Chemical and Physical Properties of Sub-Micron Particle...

25
Chemical and Physical Properties of Sub-Micron Particle Emission from a Diesel Engine Michael Alexander, Jian Wang, Yong Cai, Alla Zelenyuk, John Storey, Jay Slowik, Peter DeCarlo, Jose Jimenez, and Douglas Worsnop PNNL, NTRC, Boston College, University of Colorado, Aerodyne Research

Transcript of Chemical and Physical Properties of Sub-Micron Particle...

  • Chemical and Physical Properties of Sub-Micron Particle Emission from a Diesel Engine

    Michael Alexander, Jian Wang, Yong Cai, Alla Zelenyuk, John Storey, Jay

    Slowik, Peter DeCarlo, Jose Jimenez, and Douglas Worsnop

    PNNL, NTRC, Boston College, University of Colorado, Aerodyne Research

  • Complimentary Measurement Techniques

    Aerodyne AMS* SPLAT-MS**

    • ensemble average of particles –size and composition

    • real-time, quantitative measurement of certain chemical classes

    • large dynamic range (>103 observed at ORNL)• sufficient time response 4 sec to study transients

    • Single particle analysis to 50 nm • Classification of particle types • Detection of refractory compounds

    **single particle TOF mass spectrometer*aerosol mass spectrometer

  • Mass Concentrations from AMS Over a Range of Engine Conditions

    12x103

    10

    8

    6

    4

    2

    0

    Mas

    s C

    once

    ntra

    tion

    (µg

    m-3

    )

    10:00 AM4/16/2004

    11:00 AM 12:00 PM 1:00 PM

    Date and Time

    500

    400

    300

    200

    100

    0

    Mass C

    oncentration of Sulfates

    Water Ammonium Nitrate Sulphate Chloride Organics PAH

    Engine warm-up

    1400 rpm470 ft/lbs torrque

    800 rpm4 ft/lbs

    Reduce Rail Pressure1000 rpm327 ft/lbs

    10

    100

    1000

    Vac

    uum

    Aer

    odyn

    amic

    Dia

    met

    e

    10:00 AM4/16/2004

    11:00 AM 12:00 PM 1:00 PM

    Date and Time

    12008004000

    dM/dlogD

    va (µg m-3)

    Organics

  • SPLATSoot Particles are Most Prevalent

    The most prevalent particles are composed of almost pure soot as evident by the carbon progression

  • SPLATPAHs Volatilize from Particles using Laser Heating

    PAH Dominated30 NO

    152 178-C2H2178 phenanthrene

    192 C1 Alkyl phenanthrene

    202 Pyrene

    216 Alkyl pyrene

    234 C4 Alkyl phenanthrene

    252 Benzo pyrene

    PAH

    HCsoot

    PAH dominated particles are most common under high RPM and low load conditions

    See Poster 6PB7 – Yong Cai for more details on SPLAT

  • 1 0

    8

    6

    4

    2

    0

    Nitr

    ate

    Equi

    vale

    nt M

    ass

    Con

    cent

    ratio

    n (µ

    g m

    -3)

    1 5 01 4 01 3 01 2 01 1 01 0 09 08 07 06 05 04 03 02 01 0m / z

    S p e c i e s

    O t h e r s 4 . 5 2 ± 0 . 2A i r 1 7 1 ± 0 . 2W a t e r -0 . 2 4 1 ± 0 . 1A m m o n iu m 0 . 4 ± 0 . 0 2N i t r a t e 0 . 1 5 3 ± 0 . 0 0 7S u l p h a t e 0 . 9 6 7 ± 0 . 0 4C h l o r i d e 0 . 0 9 7 6 ± 0 . 0 1P A H 0 . 0 6 6 4 ± 0 . 0 0 8O r g a n i c s 6 7 . 9 ± 0 . 1

    Diesel Vehicle Exhaust

    Mass Spectrum of AMS organic from heavy duty off road exhaust

    NYC, Canagaratna et al, in press

    Heavy duty off road MS is virtually identical to that observed in ambient data.

    This mass spectrum is very similar to that of lubricating oil (see next slide)

  • 0.01

    0.1

    1

    10

    100N

    itrat

    e Eq

    uiva

    lent

    Mas

    s C

    once

    ntra

    tion

    (µg

    m-3

    )

    3202802402001601208040m/z

    Species

    Others 169 ± 0.4Water -1.22 ± 0.1Ammonium 0.456 ± 0.02Nitrate 0.175 ± 0.01Sulphate 1.03 ± 0.05Organics 78.1 ± 0.1

    ? Oil 78.7 ± 0.2

  • SPLAT - At Rated Speed, Oil Components and Engine Wear and Tear Appear Products Appear in Particles

