 1.3.8 OzonolysisofFattyAcids

viii Contents

6. Modification of Oil Crops to Produce FattyAcids for Industrial Applications

John L Harwood, Helen K. Woodfield, Guanqun Chen

and Randall J. Weselake

6.1 Introduction 188

6.2 Key Aspects of Plant Oil Biosynthesis 189

6.3 Major Oil Crops 194

6.3.1 Oil Palm {Elaeis guineensis) 194

6.3.2 Soybean {Glycine max) 197

6.3.3 Brassica Oilseed Species (Brassica napus, Brassica rapa,

Brassica oleracea, Brassica carinata) 201

6.3.4 Sunflower {Helianthus annuus) 206

6.4 Minor Oil Crops208

6.4.1 Alfalfa {Medicago sativa, Medicago falcata) 209

6.4.2 Almond (Prunus dulcisf Prunus amygdalus, Amygdaluscommunis) 209

6.4.3 Avocado {Persea americana, Persea gratissima) 209

6.4.4 Blackcurrant (Ribes niger) 209

6.4.5 Borage {Borago officinalis) 209

6.4.6 Borneo Tallow (Shorea stenoptera) 209

6.4.7 Camelina (Camelina sativa) (Section 6.5 Also) 211

6.4.8 Castor (Ricinus communis) 211

6.4.9 Cocoa (Theobroma cacao) 211

6.4.10 Coconut (Cocos nucifera) 212

6.4.11 Coriander (Coriandrum sativum) 212

6.4.12 Cottonseed (Gossypium hirsutum, Gossypium

barbadense) 212

6.4.13 Crambe (Crambe abyssinica, Crambe hispanica)

(Section 6.5 Also) 212

6.4.14 Cuphea spp.212

6.4.15 Dimorphotheca {Dimorphotheca pluvialis) 213

6.4.16 Echium (Echium plantagineum) 213

6.4.17 Flax {Linum usitatissimum) 213

6.4.18 Hazelnut {Corylus avellana) 213

6.4.19 Jatropha curcas (See Section 6.5) 213

6.4.20 Jojoba (Simmondsia chinensis) 214

6.4.21 Lesquerella {Lesquerella fendleri) (See Section 6.5) 214

6.4.22 Maize (Corn; Zea mays) 215

6.4.23 Meadowfoam (Limnanthes alba) 215

6.4.24 Mustard (Brassica alba, Brassica carinata, Brassica hirta,

Brassica juncea, Brassica nigra) 215

6.4.25 Oats (Avena sativa) 215

6.4.26 Olive {Olea europaea) 215

6.4.27 Peanut (Ground Nut, Arachis hypogaea) 216

6.4.28 Pine Nuts {Pinus spp.) 216

6.4.29 Poppy {Papaver somniferum) 216

Page 6: Chemistry, Synthesis, and Applications Edited by · 2020. 1. 31. · 1.3.5 Estolides 12 1.3.6 Dimerand Trimer CyclicFatty Acids 13 1.3.7 Hydroformylation of Fatty Acids 14 1.3.8 OzonolysisofFattyAcids

