Chemical physics : electrons and excitations · CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven...

12
CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven Larsson C Kress ujl*' J Taylor & Francis Croup Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis Group, an informa business

Transcript of Chemical physics : electrons and excitations · CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven...

Page 1: Chemical physics : electrons and excitations · CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven Larsson C Kress ujl*' J Taylor&FrancisCroup Boca Raton London NewYork CRC Press is

CHEMICALPHYSICS

ELECTRONS and EXCITATIONS

Sven Larsson

C Kress

ujl*' J Taylor & Francis CroupBoca Raton London NewYork

CRC Press is an imprint of the

Taylor & Francis Group, an informa business

Page 2: Chemical physics : electrons and excitations · CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven Larsson C Kress ujl*' J Taylor&FrancisCroup Boca Raton London NewYork CRC Press is

Contents

Preface *v"

Acknowledgments xix

Chapter 1 Quantum Theory 1

1.1 Introduction I

1.2 Electromagnetic Radiation I

1.2.1 Polarization ol'HM Radiation 2

1.2.2 Planck's Law 2

1.2.3 Photoelectric Effect 3

1.2.4 X-Rays 4

1.3 Electrons 3

1.3.1 Discovery of the Electron f>

1.3.2 Quantum Conditions in the Atom 6

1.3.3 Old Quantum Theory 7

1.3.4 Matter Waves 8

1.4 Time-Independent Sehriidinger Equation 11

1.4.1 Scliriidinger's Standing Waves 11

1.4.2 Particle in a Box 12

1.4.3 Finite Walls, Tunneling 14

1.4.4 Interpretation of the Wave Function 15

1.5 Mathematical Background 18

1.5.1 Eigenvalues aiul Eigenfunctions 18

1.5.2 I-Iermileau Operators 19

1.5.3 Expectation Value ll->

1.5.4 Separation of Variables 20

I .o Variation Principle: Linear Expansion 22

1.6.1 Energy Expectation Value is >E„, the Lowest

Eigenvalue of H 22

1.6.2 Linear Expansion 23

1.7 Spin 23

1.7.1 Spin of a Single Electron 24

1.7.2 Properties of Spin Functions 25

1.7.3 Spin Multiplicity 28

1.8 Many-Electron Theory 30

1.8.1 Wave Function for Many Electrons 30

1.8.2 Pauli Exclusion Principle 31

1.8.3 Independent Electron Model 32

1.8.4 Correlation Hole 34

1.8.5 Correlation Energy 35

v

Page 3: Chemical physics : electrons and excitations · CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven Larsson C Kress ujl*' J Taylor&FrancisCroup Boca Raton London NewYork CRC Press is