    Ca Al and Zn indicate lube oil consumption and engine wear and tear

  • 0.0001

    0 .001

    0.01

    0.1

    1

    10

    100

    Equ

    ival

    ent M

    ass

    Con

    c

    29 528126 725323 922 52 1119 71 8316 91 5514 11271 13998571574329150M ass / am u

    0.0 01

    0.01

    0.1

    1

    10

    Sig

    nal

    Inte

    nsity

    20151050Num ber of Carbons

    0.50.40.30.20.10.0

    Car

    bons

    1-4

    0.4

    0.3

    0.2

    0.1

    0.0

    Car

    bons

    5-6

    0.30

    0.20

    0.10

    0.00

    Car

    bons

    7-1

    5

    -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

    Delta

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    rela

    tive

    Sig

    nal

    15 16 17 30 46 48 64 80 81 9 8

    AM U

    45.9%

    26.8%

    23.4%

    0.1 : 1 : 1.42 5.16 : 1 1 : 0.96 : 0.8 : 2.12 : 0.35

    Particle Composition (µg/m3)-0.8% Water -1.21960.3% NH4 0.456460.1% NO3 0.174620.7% SO4 1.027449.7% Org 78.07250% Oil 78.651 (NH4)m eas/(NH4)expt =NaN

    ∆ = 2 29 / 43 ∆ = 0 13 / 55

    star t/max

    Runs Averaged: 1081 to 1084 (4/9/2004 10:02 to 10:05)

  • 200

    150

    100

    50

    0dM

    /dlo

    gDva

    (µg

    m-3

    )

    102 3 4 5 6 7 8 9

    1002 3 4 5 6 7 8 9

    10002

    Diameter (nm)

    2500

    2000

    1500

    1000

    500

    0

    dVol/dlogDm

    ob (nm3m

    -3)15

    10

    5

    0

    DMA Volume

    1400 nm3/cm3 (?)

    AMS mass loading

    Organic 70 ug/m3

    Sulfate 2Nitrate 0.2

    x10

    x10

    PRELIMINARY (4/11/04, DRW)

    Comparison of AMS Massand SMPS Volume

    Distributions

    Dva < Dmobfractal particles

    Effective Density: ρeff ~ Dva/Dmob ~ 0.5 g/cc

    This comparison of AMS (mass) and SMPS (volume) distributions isvery similar to what we have observed in ambient urban data, particularly during morning rush hour when primary combustion particles tend to dominate total sub-micron aerosol loading.

  • FIRST ATTEMPT at MASS BALANCE:

    AMS (organic) vs SMPS (total)

    DMA volume (1400 nm3/cm3) x ρeff (0.5g/cc) ~ 700 ug/m3 (total)-- AMS Mass (80 ug/m3)) x 1.35 /.9 ~ 120ug/m3 (organic matter)

    ____________

    Black Carbon ~ 580 ug/m3

    “BC/OC” ratio ~ 5

    cf. ambient (literature) measurements,

    typical BC/OC ~ 1-3

    Conclusion:

    On a mass weighted basis, ~3x less oil from off road engine is ~3x “cleaner” for lube oil emissions compared to typical diesel engines.

  • ESTIMATE of OC Emission Index for off road engine

    ~120 ug/m3 / ~7000 ppm ~ 0.017 ug/m3/ppm ~ 0.030 g NRPM / fg Fuel

    This engine

  • OM Emission Indexes for Diesel TrucksComparison of Mexico City and New York City

    0.40.30.20.10.0

    Frac

    tion

    9876543210Emission Ratio (g NRPM/ kg Fuel)

    0.40.30.20.10.0

    Sample Size NYC 19 MC03 24

    MC03

    NYC

    NYC_AMS_Figs4to6_wMexDat.pxp

    NYC mean = 0.5

    MC03 mean = 1.6

    JohnDeere

    Manjula R. Canagaratna, et al. “Chase Studies of Particulate Emissions from in-use New York City Vehicles”, Aerosol Science & Technology, submitted March 2003

  • Particle Density: DMA in front of AMS

    2.0

    1.5

    1.0

    0.5

    0.0

    dM/d

    logD

    va (µ

    g m

    -3)

    102 3 4 5 6 7 8 9

    1002 3 4 5 6 7 8 9

    1000Vacuum Aerodynamic Diameter (nm)

    200

    150

    100

    50

    0

    Polydisperse r1080_1085 (DMA bypass)

    60 nm r1140_1150 100 1115-1134 200 1096_1115

    mass numberug/m3 #/cc

    66 >100000 0.05 6300 0.31 5500 0.27 900

  • 4

    5

    6

    7

    8

    9

    1 0 0

    2

    Vac

    uum

    Aer

    odyn

    amic

    Dia

    met

    er (D

    va, n

    m)

    4 5 6 7 8 91 0 0

    2 3 4

    M o b ili t y D ia m e te r (D m o b , nm )

    C o a te d s o o t fr a c ta l d im e n s io n ~ 3

    F la m e s o o t f d im e n s i o n ~ 1 .8

    "J o h n D e e r e " s o o t f d im e n s io n ~ 2 .5 ? ?

