Chemistry 102(01) Spring 2012

54
15-1 CHEM 102, Spring 2012 LA TECH CTH 328 9:30-10:45 am Instructor: Dr. Upali Siriwardane e-mail: [email protected] Office: CTH 311 Phone 257-4941 Office Hours: M,W 8:00-9:00 & 11:00-12:00 am; Tu,Th,F 8:00 - 10:00 am.. Exams: 9:30-10:45 am, CTH 328. March 26 , 2012 (Test 1): Chapter 13 April 18 , 2012 (Test 2): Chapter 14 &15 May 14 , 2012 (Test 3): Chapter 16 &18 Optional Comprehensive Final Exam : May 17, 2012 : Chapters 13, 14, 15, 16, 17, and 18 Chemistry 102(01) Spring 2012

description

Chemistry 102(01) Spring 2012. CTH 328 9:30-10:45 am Instructor : Dr. Upali Siriwardane e-mail : [email protected] Office : CTH 311 Phone 257-4941 Office Hours : M,W 8:00-9:00 & 11:00-12:00 am; Tu,Th,F 8:00 - 10:00 am.. Exams: 9 :30-10:45 am, CTH 328. - PowerPoint PPT Presentation

Transcript of Chemistry 102(01) Spring 2012

Page 1: Chemistry 102(01)  Spring 2012

15-1CHEM 102, Spring 2012 LA TECH

CTH 328 9:30-10:45 am

Instructor: Dr. Upali Siriwardane

e-mail: [email protected]

Office: CTH 311 Phone 257-4941

Office Hours: M,W 8:00-9:00 & 11:00-12:00 am;

Tu,Th,F 8:00 - 10:00 am..

Exams: 9:30-10:45 am, CTH 328.

March 26 ,  2012 (Test 1): Chapter 13

April 18 , 2012 (Test 2): Chapter 14 &15

May 14 , 2012 (Test 3): Chapter 16 &18

Optional Comprehensive Final Exam: May 17, 2012 :

Chapters 13, 14, 15, 16, 17, and 18

Chemistry 102(01) Spring 2012

Page 2: Chemistry 102(01)  Spring 2012

15-2CHEM 102, Spring 2012 LA TECH

Chapter 15. The Chemistry of Solutes and Solutions 15.1 Solubility and Intermolecular Forces 15.2 Enthalpy, Entropy, and Dissolving Solids 15.3 Solubility and Equilibrium 15.4 Temperature and Solubility 15.5 Pressure and Dissolving Gases in Liquids:

Henry's Law15.6 Solution Concentration: Keeping Track of Units15.7 Vapor Pressures, Boiling Points, and Freezing Points

of Solutions15.8 Osmotic Pressure of Solutions15.9 Colloids 15.10 Surfactants15.11 Water: Natural, Clean, and Otherwise

Page 3: Chemistry 102(01)  Spring 2012

15-3CHEM 102, Spring 2012 LA TECH

Solution Concentration Units a) Molarity (M) b) Molality (m) c) Mole fraction (Ca) d) Mass percent (% weight) e) Volume percent (% volume) f) "Proof" g) ppm and ppb

Page 4: Chemistry 102(01)  Spring 2012

15-4CHEM 102, Spring 2012 LA TECH

1) Define following solution concentration units:a) Molarity (M) b) Molality (m)

c) Mole fraction (Ca) d) Mass percent (% weight)

e) Volume percent (% volume) f) "Proof" g) ppm and ppb

Page 5: Chemistry 102(01)  Spring 2012

15-5CHEM 102, Spring 2012 LA TECH

MolarityThe number of moles of solute per liter of solution.

molarity M moles of solute

M = liter of solution

units molar = moles/liter = M

Page 6: Chemistry 102(01)  Spring 2012

15-6CHEM 102, Spring 2012 LA TECH

  An aqueous solution 58.5 g of NaCl and 2206g water has a density of 1.108 g/cm3. Calculate the Molarity of the solution.

58.5 g 1 mole Solution volume 58.5 g + 2206 g in L          

                                        1.00 mole NaCl Molarity of NaCl solution = ------------------------- = 0.489

M                                                    2.044 L solution

2264.5 g solution 1 cm3 solution 1 L solution= 2.044 L solution

  1.108 g solution 1000 cm3 solution

Molarity Calculation

Page 7: Chemistry 102(01)  Spring 2012

15-7CHEM 102, Spring 2012 LA TECH

Molalitynumber of moles of solute particles (ions or

molecules) per kilogram of solvent#moles solute

m = #kilograms of solvent

Calculate the molality of C2H5OH in water solution which is prepared by mixing 75.0 mL of C2H5OH and 125 g of H2O at 20oC. The density of C2H5OH is 0.789 g/mL.