vi Contents

1.8.6 Configuration Interaction 36

1.8.7 Electronic Density Matrix 36

1.8.8 Correlation Error 38

Chapter 2 Atoms 41

2.1 Atomic Units 41

2.2 Hydrogen Atom 42

2.2.1 Time-Independent Schrodinger Equation for the

Hydrogen Atom 42

2.2.2 Angular Function 43

2.2.3 Radial Function 46

2.2.4 Energy Spectrum 47

2.2.5 SizeofOrbitals 48

2.2.6 Slater's Screening Rules: Size of Atoms 49

2.3 Equation of Motion for Single Electrons 50

2.3.1 Hartree's Sell-Consistent Field (SCF) Method 50

2.3.2 Hartree-Fock 51

2.3.3 Brillouin's Theorem 53

2.3.4 Ionization Energy, Electron Affinity, and

Disproportionate)! Energy 54

2.3.5 Koopmans' Theorem 55

2.3.6 M0ller-Plessel (MP) Theorem 57

2.3.7 Best Overlap Orbitals 58

2.3.8 Exchange Hole 59

2.3.9 Local Exchange and Density Functional Theory 61

2.3.10 DFT Method as a Practical Calculation Method 62

2.4 Correlation and Multiplet Theory 63

2.4.1 Hylleraas'Method 63

2.4.2 Central Field Approximation 65

2.4.3 Correlation 67

2.5 Atoms in Chemistry 68

2.5.1 Periodic Table of the Elements 68

2.5.2 Hydrogen Atom 69

2.5.3 Oxidation Slates and Oxidation Potentials 70

2.5.4 Hybridization of Atomic Orbitals 71

Chapter 3 Molecules 75

3.1 Introduction 75

3.2 Chemical Bonding 75

3.2.1 Hydrogen Molecule, H2 75

3.2.2 Representation of MO 78

3.2.3 Homonuclear Diatomic Molecules 78

3.2.4 Heteronuclear Diatomic Molecules 80

Page 4: Chemical physics : electrons and excitations · CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven Larsson C Kress ujl*' J Taylor&FrancisCroup Boca Raton London NewYork CRC Press is

Contents VM

3.2.5 Ionic Bonds SI

3.2.6 Bond Distance Depends on Occupation 82

3.3 Polyatomic Molecules 83

3.3.1 Water Molecule 84

3.3.2 Saturated Hydrocarbons 85

3.3.3 Aromatic (Unsaturated) Hydrocarbons 86

3.4 Hiickel Model for Aromatic Hydrocarbons 87

3.4.1 Hiickel Model 87

3.4.2 Bond-Length-Dependent Couplings 91

3.4.3 Cyclic jc-Syslems 91

3.4.4 Linear 7t-Systems 94

3.4.5 Alternant Systems 96

3.4.6 Fullerencs 98

3.5 Excited Slates I""

3.5.1 Diatomic Molecules 101

3.5.2 Aromatic Molecules 101

3.5.3 Transition Moment 102

3.5.4 Spectra of Cyclic and Linear jr-Syslems 102

3.5.5 PPP Model 105

3.5.6 Singlets and Triplets 106

Chapter 4 Nuclear Motion '09

4.1 Introduction 109

4.2 Separation of Electronic and Nuclear Coordinates 109

4.2.1 Born-Oppenheimer Approximation 109

4.2.2 Nuclei Move on PES 110

4.2.3 Calculation of PES HI

4.2.4 Isotope Effects and Isotope Separation 112

4.2.5 Hellman-Feynman Theorem 113

4.2.6 Car-Parinello Approach 115

4.3 Classical Molecular Dynamics 115

4.3.1 Classical Harmonic Oscillator 116

4.3.2 Anharmonic Motion 118

4.3.3 Small Molecular Oscillations H8

4.3.4 Eigenvalue Equation 120

4.3.5 Molecular Dynamics Simulation 120

4.4 Quantization of Vibrations 122

4.4.1 Harmonic Oscillator 122

4.4.2 Small Vibrations 125

4.5 Vibrational Spectra 126

4.5.1 Intensity in Infrared Spectra 126

4.5.2 IR Frequency Depends on Type of Bond 128

4.5.3 Raman Spectra 129

4.5.4 Rotation Spectra 129

Page 5: Chemical physics : electrons and excitations · CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven Larsson C Kress ujl*' J Taylor&FrancisCroup Boca Raton London NewYork CRC Press is