Contents ix

6.4.30 Rice (Oryza sativa) Bran Oil 216

6.4.31 Safflower (Carthamus tinctorius) 21 7

6.4.32 Shea {Butyrospermum parkii, Shea Butter, Karate Butter) 21 7

6.4.33 Tall 217

6.4.34 Tung (Aleurites fordii) 217

6.4.35 VernoniaOils 218

6.5 Emerging Industrial Oil Crops 218

6.6 Prospects for Production of Industrial

Oils in Vegetative Tissue 222

Acknowledgments 223

References 223

Further Reading 236

7. Microbial Production of Fatty Acids

Colin Ratledge and Casey Lippmeier

7.1 Introduction 237

7.2 The Process of Lipid Accumulation in OleaginousMicroorganisms 241

7.3 Economic Considerations—Heterotrophic Microorganisms 244

7.4 Economic Considerations—Phototrophic Microorganisms 248

7.5 Production of PUFAs 251

7.5.1 Nutritionally Important Fatty Acids—BackgroundInformation 251

7.5.2 Production of Gamma-Linolenic Acid (GLA 18:3 n-6) 255

7.5.3 Production of Arachidonic Acid (ARA 20:4 n-6) 258

7.5.4 Production of Docosahexaenoic Acid (DHA 22:6 n-3) 259

7.5.5 Production of Eicosapentaenoic Acid (EPA 20:5 n-3) 260

7.5.6 Production of EPA/DHA Mixtures as Alternatives to Fish

Oils 264

7.6 Safety Aspects 266

7.7 Future Prospects 268

References 270

8. Chemical Derivatization of Castor

Oil and Their Industrial Utilization

Rachapudi B.N. Prasad and Bhamidipati V.S.K. Rao

8.1 Introduction 280

8.2 Derivatives of Castor Oil Based on Unsaturation

of Ricinoleic Acid 282

8.2.1 Hydrogenated Castor Oil 282

8.2.2 Epoxy Castor Oil 282

8.2.3 Ozonolysis of Castor Oil 284

8.2.4 Preparation of 9,10,12-Trihydroxy Octadecanoic Acid 285

8.2.5 Halogenated Derivatives of Castor Oil 285

8.2.6 Novel Derivatives of Ricinoleic Acid EmployingMetathesis Reaction 285

Page 7: Chemistry, Synthesis, and Applications Edited by · 2020. 1. 31. · 1.3.5 Estolides 12 1.3.6 Dimerand Trimer CyclicFatty Acids 13 1.3.7 Hydroformylation of Fatty Acids 14 1.3.8 OzonolysisofFattyAcids

x Contents

8.3 Derivatives of Castor Oil Based on Hydroxy Functionality

of Ricinoleic Acid 286

8.3.1 Dehydrated Castor Oil and Dehydrated Castor

Oil Fatty Acids 286

8.3.2 Sulfated Castor Oil (Turkey Red Oil) 288

8.3.3 Acetylated Castor Oil 288

8.3.4 Castor Oil-Based Estolides 289

8.3.5 Castor Oil—Based Polymer Products 289

8.3.6 Potent Hydroxy Derivatives of Ricinoleic Acid 291

8.4 Derivatives Based on Ester Functionality of Castor Oil 291

8.4.1 Hydroxy Fatty Acid Esters 291

8.4.2 Castor Oil-Based Biodiesel 292

8.4.3 Preparation of Ricinoleyl Alcohol 293

8.4.4 Ricinoleic Acid—Based Amides 293

8.4.5 Ethanolamides of Castor Oil Fatty Acids 293

8.5 Unique Derivatives of Castor Oil 293

8.5.1 Castor Oil—Based Dimer Acids 293

8.5.2 10-Undecenoic Acid and Heptaldehyde 294

8.5.3 Sebacic Acid and 2-Octanol 295

References 296

Chemical Modification of High Free FattyAcid Oils for Biodiesel Production

Godlisten G. Kombe

9.1 Introduction 305

9.2 Production of Biodiesel 306

9.2.1 Types of Feedstocks 306

9.2.2 The Potential of High FFA Feedstocks in Biodiesel

Production 307

9.2.3 Challenges of Processing High FFA Feedstocks 308

9.3 Chemical Modification of High FFA Feedstocks for

Biodiesel 309

9.3.1 Potential Processes for Modification of High FFA

Feedstocks 309

9.4 Conclusion and Recommendations 321

References 323

Further Reading327

Synthesis of Sugar Fatty Acid Esters

and Their Industrial Utilizations

Bianca Perez, Sampson Anankanbil and Zheng Guo

10.1 Introduction 329

10.2 Synthesis of Sugar Fatty Acid Esters 331

10.2.1 Chemical Synthesis of Sugar Fatty Acid Esters 331

10.2.2 Enzymatic Synthesis of Sugar Fatty Acid Esters 333

Page 8: Chemistry, Synthesis, and Applications Edited by · 2020. 1. 31. · 1.3.5 Estolides 12 1.3.6 Dimerand Trimer CyclicFatty Acids 13 1.3.7 Hydroformylation of Fatty Acids 14 1.3.8 OzonolysisofFattyAcids

