Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond...

81
1 Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Transcript of Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond...

Page 3: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

3

VSEPR

Valence-shell electron-pair

repulsion theory.

All valence shell e- pairs

(or e- “domains”) repel each other.

(Coulomb’s law as applied to the

repulsion of valence electrons.)

Determines the geometry of

e- domains around central atom.

Page 4: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

4

VSEPR Theory: Rules

1.Single, double, triple bonds and

lone pairs are treated as one e-

domain (approximation)

2.Apply VSEPR to any one

resonance structure

3.Geometry– move e- domains as

far apart as possible in 3-D space.

Page 5: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

5

AB2 (with no lone pairs)

Beryllium chloride BeCl2

— Be—

Cl—Be—Cl

180o

linear geometry

e-

atoms

Page 6: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

6

AB3 (with no lone pairs)

Boron trifluoride BF3

B

F

FF

Trigonal planar

120o

Page 7: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

7

C

AB4 (with no lone pairs)

Methane CH4

tetrahedron

109.5o

Page 8: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

8

AB5 (with no lone pairs)

Phosphorus Pentachloride PCl5

trigonal bipyramid

equatorial

axial90o

120o

Page 9: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

9

SF

F

F

F

F

F

AB6 (with no lone pairs)

Sulfur hexafluoride SF6

octahedral

All angles

90o & 180o

Page 10: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

10

Quiz: Name That Shape!

AB2

AB3

AB4

AB5

AB6

Page 11: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

11

VSEPR: Lone Pairs

Molecules in which the

central atom has lone pair(s)

ABxEy

central atom

surrounding atoms

lone pairs on A

Page 12: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

12

ABxEy

Geometry is similar to ABx, but

nonbonding pairs are treated like

bonding pairs to determine

geometry of the e- domains.

Page 15: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

15

AB2E

Sulfur dioxide SO2

O S—O

OSO angle < 120o

Draw Lewis structure

S

O O3 e- domains

Page 16: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

16

Shape: e- Pairs vs. Atoms

S

O O

e- domains are trigonal planar

S

O O

molecule is bent linear

(always state molecular shape)

Page 17: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

17e- tetrahedral trigonal pyramidal

AB3E

Ammonia H—N—H

H

Page 18: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

18

AB2E2

Water H—O—H

e- tetrahedral molecule: bent linear

Page 19: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

19

Comparison

AB4 AB3E AB2E2

Methane ammonia water

109.5 107.3 104.5

CH

H

H

H

NH

H

HO

H

H

Page 20: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

20

AB4E

Sulfur tetrafluoride SF4

S

F F

F FPredict: trigonal bipyramid

for e- domains.

Draw Lewis structure

Page 21: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

21

AB4E: SF4

trigonal bipyramid: 2 choices

F

F

F

F

F

F

F

F

distorted tetrahedron or seesaw

Page 22: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

22

AB3E2

ClF3 F

F

F

molecule: T-shaped

A little weird.

Page 23: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

23

AB2E3Three possibilities for I3

-

Want nonbonding e-

domains farthest apart.

Page 24: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

24

AB2E3

I3-

molecule: linear

I

I

-

Lone pairs always go on

equatorial position(s)

Page 25: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

25

AB5E

BrF5

molecule: square pyramidal

FF

FF

F

Page 26: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

26

AB4E2: 2 Possibilities

Want

nonbonding

e- pairs

farthest

apart.

1

2

XeF4

Page 27: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

27

AB4E2

XeF4

molecule: square planar

F

FF

F

Page 28: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

28

You Try It

Predict geometry and

approximate bond angles for:

AlCl4-

XeF2

XeOF2

Text: Tables 10.1 and 10.2.

Page 29: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

29

Bond Polarity

FH

Shift of e- density toward F,

Thus HF is polar.

d+ d-

F is more

electronegative

than H.

Page 30: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

30

Overall Molecular Polarity

O C O

Even though CO2 has polar bonds,

it is nonpolar since the individual

bond polarities add to zero.“Dipoles” are a vector quantities.

Symmetrical = nonpolar

“pull test”

(Recall the “Regents” rule about

lone pairs on the central atom.)

Page 31: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

31

Molecular Polarity

Molecule GeometryDipole

Strength

HF Linear 1.92

HBr Linear 1.08

Water Bent 1.87

SO2 Bent 1.60

Page 32: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

32

Molecular Polarity

NH

H

H

Which has larger polarity?

NH3 NF3

NF

F

F

m =0.24 Dm = 1.46 D

Page 33: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

33

Dipole Moments

Predict whether the following

molecules are polar.

IBr

CH2Cl2AlCl3

Remember to distinguish between

bond polarity and molecular polarity.

Page 34: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

34

Both H2 & F2 have single bonds,

but…

Bond

length

Bond

energy

H2 74 pm 436 kJ

F2 142 pm 151 kJ

Shortfall of VSEPR

Page 35: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

35

Quantum Mechanics…

Valence Bond Theory

e- in molecule occupy

blended atomic orbitals

…to the rescue

Molecular Orbital Theory

molecule has

“molecular orbitals”

Page 37: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

37

Valence Bond Theory

2s 2pcarbon

atomic

orbitalsC

How can carbon form four equal

bonds with four hydrogen atoms

using its atomic ‘s’ and ‘p’ orbitals?