Contents

4.6 Vibrations in Electronic Spectra 132

4.6.1 Vibrational Broadening 132

4.6.2 Franck-Condon Factors 133

4.7 PES Crossing 134

4.7.1 Avoided Crossing 134

4.7.2 Vibration Spectrum in Double Minimum PES 136

Chapter 5 Statistical Mechanics 139

5.1 Introduction 139

5.2 Partition Function and Thermodynamic Properties 140

5.2.1 Boltzmann Distribution 140

5.2.2 Partition Function 142

5.2.3 Internal Energy 142

5.2.4 Entropy 143

5.2.5 Hclmhollz Free Energy 144

5.2.6 Pressure 145

5.2.7 Enthalpy 145

5.2.8 Gibbs' Free Energy 146

5.2.9 Maxwell Relations 147

5.3 Internal Energy and Heat Capacity in Gas Phase 148

5.3.1 Translational Contribution 148

5.3.2 Internal Energy and Heat Capacity due to

Vibrations 150

5.4 Chemical Reactions 152

5.4.1 Chemical Potential 152

5.4.2 Gibbs-Duhem Equation 153

5.4.3 Gibhs-Hclmhollz Equation 153

5.4.4 Gibbs Energy for Ideal Gas 154

5.4.5 Law of Mass Action 155

5.4.6 Connection between Giy and K 156

5.4.7 Temperature Dependence of EquilibriumConstant 156

5.5 Equilibrium Statistical Mechanics Using Ensembles 157

5.5.1 Phase Space 157

5.5.2 Problems in the Earlier Derivation 158

5.5.3 Canonical Ensemble 159

5.5.4 Grand Canonical Ensemble 160

5.5.5 Fermi-Diiac and Bose-Einstein Statistics 163

5.5.5.1 FD Statistics 164

5.5.5.2 BE Statistics 165

5.6 Nonequilibrium Statistical Mechanics 166

5.6.1 Maxwell Velocity Distribution 166

5.6.2 Kinetic Theory of Gases 167

5.6.3 Molecular Dynamics: The Entropy Problem 169

5.6.4 Diffusion 170

Page 6: Chemical physics : electrons and excitations · CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven Larsson C Kress ujl*' J Taylor&FrancisCroup Boca Raton London NewYork CRC Press is

Contents IX

Chapter 6 Ions in Crystals and in Solution '73

6.1 Introduction '73

6.2 Ions in Aqueous Solution 173

6.2.1 Solvent Structure around Ions 174

6.2.2 Born Equation 175

6.3 Crystals 176

6.3.1 Crystal Directions and Planes: Unit Cell and

Reciprocal Space 176

6.3.2 Crystal Systems 179

6.3.3 Lattice Enthalpy 180

6.4 Crystal Field Theory for Transition Metal Ions 182

6.4.1 Transition Metal Oxides and Salts 183

6.4.2 Energy Levels 183

6.4.3 High Spin and Low Spin 184

6.4.4 Problems with Crystal Field Theory 185

6.5 Ligand Field Theory 186

6.5.1 Extension to LFT 186

6.5.2 Localized or Delocalized Excitations 188

6.5.3 First-Order Jahn-Teller Effect 188

6.5.4 L -» M Charge Donation 189

Chapter 7 Time-Dependent Quantum Mechanics 191

7.1 Introduction 191

7.2 Wave Equation 191

7.2.1 Time-Independent Energy Levels and Coefficients 191

7.2.2 Time-Dependent Energy Levels 194

7.2.3 Electron Transfer Dynamics 197

7.2.4 Landau-Zener Approximation 199

7.3 Time Dependence as a Perturbation 200

7.3.1 Time-Dependent Perturbation Theory 200

7.3.2 Decay Rales: Fermi Golden Rule 201

Chapters Chemical Kinetics 207

8.1 Introduction 207

8.2 Rate of Chemical Reactions 207

8.2.1 Reversible and Irreversible Reactions 207

8.2.2 Activation Energy 208

8.2.3 Elementary Reactions 209

8.2.4 Rate Measurements 211

8.3 Integrated Rate Equations 212

8.3.1 Irreversible Reactions of First Order 212

8.3.2 Irreversible Reactions of Second Order 212

8.3.3 Irreversible Reactions of Zeroth Order 214

8.3.4 Unimolecular Reversible Reaction 214

Page 7: Chemical physics : electrons and excitations · CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven Larsson C Kress ujl*' J Taylor&FrancisCroup Boca Raton London NewYork CRC Press is