    1 0 -1 2

    1 0-1 1

    1 0-1 0

    10-9

    10-8

    Mas

    s pe

    r Par

    ticle

    (ug/

    parti

    cle)

    4 5 6 7 8 910 0

    2 3 4

    M o b i lity D ia m e te r (D m o b , n m )

    T o ta l M a s s p e r P artic le - 2 .5 D F ra c t a l P a tic le s

    m a s s _ p e r_ p = C (D m o b )2 .5

    p e r m o d e l o f J a y S lo w ik a n d P e te r D e ca rlo D av id o v its ( B C ) a n d J im e n e z (C U ) O C M a ss p e r P a rtic le

    fo r O C /B C ra tio ~ 6

    M e a su re d O C M a s s p er P a rtic le

    = A M S M a s s / C P C N u m b er C o n c

    Slowik, et. Al (in press)

  • Particle Density: DMA in front of AMS

    Same Engine Different Day

    25

    20

    15

    10

    5

    0

    dM/d

    logD

    va (µ

    g m

    -3)

    102 3 4 5 6 7 8 9

    1002 3 4 5 6 7 8 9

    10002

    Vacuum Aerodynamic Diameter (nm)

    7x106

    6

    5

    4

    3

    2

    1

    SM

    PS

    Cou

    nts

    800

    600

    400

    200

    0

    500 nm 300 nm 400nm 200 nm 100 nm SMPS (counts) AMS Polydisperse

    Related Talk by Jian Wang 12A3 on Friday

  • -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7

    log

    (den

    sity

    )

    log (mobility diameter)

    Diesel soot density and fractal dimension from SPLAT

    Density = Daero/Dm

    Density = CDmDf-3

    Df = 1.87

    Df = 1.96

    Off-road John Deer 4045H

    1.7L Mercedes A-Class

    These values are consistent with fractal dimension predicted for diffusion-limited cluster-cluster agglomeration

    The simultaneous measurements of particle size density and composition makes it possible to derive the fractal dimension of the freshly emitted soot

  • AMS Beam Width Probe Data

    1.0

    0.9

    0.8

    0.7

    86420Wire Position

    6.0x106

    5.5

    5.0

    4.5

    4.0

    3.5

    Airb

    eam

    10:45 AM 10:50 AM4/16/2004

    10:55 AM 11:00 AM 11:05 AM

    10

    8

    6

    4

    2

    0

    Organic

    AvgWirePositions(161, 3, "org",7) 1400 RPM 352 ft/lbs torque -high load

  • AMS Organics Signal form On-Road Engine Running in Regen

    2500

    2000

    1500

    1000

    500

    0

    4:15 PM4/28/2004

    4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM

    dat

    Regen - throttle bodyand injector - 4sec every 30 sec

    Regen - throttle bodyand injector - 8 sec every 60 sec

    Regen - injector only4sec every 30 sec

    Regen - throttle bodyand injector - 8sec every 60 sec

  • AMS Organic Signal and Laser Induced Incandescence

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    LLI S

    igna

    l Arb

    . Uni

    ts

    4:15 PM4/28/2004

    4:30 PM 4:45 PM

    Time

    3000

    2500

    2000

    1500

    1000

    500

    AMS organic signal ug/M

    3

    Regen ModeThrottle Body and Injector

    4 sec every 30 sec

    Regen ModeThrottle Body and Injector

    8 sec every 60 sec

    LII Org

  • AMS PAH and Nitrate follow Organics(Negligible Sulfate and Ammonia)

    100

    80

    60

    40

    20

    0

    4:30 PM4/28/2004

    5:00 PM 5:30 PM 6:00 PM

    dat

    NO3 PAH

  • Aerodynamic Size Distribution from AMSOrganics Dominant Species, Small Sulfate, Nitrate

    1600

    1400

    1200

    1000

    800

    600

    400

    200

    0

    dM/d

    logD

    va (µ

    g m

    -3)

    102 3 4 5 6 7 8 9

    1002 3 4 5 6 7 8 9

    10002

    Vacuum Aerodynamic Diameter (nm)

    Ammonium Nitrate Sulphate Chloride Organics PAH

  • AMS Size Distribution and Intensity of Organics vs. Time

  • Conclusions

    • AMS and SPLAT provide complimentary view of Diesel exhaust

    • New generations of diesel engines much cleaner

    • AMS signal from engine due to fractal carbon particles with adsorbed lube oil

    • AMS aerodynamic organic mass vs size distribution is bimodal – larger mode dependent on engine conditions

    • Regeneration operation of engine has large effect on organic species

  • Acknowledgements

    • Department of Energy Energy Efficiency Program

    •ORNL National Transportation Research Center and Staff

    • Aerodyne Research Staff

    • Jose Jimenez and group at U. of Colorado

    • Davidovitz group at Boston College