Chemfiles Vol. 9, No. 1 – MIDA-protected Boronate Esters

12
MIDA-protected Boronate Esters Vol. 9, No. 1 trans-2-bromovinylboronic acid MIDA ester, a highly versatile and useful surrogate boronic acid building block Features include: MIDA as a Protecting Group and Iterative Cross-Coupling Synthesis of Polyene Natural Products Using Polyene MIDA Boronates Formation of Complex Boronic Acids from MIDA Boronates

description

The Suzuki-Miyaura cross-coupling reaction is one of the most important and highly utilized reactions in organic chemistry, with applications in polymer science as well as in the fine chemicals and pharmaceutical industries. – MIDA as a Protecting Group and Iterative Cross-Coupling – Synthesis of Polyene Natural Products Using Polyene MIDA Boronates – Formation of Complex Boronic Acids from MIDA Boronates

Transcript of Chemfiles Vol. 9, No. 1 – MIDA-protected Boronate Esters

Page 1: Chemfiles Vol. 9, No. 1 – MIDA-protected Boronate Esters

MIDA-protected Boronate Esters

Vol. 9, No. 1

trans-2-bromovinylboronic acid MIDA ester, a highly versatile and useful surrogate boronic acid building block

Features include:

MIDA as a Protecting Group and Iterative Cross-Coupling

Synthesis of Polyene Natural Products Using Polyene MIDA Boronates

Formation of Complex Boronic Acids from MIDA Boronates

Page 2: Chemfiles Vol. 9, No. 1 – MIDA-protected Boronate Esters

2

Vol. 9 No. 1

Aldrich Chemical Co., Inc. Sigma-Aldrich Corporation6000 N. Teutonia Ave.Milwaukee, WI 53209, USA

To Place Orders

Telephone 800-325-3010 (USA)FAX 800-325-5052 (USA)

Customer & Technical Services

Customer Inquiries 800-325-3010Technical Service 800-231-8327SAFC® 800-244-1173Custom Synthesis 800-244-1173Flavors & Fragrances 800-227-4563International 414-438-385024-Hour Emergency 414-438-3850Web Site sigma-aldrich.comEmail [email protected]

Subscriptions

To request your FREE subscription to ChemFiles, please contact us by:

Phone: 800-325-3010 (USA)

Mail: Attn: Marketing Communications Aldrich Chemical Co., Inc. Sigma-Aldrich Corporation P.O. Box 355 Milwaukee, WI 53201-9358

Email: [email protected]

International customers, please contact your local Sigma-Aldrich office. For worldwide contact information, please see back cover.

ChemFiles are also available in PDF format on the Internet at sigma-aldrich.com/chemfiles.

Aldrich brand products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

All prices are subject to change without notice.

ChemFiles (ISSN 1933–9658) is a publication of Aldrich Chemical Co., Inc. Aldrich is a member of the Sigma-Aldrich Group. © 2009 Sigma-Aldrich Co.

About Our Cover

Intr

od

uct

ion

Josephine NakhlaProduct Manager

IntroductionThe Suzuki-Miyaura cross-coupling reaction is one of the most important and highly utilized reactions in organic chemistry, with applications in polymer science as well as in the fine chemicals and pharmaceutical industries. However, some classes of boronic acids are exceptionally unstable and susceptible to decomposition which renders them inefficient in coupling reactions or makes long-term storage difficult. Additionally, performing iterative Suzuki Miyaura cross-couplings under mild conditions for the synthesis of small molecules is limited due to the reactivity of boronic acids and therefore a method to allow for iterative couplings under mild conditions has not been previously developed. The mechanism of transmetalation in Suzuki reactions may involve formation of an “ate” complex via interactions between the base and the vacant p orbital on the sp2 hybridized boron atom. Burke and coworkers predicted that a trivalent heteroatomic ligand, such as N-methyliminodiacetic acid (MIDA) (Figure 1) on the boron atom would rehybridize this center to sp3 and thereby attenuate transmetalation under cross-coupling conditions.

Release of the reactive, sp2-hybridized boron-species under orthogonal mild conditions would enable this reactivity to be turned back on. In practice, it was discovered that the trivalent MIDA is very effective in this role.1 sp3-Hybridized MIDA boronates are unreactive towards transmetalation (see Figure 2 for comparison of sp2 and sp3-hybridized boron species) and the ligand can be cleaved under mild conditions to liberate the corresponding boronic acid. This enables the execution of sequential Suzuki-Miyaura reactions under mild conditions.