X Contents C

8.4 Consecutive Reactions 216

8.4.1 Rate Derivation 216

8.4.2 Steady State Assumption 218

Chapter 9 Proton Transfer 219

9.1 Introduction 219

9.1.1 Acid-Base Concept of Br0nsted 219

9.1.2 Acid-Base Equilibrium in Water 220

9.1.3 Proton Affinity 222

9.1.4 Hydration 223

9.2 Hydrogen Bonding 223

9.2.1 Typical Hydrogen Bonds 224

9.2.2 Hydrogen Bonds in Proteins 225

9.2.3 Strength of a Hydrogen Bond 226

9.2.4 Potential Energy Surface 226

9.2.5 Coordinate System 229

9.2.6 Parabolic Model (Marcus Model for Proton

Transfer) 231

9.3 Proton Transfer 233

9.3.1 Rales of PT Reactions 233

9.3.2 Proton Tunneling 234

9.3.3 Grotthuss Effect 234

Chapter 10 Electron Transfer Reactions 237

10.1 Introduction 237

10.2 Homogeneous ET Reactions 237

10.2.1 Inner and Outer Sphere ET Reactions ..237

10.2.2 Electron Transfer Coupled to Proton Transfer 240

10.3 Electrochemistry 241

10.3.1 Electrochemical Cells 242

10.3.2 Thermodynamics of the Cell 243

10.3.3 Electrochemical Series 244

10.3.4 Latimer and Frost Diagrams 245

10.4 Marcus Parabolic Model for ET 246

10.4.1 Adiabalie and Nonadiabatic Transfer 247

10.4.2 Reorganization Energy (X) 250

10.4.3 Localized and Delocalized Mixed Valence 253

10.4.4 Wave Functions 256

10.4.5 Intensity of Intervalence Transition 257

10.5 Rale of ET Reactions 258

10.5.1 Gibbs Free Energy ofET Reaction 258

10.5.2 Adiabalie, Asymmetric System 259

Page 8: Chemical physics : electrons and excitations · CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven Larsson C Kress ujl*' J Taylor&FrancisCroup Boca Raton London NewYork CRC Press is

Contents xi

10.5.3 ET Rate for Nonadiabatic Reaction 260

10.5.4 Electronic Factor k 261

10.5.5 Adiabatic and Nonadiabatic Limits 264

10.5.6 Miller's Experiment 264

10.6 Electronic Coupling 265

10.6.1 Gamow Model 266

10.6.2 Orbital Interaction Model 267

10.6.3 State Interaction Model 269

10.6.4 Direct Calculation of Electronic Coupling 270

10.6.5 Pathway Model •273

10.6.6 Nonexponential Decrease 274

10.6.7 Electron Transfer through a Solvent 275

10.7 Disproportionation 276

10.7.1 Examples of Disproportionation 276

10.7.2 Day-Hush Disproportionation Model 277

10.8 Quantized Nuclear Motion 279

10.8.1 PKS Model 280

10.8.2 Nuclear Tunneling 280

10.8.3 Vibrational Model for ET in the Limit of Low

Barrier 281

Chapter 11 Biological Electron Transfer 285

11.1 Introduction 285

11.2 The Living System 285

11.2.1 Formation of Life 286

11.2.2 Cells, Mitochondria, and Cell Membranes 288

11.2.3 Membrane Proteins 289

11.3 Electron Carriers and Other Functional Groups 290

11.3.1 Functional Groups 290

11.3.2 Carbohydrates and Lignin 292

11.3.3 Lipids 294

11.3.4 Nicotinamide Adenine Dinucleotide (NAD+) 295

11.3.5 Flavins 296

11.3.6 Quinones 297

11.3.7 Hemes and Cytochromes 298

11.3.8 Iron-Sulfur Proteins 298

11.4 Biological Electron Transfer 300

11.4.1 Electrons in the Electron Transport Chain 301

11.4.2 Electron Transfer Steps 303

11.4.3 More on Activation Energy 304

11.4.4 More on Coupling 305

11.4.5 be. Complex 307

11.4.6 Cytochrome c Oxidase 307

Page 9: Chemical physics : electrons and excitations · CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven Larsson C Kress ujl*' J Taylor&FrancisCroup Boca Raton London NewYork CRC Press is