Contents xi

10.3 Physicochemical Properties of Sugar Fatty Acid Esters 343

10.3.1 Emulsifying Stability and Foaming Ability 344

10.3.2 Toxicity and BiodegradabiIity 345

10.4 Industrial Applications of Sugar Fatty Acid Esters 346

10.5 Conclusion 347

Acknowledgment 348

Abbreviations 348

References 348

Further Reading 354

11. Fatty Acids-Based Surfactants and Their Uses

Douglas C. Hayes

11.1 Introduction 355

11.1.1 Biobased Surfactants: A Growing Market 355

11.2 Biobased Surfactants Are a Robust Product for an

Oleochemical-Based Biorefinery 359

11.3 Oleochemical Feedstocks for Surfactant Synthesis 361

11.4 Sustainability of Oleochemical-Based Surfactants:

Truths and Myths 367

11.5 Green Manufacturing of Biobased Surfactants 368

11.6 Ionic Surfactants 369

11.6.1 Methyl Ester Sulfonates 369

11.6.2 Esterquats 369

11.6.3 Amino Acid—Based Surfactants 370

11.6.4 Others 371

11.7 Ester-Based Nonionic Surfactants 372

11.7.1 Glyceride Esters 372

11.7.2 Ethoxylates of Fatty Acids and Partial Glycerides 372

11.7.3 Sugar Esters 372

11.7.4 Polyol Esters 373

11.8 Ether and Amide-Based Nonionic Surfactants 373

11.8.1 Alkyl Polyglucosides 373

11.8.2 N-Alkyl N-Methyl Glucamine 374

11.8.3 Others 374

11.9 Zwitterionic (Amphoteric) Surfactants 374

11.9.1 Phospholipids 374

11.9.2 Betaines 375

11.10 Glycolipid Biosurfactants 376

11.11 Conclusion 378

References 379

12. The Role of Fatty Acids in Cosmetic Technology

Gary R. Kelm and Randall R. Wickett

12.1 Introduction 385

12.2 Cosmetic and Personal Care Product Formulation Types 386

Page 9: Chemistry, Synthesis, and Applications Edited by · 2020. 1. 31. · 1.3.5 Estolides 12 1.3.6 Dimerand Trimer CyclicFatty Acids 13 1.3.7 Hydroformylation of Fatty Acids 14 1.3.8 OzonolysisofFattyAcids

xii Contents

12.3 Cosmetic and Personal Care Product Categories 388

12.4 Reviewed Fatty Acid Derivatives and Overview of Uses in

Cosmetic and Personal Care Products 391

12.4.1 Fatty Alcohols 392

12.4.2 Anionic and Nonionic Surfactants Based

Upon Fatty Acids 393

12.4.3 Fatty Amines and Quaternary Ammonium

Compounds 393

12.4.4 Esters of Fatty Acids 393

12.5 Cleansing394

12.6 Vehicles/Solvents 395

12.7 Rheological Modification of Suspensions and Sticks 397

12.8 Stabilization of Emulsions 399

12.9 Skin Emollients and Hair Conditioners 401

12.10 Conclusion 402

References402

13. Chemistry of Long-Chain a,(3-Unsaturated FattyAcid and Reactions Thereof

Abdul Rauf and Mohammad F. Hassan

13.1 Introduction

13.2 Synthesis of a,3-Unsaturated Fatty Acids

13.3 Reactions of a,(3-Unsaturated Fatty Acids/Esters

13.3.1 Bromination—Dehydrobromination13.3.2 Cyclopropanation13.3.3 Hypohalogenation13.3.4 Peracid Oxidation

13.3.5 Allylic Halogenations13.3.6 Nitrogen, Oxygen, Sulfur Derivatives of

a,(3-Unsaturated Fatty Acids/Esters

13.3.7 Other Derivatives

13.3.8 a,3-Epoxy Compounds13.4 Applications13.5 Conclusion

AcknowledgmentReferences

Abbreviations

14. Estolides: Synthesis and ApplicationsSteven C. Cermak, Terry A. Isbell, Jakob W. Bredsguardand Travis D. Thompson

14.1 Introduction 432

14.2 Synthesis435

14.2.1 Free-Acid Estolides 436

14.2.2 Estolide 2-Ethylhexyl Esters 438

405

406

407

407

408

409

410

412

414

422

425

425

426

427

427

430

Page 10: Chemistry, Synthesis, and Applications Edited by · 2020. 1. 31. · 1.3.5 Estolides 12 1.3.6 Dimerand Trimer CyclicFatty Acids 13 1.3.7 Hydroformylation of Fatty Acids 14 1.3.8 OzonolysisofFattyAcids