Page 8: Chemistry 102(01)  Spring 2012

15-8CHEM 102, Spring 2012 LA TECH

125 g of H2O = 0.125 kg H2O

                      1.284 mole C2H5OH Molality(m) = ------------------------ = 10.27 m                          0.125 kg H2O

75.0 mL C2H5OH 0.789 g C2H5OH 1 mole C2H5OH= 1.284 C2H5OH

1 mL 46.08 g C2H5OH

Molarity Calculation

Page 9: Chemistry 102(01)  Spring 2012

15-9CHEM 102, Spring 2012 LA TECH

Mole Fraction#moles of component i

Xi = total number of moles

Calculate the mole fraction of benzene in a benzene(C6H6)-chloroform(CHCl3) solution which contains 60 g of benzene and 30 g of chloroform.M.W. = 78.12 (C6H6) M.W. = 119.37 (CHCl3)

Page 10: Chemistry 102(01)  Spring 2012

15-10CHEM 102, Spring 2012 LA TECH

                                   moles of a                na Mola Fraction(ca) = -------------------  =     --------------                             moles of na + moles nb     na + nb             a = C6H6             b = CHCl3                                      nC6H6 Mola Fraction(ca) = ------------------                                    nC6H6 + nCHCl3 m.w (C6H6) = 78.12 g/mole m.w (CHCl3) = 119.37 g/mole 60/78.12 = 0.768 mole C6H6 30/119.37 = 0.251 mole CHCl3

ca(C6H6) = 0.768/ 0.786+ 0.251 =0.754 Ca(CHCl3) = 0.0.251/ 0.786+ 0.251 = 0.246

1.000

Mole Fraction Calculation

Page 11: Chemistry 102(01)  Spring 2012

15-11CHEM 102, Spring 2012 LA TECH

Weight Percent #g of solute

wt % = 102

#g of solution

Volume Percent #L of solute

Vol % = 102

#L of solution

Proof

proof = Vol % x 2

Page 12: Chemistry 102(01)  Spring 2012

15-12CHEM 102, Spring 2012 LA TECH

Problem

What is the mole fraction of ethanol, C2H5OH, in ethanol solution that is 40.%(w/w) ethanol, C2H5OH, by mass?

a. 0.40 b. 0.46 c. 0.21 d. 0.54

Page 13: Chemistry 102(01)  Spring 2012

15-13CHEM 102, Spring 2012 LA TECH

Parts per Million #g of solute #mg of solute

ppm = 106 = #g of solution #kg of solution

#mL solute ppm =

#L of solution

Parts per Billion

#g of solute #micro-g of solute

ppb = 109

=

#g of solution #kg of solution

Page 14: Chemistry 102(01)  Spring 2012

15-14CHEM 102, Spring 2012 LA TECH

ppm and ppb conversions1 ppm = (1g/ 1x 106g) 1x 106

= (1/1000 g) x 1x 106

1x 106 / 1000g = mg/ 1x 103 g = mg/ L1 ppb = (1g/ 1x 109g) 1x 109

= (1/1000000 g) 1x 109/1000000g = mg/ 1x 103 g = mg/ L

Page 15: Chemistry 102(01)  Spring 2012

15-15CHEM 102, Spring 2012 LA TECH

A solution of hydrogen peroxide is 30.0% H2O2 by mass and has a density of

1.11 g/cm3. The MOLARITY of the solution is:

a) 7.94 M b) 8.82 M c) 9.79 M d) 0.980

e) none of these

M.W. = 34.02 (H2O2)

Problem

Page 16: Chemistry 102(01)  Spring 2012

15-16CHEM 102, Spring 2012 LA TECH

Comparison of Concentration Terms

Page 17: Chemistry 102(01)  Spring 2012

15-17CHEM 102, Spring 2012 LA TECH

Effect of Solutes on SolutionColligative Properties

Colligative Properties: Depend on the number of particles not on the identity of the particles

Solution Colligative Propertiesa) Vapor Pressure Loweringb) Freezing Point Depressionc) Boiling Point Elevationd) Osmotic Pressure

Two types of solutes affect colligative properties differentlya) Volatile solutes (covalent)b) nonvolatile solutes (ionic)

Page 18: Chemistry 102(01)  Spring 2012

15-18CHEM 102, Spring 2012 LA TECH

Vapor Pressure ofPure Water vs. Sea Water

Page 19: Chemistry 102(01)  Spring 2012

15-19CHEM 102, Spring 2012 LA TECH

Vapor Pressure LoweringRaoult’s Law

P1 = X1P1o

Psol = csolvent Psolvent

Psol = (1-csolute) Psolvent

The vapor pressure above a glucose-water solution at 25oC is 23.8 torr. What is the mole fraction of glucose (non-dissociating solute) in the solution. The vapor pressure of water at 25oC is 30.5 torr.