xii Contents t

Chapter 12 Photophysics and Photochemistry 309

12.1 Introduction 309

12.2 Photophysics 309

12.2.1 Absorption and Reflection of Light in Matter 309

12.2.2 Refraction and Diffraction 311

12.2.3 Lambert-Beer's Law 312

12.2.4 Laser Radiation 313

12.2.5 Absorption of Radiation in Atoms and

Molecules 315 C

12.2.6 Rate of Spontaneous Emission 319

12.3 Molecular Photophysics 323

12.3.1 Fluorescence: Stokes Shift 323

12.3.2 Internal Conversion 326

12.3.3 Spin-Orbit Coupling and Intersystem Crossing 326

12.3.4 Phosphorescence 327

12.3.5 Types of Spectra 328

12.3.6 Spectral Narrowing 329

12.4 Rate Measurements 329

12.4.1 Photokineties 330

12.4.2 Femtochemislry 33212.4.3 Laser Light in Chemistry 332

12.4.4 Transient Absorption Spectroscopy 333

12.4.5 Time-Resolved Resonance Raman Spectroscopy.... 333

12.4.6 Time-Resolved Emission Spectroscopy 334

12.5 Photochemistry: Mechanisms 334

12.5.1 K-Systems as Absorbers of Light Energy 335

12.5.2 Photochemical Reactions 335

12.5.3 Cis-lrans Isomerization 336

12.5.4 Polyenes 336 <

12.5.5 Carotenoids 338

12.5.6 Retinal and Vision 339

Chapter 13 Pholoinduccd Electron Transfer 343

13.1 Introduction 343

13.2 Charge Transfer Transition in Spectra 343

13.2.1 Charge Transfer States as Excited States 343

13.2.2 Mulliken Charge Transfer Complexes 34413.2.3 Emission from Charge-Separated States 345

13.2.4 Triplet Formation by Charge Transfer 34513.3 Polarization Energy 347

13.3.1 Reaction Field 34713.3.2 Rehm-Weller Equation 347

13.4 Inlermolecular and Intramolecular PIET 35013.4.1 Rate of PIET 350

Page 10: Chemical physics : electrons and excitations · CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven Larsson C Kress ujl*' J Taylor&FrancisCroup Boca Raton London NewYork CRC Press is

Contents

13.4.2 Intermolecular PIET in Solution and in Glass 352

13.4.3 Charge Recombination 353

13.4.4 Intramolecular PIET 353

13.4.5 Intramolecular Charge Transfer 353

13.4.6 Fullerene Systems 354

13.4.7 Other Intramolecular PIET Experiments 355

13.5 Molecular Photovoltaics 356

Chapter 14 Excitation Energy Transfer 359

14.1 Introduction 359

14.2 Excited States of Bichromophores 359

14.2.1 Chromophores 359

14.2.2 Wave Functions and Matrix Elements of

Bichromophores 363

14.2.3 Covalent Bonding in Ground and Excited States 365

14.3 Transition Moments 366

14.3.1 Transition Densities 366

14.3.2 Energy Order of Dimer Exciton States 367

14.3.3 Distant Chromophores Interact via Transition

Charges368

14.4 Fluorescence Resonance Energy Transfer 371

14.4.1 Interaction between Spin-Singlet Excitations

(Forster) 371

14.4.2 The Mysterious Factor of Two 373

14.4.3 Dexter Coupling 373

14.4.4 Rate Equations for EET 374

Chapter 15 Photosynthesis 375

15.1 Introduction 375

15.2 Molecules of Photosynthesis 375

15.2.1 ChlandBChl 375

15.2.2 Carotenoids 377

15.2.3 Phycocyanobilins 377

15.3 Antenna Systems 379

15.3.1 Purple Bacteria Antenna Systems 379

15.3.2 Green Plant Antenna Systems 381

15.4 Bacterial Reaction Centers 382

15.4.1 Structure 382

15.4.2 Charge Separation and ET 383

15.5 Green Plant Photosynthesis 385

15.5.1 PhotosystemI 385

15.5.2 Photosystem II 386

15.5.3 Binding of Carbon Dioxide: RuBisCo 387

Page 11: Chemical physics : electrons and excitations · CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven Larsson C Kress ujl*' J Taylor&FrancisCroup Boca Raton London NewYork CRC Press is