Consider tetrahedral CH4

Page 38: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

38

CH4: sp3 Hybridization

2s 2p

carbon

hybridized

orbitals

carbon

atomic

orbitalsC

Csp3 (all the same)

Page 39: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

39

Hybridization Analogy

s p p p

4 sp3 hybrid orbitals

Page 43: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

43

NH3 sp3 Bonding

nitrogen

hybridized

orbitals

nitrogen

atomic

orbitals

2s 2pN

sp3 (all the same)

N

Page 46: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

46

sp Hybridization

Be atomic

orbitals

2s 2pBe

Be hybrid

orbitals

sp 2p

Be

Page 47: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

47

sp Hybridization: BeCl2

BeCl Cl

one atomic p

orbital of Cl

two sp hybrid

orbitals of Be

Page 48: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

48

sp2 Hybridization

B atomic

orbitals

2s 2p

B

B hybrid

orbitals

sp2 2p

B

Page 49: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

49

sp2 Hybridization: BF3

B

F F

F

one p orbital

of F

three sp2

hybrid orbitals

of B

Page 50: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

50

Hybridization

Hybridization for 2nd Period

elements (C, N, O, F) explains the

“octet” rule, since there are 4 hybrid

orbitals formed from one s and three

p atomic orbitals.

s p sp3

Page 51: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

51

Hybridization: Review

1.Not applied to isolated atoms

2.First determine VSEPR geometry

3.Mix nonequivalent atomic orbitals

of central atom to form hybrid

orbitals

Page 52: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

52

Hybridization: Review

4.Requires energy, but energy is

more than returned by bond

formation

5.Covalent bonds formed by

overlap of hybrid-hybrid and/or

hybrid-unhybridized orbital

Page 53: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

53

Hybridization: Try It

Determine hybridization in:

AlBr3PF3

HgCl2

Page 54: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

54

Let’s Not Forget d Orbitals

For elements in the 3rd Period and

higher, hybridization can also

include ‘d’ orbitals.

d-orbital hybridization is still

being debated!

Page 55: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

55

SF

F

F

F

F

F

d Hybridization

SF6 VSEPR predicts

octahedral geometry

Page 56: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

56

Hybridization: SF6

S atomic orbitals

S hybridized sp3d2 orbitals

3s 3p 3d

sp3d2 3d

Page 58: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

58

Summary: Hybrid Orbitals

2 e- pairs (sp) linear

3 e- pairs (sp2)

trigonal planar

4 e- pairs (sp3)

tetrahedral

e- domains (bonding & nonbonding pairs)

Page 59: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

59

Summary: Hybrid Orbitals

5 e- pairs (sp3d)

trigonal bipyramid

6 e- pairs (sp3d2)

octahedral

Page 60: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

60

Multiple Bonds

In VSEPR, no distinction was made

among single, double, triple bond or lone

pair. All were counted as an “e- domain”.

Each carbon is trigonal planar

C2H4 C CH

H

H

H

Page 61: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

61

Double Bond: C2H4

2s 2pC atomic

orbitals

C hybrid

orbitals

sp2 pz

+

unhybridized

p orbital

Page 62: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

62

Double Bond: C2H4

C hybrid

orbitals

sp2 pz

+

trigonal planar dumb bell

Page 63: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

63

Double Bonds: C2H4

C C

H

HH

H

Page 65: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

65

Pi & Sigma Bonds

Pi (p) bond: covalent bond formed

by sideways e- overlap above and

below the plane connecting atoms

(weaker than s)

Sigma (s) bond: covalent bond

formed by e- overlap along the

axis connecting atoms

Page 66: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

66

Double Bond: C2H4

The double bond is one sigma and one

pi bond between the carbon atoms

C CH

H

H

H

Page 67: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

67

Triple Bond: H-C=C-H

2s 2pC atomic

orbitals

C hybrid

orbitals

sp py pz

+unhybridized

p orbitals

Page 69: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

69

Hybridizing Shortcuts

1.Single bonds: sigma2.Double bonds: one sigma, one pi3.Triple bonds: one sigma, two pi4.Hybridize: add the number of

sigma bonds plus lone pairs

s p d

Page 70: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

70

You Try It

Describe the bonding and

hybridization for each atom in:

•formaldehyde, CH2O

•hydrogen cyanide, HCN

(assign formal charges)

Page 71: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

71

Delocalized Molecular Orbitals

An explanation of resonance.

O OOO O O

ozone

Ozone is a blend of the two

resonance structures.

Page 72: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

Delocalized Molecular Orbitals

72

The p component of the double bond

is delocalized over the molecule.

sp2

sp2

sp2

Page 73: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

73

Delocalized “MOs”

e- in s bonds– localized

e- in p bonds-- delocalized

H

H

H

H

H

H

H

H

H

H

H

H

benzene

Page 74: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

74

Benzene

sp2

sp2

C

C

C C

C

C

Sigma bonds

(localized)

Page 75: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

75

Benzene

p bonds

(delocalized)

sp2 pz

+

Page 76: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

76

Benzene

Bond order 1.5

H

H

H

H

H H

“Conjugated” double bonds are

more stable (less reactive)

Page 77: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

77

Carbonate Ion

+ resonance

structuresO—CO

O

2-

C: sp2 fors bonds (localized)

plus a 2pz for p bond (delocalized)

O: each has a 2pz orbital (delocalized)

Page 78: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

78

Carbonate Ion

o

o

oC

Additional stability due to

delocalization of the pi bond.o

o

oC

Page 79: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

79

You Try It

Would you predict the NO3- anion

to have additional stability due to

delocalization of the p electrons?

Page 80: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

80

Polyatomic Ions

Many common polyatomic ions

have delocalized pi bonds,

partially accounting for their

additional stability in chemical

reactions.

CO3-2, NO3

- , ClO3- etc.

Page 81: Chemical Bonding II Bonding II-student.pdf · Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO

81

Ionic & Covalent

CaCO3

C

O

OOCa

2-

2+

Trigonal planar, sp2, 120o

Ionic compounds containing polyatomic

ions have both ionic and covalent bonds!