CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET...

20
CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering and Biomedical Engineering University of Michigan MACCCR Sep 16 2009

Transcript of CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET...

Page 1: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

CHEMISTRY AND TRANSPORT PROPERTIES  

FOR JET FUEL COMBUSTION 

Angela Violi 

Departments of Mechanical Engineering, Chemical Engineering and Biomedical Engineering

University of Michigan

MACCCR Sep 16 2009

Page 2: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Kine,cs for Jet Fuel Surrogates 

•  H abstrac,on Reac,on for n‐alkanes and cycloalkanes – Reac,on Class approach to calculate rates 

•  The RC‐TST  – supports the assignment of equal rates for reac,on in the same class through the use of the Evans/Polanyi rela,onship and RC‐TST parameters 

– Helps to define uncertain,es in the mechanism 

9/30/09 

Page 3: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Reac,on Class Transi,on State Theory 

•  RC‐TST: reac,ons in a given class – same reac,ve moiety – have similar poten,al energy surfaces along the reac,on coordinate. 

9/30/09 

•  LER: Within a class there is a linear rela,onship between barrier heights and reac,on energies. 

Page 4: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

OH + CnH2n+2 = HOH + CnH2n+1 

•  Primary Carbon – OH + CH3CH3 = H2O + CH2CH3 

•  Secondary Carbon – OH + CH3CH2CH3 = H2O + CH3CHCH3 

•  Ter,ary Carbon – OH + (CH3)2CHCH3=H2O + (CH3)3C 

9/30/09 

Page 5: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Reac,on Class Transi,on State Theory 

9/30/09 

Truong et al. 2006 

Page 6: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Comparison to Known Rates 

9/30/09 

1.00E+08 5.00E+11 1.00E+12 1.50E+12 2.00E+12 2.50E+12 3.00E+12 3.50E+12 

0  1  2  3  4 

k (cm3/mol s) 

1000/T (1/K) 

Calculated RC‐TST 

Hu et al. 

OH + propane 

W. P. Hu, I. Rossi, J. C. Corchado and D. G. Truhlar, "Molecular modeling of combus,on kine,cs. The abstrac,on of primary and secondary hydrogens by hydroxyl radical," J Phys Chem A, vol. 101, pp. 6911‐6921, 1997. 

Page 7: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Transport Proper,es 

•  Modeling prac,cal fluid systems requires the knowledge of mass diffusion coefficients over wide range of temperatures and pressures.  

•  The strong coupling of heat conduc,on and molecular diffusion in reac,ng flows demands an accurate descrip,on of the mass diffusivi,es of various species for flame structure simula,ons. 

9/30/09 

Small variation of fuel diffusivity should be considered  to explain flame characteristics accurately 

Page 8: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Critical role of mass diffusivity in Combustion

9/30/09 

Ignition characteristics of n-heptane diffusion flame Andac and Egolfopoulos, 31th Int. Sym. Combust. 2007

•  10% perturbation of n-C7H16 diffusivity

50K change of ignition temperature – influence rates

Extinction characteristics of methane/air flame Dong et al.. 2005

•  Use different transport models

20 ~ 40% discrepancies in flame properties

Page 9: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Critical role of mass diffusivity in Combustion

9/30/09 

0.4 

0.8 

1.2 

1.6 

Logarithmic Sensitivity to extinction strain rate

     O2 ‐ N2    C12H26 ‐ N2      CO2 ‐ N2     H2O ‐ N2    H+O2 ↔ CO+OH ↔ O+OH          CO2+H    

Air-C12H26

Diffusion flame

403K, 1 atm

Fuel/N2 mass

ratio = 0.05 ~ 1

[ Holley, You, Dames, Wang, Egolfopoulos, 32th Int. Sym. Combust., 2008]

non‐premixed counterflow flames: Amount of fuel accessible is diffusion controlled  

Page 10: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Limita,ons/Assump,ons of this approach 

•  Diffusion func,on of tabulated collision integrals, mainly derived from viscosity measurements 

•  Binary collision – dilute systems 

•  Spherical poten,al – averaged over orienta,ons of the molecules 

•  Poten,al parameters 

•  High temperature condi,ons – uncertain,es especially in the repulsive part of the poten,al 

Page 11: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Spherical potential

9/30/09 

11 

  How good is this approach for molecules that have non-spherical

structure

C16H34

C2H6

C14H24

Page 12: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Objectives

9/30/09 

12 

  Implement a computational tool to determine the binary mass

diffusion coefficients of hydrocarbon from fully atomistic Molecular

Dynamics simulations

  Identify the effect of molecular structure on diffusivity

Possible factors that can be used to take into account morphology

  The validated computational tool can be used to gain insights on the

transport properties of various systems at different temperatures

where experimental data are not available

Page 13: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Computational approach

9/30/09 

13 

1.  Fully atomistic force field parameters (OPLS-AA)

2.  Canonical ensemble (NVT ensemble)

: remove the pressure coupling effects

3.  Systems of ~7000 molecules, 500 – 1000K, 1 atm

5.  1.0 fs time step for numerical integration

7.  7 ns relaxation time for the integral of correlation functions

Page 14: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Benchmark of the computational approach

9/30/09 

14 

the D12 [cm2/s] 

Mixture  T [K]  Exp  MD 

C2H6/N2  345  0.193  0.186 

407  0.256  0.259 

449  0.303  0.294 

C5H12/N2  353  0.136  0.121 

[Exp:

D. Gavril, J. Chromatography A,

1037, Vol. 147, 2004]

Page 15: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Target systems -1

9/30/09 

15 

N-alkanes/N2 mixtures (300 alkanes + 3000 N2)

CH4

C2H6

C14H30

C16H34

N2

Page 16: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

12 

16 

2  4  6  8  10  12  14  16 

Average relative deviation [%]

                C2H6‐N2    C4H10‐N2    C6H14‐N2    C8H18‐N2 C10H22‐N2 C12H26‐N2  C14H30‐N2  C16H34‐N2       

Comparison with C-E equation [n-alkanes]

9/30/09 

16 

Page 17: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Target systems -2

9/30/09 

17 

Cycloalkanes/N2 mixtures (300 alkanes + 3000 N2)

C6H12

C10H20

C14H24 N2

Page 18: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

                       2                           C6H12‐N2             C10H18‐N2           C14H24‐N2       

Comparison with C-E equation [cycloalkanes]

9/30/09 

18 

12 

16 

Average relaJve deviaJon [%] 

Page 19: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Milestones •  Transport proper,es of hydrocarbons using MD simula,ons (emphasis on compounds present in the JetSurF mechanism)  

•  N‐alkanes and branched alkanes •  Work in progress for cycloalkanes •  New L‐J parameters that can be used in combus,on codes  

•  Tracer coefficients for mul,‐component diffusion coefficients  

Page 20: CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL … · CHEMISTRY AND TRANSPORT PROPERTIES FOR JET FUEL COMBUSTION Angela Violi Departments of Mechanical Engineering, Chemical Engineering

Conclusions

9/30/09 

20 

 We have implemented a tool to compute binary mass

diffusivities for hydrocarbons using atomistic simulations.

 This computational tool can be used to quantify the effect

of molecular structure on diffusivity

 The combination of updated kinetics and transport data

for jet fuel surrogates will allow the development of a

kinetic mechanism that can be used in many combustion

conditions, including flames.