The image on the cover represents the three-dimensional structure of trans-2-bromovinylboronic acid MIDA ester. The bromine atom is represented in purple. This B-protected haloboronic acid is representative of many powerful new reagents for iterative cross-coupling.

NCH3

OHHO

O O

MIDA (N-methyliminodiacetic acid)M51008

Figure 1

BOH

OHR

RB

O

N

OOO

sp2-reactive sp3-unreactive

vs.

H3C

Figure 2The MIDA-protected boronate esters are easily handled, indefinitely bench-top stable under air, compatible with chromatography, and unreactive

under standard anhydrous cross-coupling conditions, even at temperatures up to 80 °C. However, deprotection is easily achieved at room temperature under mild aqueous basic conditions using either 1M NaOH, or even NaHCO3.

Sigma-Aldrich® is committed to providing the most extensive portfolio of high-quality boronic acids, boronate and MIDA esters, and trifluoroborate salts for use in Suzuki coupling, and we continually expand our product listing. This ChemFiles is dedicated to our new product portfolio for MIDA esters. If you are unable to find a coupling reagent for your research, “Please Bother Us” at [email protected], or contact your local Sigma-Aldrich office (see back cover).

Table of ContentsIntroduction ............................................................................................................................ 2

MIDA as a Protecting Group and Iterative Cross-Coupling................................................. 3

Synthesis of Polyene Natural Products Using Polyene MIDA Boronates ............................ 4

Formation of Complex Boronic Acids from MIDA Boronates ............................................. 5

Preparation of trans-(2-bromovinyl) MIDA Boronate and Vinyl MIDA Boronate from the Corresponding Silanes ...................................................... 6

Synthetic Utility of Vinyl MIDA Boronate ............................................................................ 6

MIDA Ligand .......................................................................................................................... 7

Alkyl MIDA Boronates ........................................................................................................... 7

Alkenyl MIDA Boronates ....................................................................................................... 8

Alkynyl MIDA Boronates ....................................................................................................... 8

Aryl MIDA Boronates ............................................................................................................. 8

Heteroaryl MIDA Boronates ................................................................................................ 10

Reference:

(1) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716.

Page 3: Chemfiles Vol. 9, No. 1 – MIDA-protected Boronate Esters

3Ready to scale up? For competitive quotes on larger quantities or custom synthesis, contact your local Sigma-Aldrich office, or visit safcglobal.com.

MID

A a

s a

Pro

tectin

g G

rou

p

MIDA as a Protecting Group and Iterative Cross-CouplingTo demonstrate the efficacy of MIDA as a protecting group, Burke’s group reacted a 1:1 mixture of the MIDA boronate 698229 and 4-butylphenylboronic acid with 4-bromobenzaldehyde under Buchwald’s anhydrous Suzuki-Miyaura conditions (Scheme 1). The resultant product mixture displayed a 24:1 preference for reaction with the unprotected boronic acid. A control experiment using p-tolyl boronic acid in lieu of 698229 provided a 1:1 mixture of the two products. Additionally, when a control reaction employing the N-methyldiethanolamine adduct instead of the N-methyliminodiacetic acid was performed, no selectivity was observed, presumably due to the increased flexibility of the N-methyldiethanolamine derivative.

B(OH)2H3C

BO

N

OOO

O

Br

+

Pd(OAc)2

Cyclohexyl JohnPhos

K3PO4, THF65 °C, 15 h, 80%

BO

N

OOO

O

1

1H3C

1) aq. NaOH, THF

23 °C, 10 min, 93%

2) 2, Pd2(dba)3

Cyclohexyl JohnPhosK2CO3, THF80 °C, 28 h, 73%

BO

N

OOO

2

Br

OMOMH3CO

O

H3CB O

NO

OO

H3CO

OMOM

1) aq. NaOH, THF

25 °C, 10 min, 99%

2) 3, Pd2(dba)3

Cyclohexyl JohnPhosK2CO3, THF65 °C, 20 h, 81%

BrCH3

O

O

MOMO3

O

H3C

H3CO

ORCH3

OO

RO

Prep HPLC, 41%

R = MOM

R = H, ratanhine(i)

(i) HCl, MeOH, 65 °C, 1 h

(unoptimized)

H3C

H3C

H3C

H3C

Scheme 3

n-Bu

B(OH)2

BO

N

OOO

H3C

+

1 equiv

1 equiv698229

Br

CHO

Pd(OAc)2

JohnPhosK3PO4, THF65 °C, 6 h

n-Bu

CHO

H3C

CHO+ 24:1H3C

Scheme 1

Various halo-containing MIDA-derivatives were prepared, cross-coupled with boronic acids, and sequentially deprotected under basic conditions to release the unprotected boronic acid, thereby demonstrating the utility towards iterative cross-coupling (Scheme 2).