Contents xiii

14.2.3 Coco-Oleic Estolide 2-Ethylhexyl Esters (One-StepProcess) 440

14.2.4 Coco-Oleic Dimer and Coco-Oleic Trimer Plus

Estolides 440

14.2.5 Commercial Estolide 2-Ethylhexyl Ester (SE7B) 443

14.3 Identification 444

14.3.1 GC Analysis 444

14.3.2 Acid Value 447

14.3.3 Nuclear Magnetic Resonance (NMR) Spectroscopy 447

14.4 Basic Physical Properties of Oleic-Based Estolides and Esters 449

14.4.1 Gardner Color 449

14.4.2 Viscosity and Viscosity Index 451

14.4.3 Pour Point and Cloud Point 454

14.4.4 Oxidation Tests 456

14.4.5 NOACK Evaporative Loss 465

14.5 Estolides (SE7B), Base Oil, and Motor Oil

Properties—Applications 466

14.5.1 Performance Properties 467

14.5.2 Estolide Application-Based Motor Oil SE7B—Field

Test 471

14.6 Conclusion 472

References 473

15. An Efficient, Multigram Synthesis of Dietary c/s- and

frans-Octadecenoic (18:1) Fatty Acids

Moghis U. Ahmad

15.1 Introduction 478

15.2 Organic Synthesis of Unsaturated Fatty Acids 480

15.3 Fatty Acids Containing One Acetylene Bond 481

15.3.1 Synthesis of A3-Acetylenic (Octadec-3-Ynoic) Acid 481

15.3.2 Synthesis of A4-Acetylenic (Octadec-4-Ynoic) Acid 482

15.3.3 Synthesis of A5-Acetylenic (Octadec-5-Ynoic) Acid 483

15.3.4 Synthesis of A6-Acetylenic (Octadec-6-Ynoic) Acid 484

15.3.5 Synthesis of A7-Acetylenic (Octadec-7-Ynoic) Acid 486

15.3.6 Synthesis of A8-Acetylenic (Octadec-8-Ynoic) Acid 487

15.3.7 Synthesis of A9-Acetylenic (Octadec-9-Ynoic) Acid 488

15.3.8 Synthesis of A10-Acetylenic (Octadec-10-Ynoic)

Acid 488

15.3.9 Synthesis of A11 -Acetylenic (Octadec-11 -Ynoic)

Acid 490

15.3.10 Synthesis of A12-Acetylenic (Octadec-12-Ynoic)

Acid 490

15.3.11 Synthesis of A13-Acetylenic (Octadec-13-Ynoic)Acid 491

15.3.12 Synthesis of A14-Acetylenic (Octadec-14-Ynoic)

Acid 492

Page 11: Chemistry, Synthesis, and Applications Edited by · 2020. 1. 31. · 1.3.5 Estolides 12 1.3.6 Dimerand Trimer CyclicFatty Acids 13 1.3.7 Hydroformylation of Fatty Acids 14 1.3.8 OzonolysisofFattyAcids

xiv Contents

15.3.13 Synthesis of A15-Acetylenic (Octadec-15-Ynoic)

Acid 494

15.3.14 Synthesis of A16-AcetyIenic (Octadec-16-Ynoic)

Acid 495

15.4 Partial Hydrogenation of Acetylenic Acid and Structure

Determination 495

15.5 Reduction of Acetylenic Acid to c/s-Olefinic Acid 496

15.6 Reduction of Acetylenic Acid to frans-Olefinic Acid 497

15.7 High-Performance Liquid Chromatography Analyses 498

15.8 Conclusion 501

References 502

16. Advancement in Chromatographic and Spectroscopic

Analyses of Dietary Fatty Acids

Magdi M. Mossoba, Sanjeewa R. Karunathilaka,

Jin K. Chung and Cynthia T. Srigley

16.1 Introduction 505

16.2 Gas Chromatography With Flame Ionization Detection 506

16.3 Fourier-Transform Infrared Spectroscopy 510

16.3.1 Infrared Spectroscopy 510

16.3.2 Attenuated Total Reflection Spectroscopy 510

16.3.3 Negative Second Derivative ATR-FT-IR Official

Method 511

16.3.4 Novel Portable ATR- and Transmission-Mode FT-IR

Devices 513

16.4 FT-Near-lnfrared Spectroscopy in ConjunctionWith Partial Least Squares 514

16.5 Conclusion 525

References 525

17. Mass Spectrometry in the Analysis of

Fatty Acids and Derivatives

Yu Lin, Ming Guan, Lin Li, Yangyang Zhang and Zhenwen Zhao

17.1 Introduction 529

17.2 Extraction of Fatty Acids (FAs) and Derivatives 531

17.3 Fatty Acids (FAs) Analysis by Mass Spectrometry 532

17.4 Arachidonic Acid (AA) and Its Derivatives Analysis by Mass

Spectrometry 532

17.5 Triacylglycerols (TAGs) Analysis by Mass Spectrometry 533

17.6 Glycerophospholipids and Sphingolipids Analysis by Mass

Spectrometry 534

17.7 Double Bounds Position Analysis by Mass Spectrometry 535

17.8 Future Perspective 536

Acknowledgment 536

References 536

Page 12: Chemistry, Synthesis, and Applications Edited by · 2020. 1. 31. · 1.3.5 Estolides 12 1.3.6 Dimerand Trimer CyclicFatty Acids 13 1.3.7 Hydroformylation of Fatty Acids 14 1.3.8 OzonolysisofFattyAcids

Contents xv

18. Crystallization of Fats and Fatty Acids in Edible Oils

and Structure Determination

Michael A. Rogers

18.1 Nucleation and Crystal Growth of Fatty Acids & TAGs 541

18.1.1 Super Cooling and Nucleation 542

18.1.2 Crystal Growth 544

18.2 Lipid Polymorphism 546

18.2.1 Lipid Mesophase Polymorphism 546

18.2.2 Crystalline Polymorphism 548

18.3 Nanostructure and Lipid Domains 549

18.4 Microstructure and Fractal Assembly 552

18.5 Modified Fatty Acids and Their Gels 553

18.6 Conclusion 555

Acknowledgments 555

References 555

Index 561