x|v Contents

Chapter 16 Metals and Semiconductors 389

16.1 Introduction 389

16.2 Free Electron Models and Conductivity 389

16.2.1 Resistivity and Conductivity 390

16.2.2 Drude Model 391

16.2.3 Atomic Orbital Overlap 393

16.2.4 Free Electron Model in One Dimension 395

16.2.5 Bethe-Sommerfeld Model 396

16.2.6 Conductivity in a Periodic Potential at T = 0 398

16.2.7 Conductivity at Elevated Temperature 400

16.3 Tight-Binding Model 400

16.3.1 One-Dimensional Model 401

16.3.2 Peierl's Distortion 402

16.3.3 Bloch Band Model 404

16.3.4 Effeclive Mass 405

16.3.5 Conductivity in Allolropic Forms of Carbon 406

16.4 Localization-Delocali/ation 407

16.4.1 Metal-Insulator Transition 407

16.4.2 Polarons 409

16.4.3 Mott Insulators 409

16.4.4 Simple Model for Metal-Insulator Transition 411

16.4.5 Holslcin Model 412

16.5 Semiconductors 413

16.5.1 Bonding Conditions in Diamond 413

16.5.2 Conductivity and Doping in Semiconductors 415

16.5.3 p-n Junctions 416

16.5.4 Solar Cells 417

16.6 Phonons 418

Chapter 17 Conductivity by Electron Pairs 419

17.1 Introduction 419

17.2 Superconductivity 419

17.2.1 Experiment and Theory 419

17.2.2 Meissner Effect 421

17.2.3 Metal-Ammonia Solution 421

17.2.4 Cooper Pairs and the BCS Model 423

17.2.5 High Tr Superconductivity 425

17.3 Coupling and Correlation in Electron Pair Transfer 426

17.3.1 Mott's Justification of Hubbard U 426

17.3.2 Application of the MV-3 Model 427

17.3.3 Intermetal Coupling 429

17.3.4 Stable Charged States 430

17.3.5 Spin-Coupled Slates 432

Page 12: Chemical physics : electrons and excitations · CHEMICAL PHYSICS ELECTRONS and EXCITATIONS Sven Larsson C Kress ujl*' J Taylor&FrancisCroup Boca Raton London NewYork CRC Press is

Contents xv

17.4 MV-3 Systems in the State Overlap Region 433

17.4.1 Calculation of Hubbard U: Born Effect 433

17.4.2 Fullerene Superconductivity 434

17.4.3 Cuprate Superconductivity 435

17.4.4 Bismuthates 436

17.5 Pair Conductivity in the Ground Stale 436

17.5.1 Cyclobutadiene with Equal Bond Lengths 436

17.5.2 Wave Functions at the van Hove Singularity

(x = 0) 438

17.5.3 Vibronic Wave Functions 442

17.5.4 Final Wave Function 443

Chapter 18 Conductivity in Organic Systems 445

18.1 Introduction ' 445

18.2 Organic Semiconductors 445

18.2.1 Electrons and Excitations in Organic Molecular

Crystals 445

18.2.2 Conductivity in Organic Systems 447

18.2.3 Charge Transfer Spectra 448

18.2.4 Organic Light-Emitting Diodes 451

18.3 Stacked, Conducting re-Systems 452

18.3.1 TTF-TCNQ 452

18.3.2 Bechgaard Salts: Organic Superconductors 453

18.4 Conducting Polymers 454

18.4.1 (SN)x 454

18.4.2 Polyacetylene 455

18.4.3 Polyaniline 456

18.4.4 Other Conducting Polymers 457

18.5 Electronic Structure of One-Dimensional Crystals 460

18.5.1 Su-Schrieffer-Heeger Model 460

18.5.2 Delocalization Model for PA 460

18.5.3 Behavior ofThree-Quarter or One-Quarter

Filled Bands 461

18.5.4 Mobility of Electrons 462

18.5.5 Conductivity in DNA? 464

18.5.6 Conductivity at Low Temperatures 467

Bibliography469

Appendices485

Index 499