Page 20: Chemistry 102(01)  Spring 2012

15-20CHEM 102, Spring 2012 LA TECH

Vapor Pressure Lowering

Page 21: Chemistry 102(01)  Spring 2012

15-21CHEM 102, Spring 2012 LA TECH

Effect on Boling and Freezing point

Page 22: Chemistry 102(01)  Spring 2012

15-22CHEM 102, Spring 2012 LA TECH

Boiling Point Elevation

Page 23: Chemistry 102(01)  Spring 2012

15-23CHEM 102, Spring 2012 LA TECH

Boiling Point ElevationDTb = Tfinal - Tinitial

(DTb = bpsolution - bppure solvent)DTb = kb x mwhere kb => boiling point elevation constant

m => molality of all solutes in solutionFreezing Point Depression

(DTf = fppure solvent - fpsolution)

DTf = kf x m

where kf => freezing point depression constant

m => molality of all solutes in solution

For electrolytes multiply

i => number of particles per formula unit

Page 24: Chemistry 102(01)  Spring 2012

15-24CHEM 102, Spring 2012 LA TECH

Boiling Point Elevation & Freezing point Depression Constants

Page 25: Chemistry 102(01)  Spring 2012

15-25CHEM 102, Spring 2012 LA TECH

What is the freezing point of a 0.500 m aqueous solution of glucose? (Kf for H2O is 1.86 oC/m) (DTf = fppure solvent - fpsolution)DTf = kf x m

Freezing Point Depression Problem

Page 26: Chemistry 102(01)  Spring 2012

15-26CHEM 102, Spring 2012 LA TECH

Calculation of Molecular Weight

A 2.25g sample of a compound is dissolved in 125 g of benzene. The freezing point of the solution is 1.02oC. What is the molecular weight of the compound? Kf for benzene = 5.12 oC/m, freezing point = 5.5oC. DTf = kf x mm = moles/ kg of solventMW = g/moles

Page 27: Chemistry 102(01)  Spring 2012

15-27CHEM 102, Spring 2012 LA TECH

Solvent Freezing

Page 28: Chemistry 102(01)  Spring 2012

15-28CHEM 102, Spring 2012 LA TECH

Colligative Properties ofElectrolytesNumber of solute particles in the solution depends

on dissociation into ions expressed as Van’t Hoff facotor(i)

Van’t Hoff facotor (i) moles of particles in solution moles of

solutes dissolved

Page 29: Chemistry 102(01)  Spring 2012

15-29CHEM 102, Spring 2012 LA TECH

Colligative Properties of ElectrolytesIonic vs. covalent substances

vpwater > vp1M sucrose > vp1M NaCl > vp 1M CaCl2

1 mole sucrose = 1 mole molecules (i = 1)1 mole NaCl = 2 mole of ions (i = 2)1 mole CaCl2 = 3 moles ions (i = 3)

i => number of particles per formula unitPsol = (1- i csolute) Psolvent

DTf = i kf x mDTb = i kb x mP = i MRT

Page 30: Chemistry 102(01)  Spring 2012

15-30CHEM 102, Spring 2012 LA TECH

Osmosis

Page 31: Chemistry 102(01)  Spring 2012

15-31CHEM 102, Spring 2012 LA TECH

Measuring Osmotic Pressure

Page 32: Chemistry 102(01)  Spring 2012

15-32CHEM 102, Spring 2012 LA TECH

Osmosis and the Cell

Page 33: Chemistry 102(01)  Spring 2012

15-33CHEM 102, Spring 2012 LA TECH

Osmotic Pressure

P = MRTiwhere P => osmotic pressure

M => concentration R => gas constant T => absolute Kelvin temperature

i => number of particles per formula unit

Page 34: Chemistry 102(01)  Spring 2012

15-34CHEM 102, Spring 2012 LA TECH

Calculate the osmotic pressure in atm at 20oC of an aqueous solution containing 5.0 g of sucrose (C12H22O11), in 100.0 mL solution.M.W.(C12H22O11)= 342.34P = MRT R = 0.0821 L-atm/mol K = 62.4 L-torr/mol K

Calculation

Page 35: Chemistry 102(01)  Spring 2012

15-35CHEM 102, Spring 2012 LA TECH

Calculate the osmotic pressure in torr of a 0.500 M solution of NaCl in water at 25oC. Assume a 100%dissociation of NaCl.

Calculation

Page 36: Chemistry 102(01)  Spring 2012

15-36CHEM 102, Spring 2012 LA TECH

Define the Van't Hoff factor (i). Which of the following solutions will show the highest osmotic pressure: a) 0.2 M Na3PO4 b) 0.2 M C6H12O6 (glucose)c) 0.3 M Al2(SO4)3 d) 0.3 M CaCl2 e) 0.3 M NaCl

Which one has higher Osmotic Pressure

Page 37: Chemistry 102(01)  Spring 2012

15-37CHEM 102, Spring 2012 LA TECH

Normal vs. Reverse Osmosis

Page 38: Chemistry 102(01)  Spring 2012

15-38CHEM 102, Spring 2012 LA TECH

Deviations from Raoult’s LawIntermolecular forces between components in a

dissolved solution cause deviations from the adjustment to vapor pressure.

Vapo

r Pre

ssur

e

cA

Pvap A

Pvap B

Page 39: Chemistry 102(01)  Spring 2012

15-39CHEM 102, Spring 2012 LA TECH

Ideal, Negative, Positive Behavior of Vapor Pressure

of Two Volatile Liquids

Page 40: Chemistry 102(01)  Spring 2012

15-40CHEM 102, Spring 2012 LA TECH

Predict the type of behavior (ideal, negative, positive) based on vapor pressure of the following pairs ofvolatile liquids and explain it in terms of intermolecular attractions: a) Acetone/water(CH3)2CO/H2Ob) Ethanol(C2H5OH)/hexane(C6H14) c) Benzene (C6H6)/toluene CH3C6H5.

Ideal, Negative, Positive Behavior of Vapor Pressure

Page 41: Chemistry 102(01)  Spring 2012

15-41CHEM 102, Spring 2012 LA TECH

Acetone/water(CH3)2CO/H2O

Page 42: Chemistry 102(01)  Spring 2012

15-42CHEM 102, Spring 2012 LA TECH

Ethanol(C2H5OH)/hexane(C6H14)

Page 43: Chemistry 102(01)  Spring 2012

15-43CHEM 102, Spring 2012 LA TECH

Benzene (C6H6)/toluene CH3C6H5

Page 44: Chemistry 102(01)  Spring 2012

15-44CHEM 102, Spring 2012 LA TECH

a) True solutionsb) Colloids (Tyndall effect)c) Suspensions.

Types of Solutions

Page 45: Chemistry 102(01)  Spring 2012

15-45CHEM 102, Spring 2012 LA TECH

Page 46: Chemistry 102(01)  Spring 2012

15-46CHEM 102, Spring 2012 LA TECH

Solution vs. Dispersion vs. SuspensionSmaller particles => Larger particles

Colloidal True solution dispersion Suspension

Particles Ions & molecules Colloids Large-sized particles

Particle size 0.2-2.0 nm 2-2000 nm >2000 nmProperties * Don’t settle out * Don’t settle out * Settle out on

on standing on standing on standing* Not filterable * Not filterable * Filterable

Example Sea water Fog River silt

Page 47: Chemistry 102(01)  Spring 2012

15-47CHEM 102, Spring 2012 LA TECH

Tyndall Effect

Page 48: Chemistry 102(01)  Spring 2012

15-48CHEM 102, Spring 2012 LA TECH

Surfactants

Page 49: Chemistry 102(01)  Spring 2012

15-49CHEM 102, Spring 2012 LA TECH

Soaps and Detergents

CH 3CH 2CH2CH 2CH 2CH 2CH2CH 2CH 2CH 2CH2CH 2CH 2CH 2CH2CH 2CH 2

Hydrophobic end Hydrophilic end

sodium stearate

C O-Na+

O

CH 3CH 2CH2CH 2CH 2CH 2CH2CH 2CH 2CH 2CH2CH 2OS O-3Na +

sodium lauryl sulfate

Page 50: Chemistry 102(01)  Spring 2012

15-50CHEM 102, Spring 2012 LA TECH

Cleaning Action

Page 51: Chemistry 102(01)  Spring 2012

15-51CHEM 102, Spring 2012 LA TECH

Earth’s Water Supply

Page 52: Chemistry 102(01)  Spring 2012

15-52CHEM 102, Spring 2012 LA TECH

Treatment of Drinking Water

Page 53: Chemistry 102(01)  Spring 2012

15-53CHEM 102, Spring 2012 LA TECH

Hard Waternatural water containing relatively high

concentrations of Ca+2, Mg+2, Fe+3, or Mn+2 cations and CO3

-2 and HCO3-1 anions

Page 54: Chemistry 102(01)  Spring 2012

15-54CHEM 102, Spring 2012 LA TECH

Common HazardousHousehold Chemicals