BO

N

OO

O

H3Cp-Tol-B(OH)2

SBr

BO

N

OO

O

H3C

Sp-Tol 1 M aq. NaOH

THF, rt, 10 minPd(OAc)2

PCy2

K3PO4, THF, 65 °C

B(OH)2

Sp-Tol

81% 88%701092

Scheme 2

The potential for iterative cross-couplings using the Burke methodology was further demonstrated in their total synthesis of ratanhine (Scheme 3). trans-1-Propen-1-ylboronic acid was coupled with the benzofuranyl MIDA boronate 1, which was deprotected and cross-coupled with the bulky aryl bromide MIDA boronate 2 at elevated temperature. The subsequent intermediate was deprotected and coupled with vinyl bromide 3 to yield the diMOM ether. Cleavage of the two MOM groups resulted in ratanhine, in seven steps in the longest linear sequence. Enabling features of this type of synthesis include the use of only a single, mild reaction to assemble a collection of easily synthesized, readily purified, and highly robust building blocks. Moreover, the short and modular nature of this pathway enables the easy preparation of analogs simply by substituting modified building blocks into the same iterative cross-coupling sequence.1

Reference:

(1) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716.

Page 4: Chemfiles Vol. 9, No. 1 – MIDA-protected Boronate Esters

TO ORDER: Contact your local Sigma-Aldrich office (see back cover), or visit sigma-aldrich.com/chemicalsynthesis.4 sigma-aldrich.com

Syn

thesi

s o

f Po

lyen

e

Natu

ral

Pro

du

cts

Synthesis of Polyene Natural Products Using Polyene MIDA BoronatesPalladium-catalyzed cross-coupling reactions are ideal methods for the synthesis of polyenes because of the stereospecificity of the reactions and the mildness of the reaction conditions. However, polyenylboronic acids are very unstable and therefore difficult to employ in the synthesis of polyenes via Suzuki reactions. In another exemplary demonstration of the MIDA boronates’ stability and efficiency in iterative cross-coupling, Burke and coworkers utilized a common alkenyl MIDA boronate (703478) to create a series of polyenyl building blocks. The MIDA boronate terminus is inert to Heck, Stille, and Suzuki couplings, yielding butadienyl MIDA boronates (Scheme 4).

PhB(OH)2

Pd(OAc)2, SPhos

PhMe, KF, 23 °C92%

BO

N

OOO

Br

BO

N

OOO

Ph

Pd2dba3

P(fur)3

DMF, 45 °C91%

SnBu3

BO

N

OOO

H3CO

OPd(OAc)2, PPh3

90%Et3N, DMF, 45 °C

BO

N

OOOH3CO

O

703478

H3C

H3C

H3C

H3C

Scheme 4

The alkenyl MIDA boronate 703478 was also applied to the synthesis of the carotenoid all-trans-retinal. Demonstrating the feasibility of polyenyl MIDA boronates in synthesis, boron deprotection of the intermediate 4 proceeded smoothly to generate the boronic acid, which was subsequently coupled with the β-bromo enal to provide all-trans-retinal (Scheme 5).

Pd(OAc)2, SPhos

H3C CH3CH3

B(OH)2

CH3

BO

N

OOO

Br

K3PO4, PhMe, 23 °C78%

BO

N

OOO

H3C CH3CH3

CH3

1. aq NaOH, THF, 23 °C

Br O

CH32.

Pd(OAc)2, SPhos

K3PO4, THF, 23 °C

66%

H3C CH3CH3

CH3

CH3

O

H

H

all-trans-retinal

4

703478

H3C

H3C

Scheme 5

Miyaura borylation (Scheme 6, to provide 6) and Sonogashira and Negishi couplings (to provide 5 and 7, respectively) that yield bis-metalated lynchpin-type reagents were also demonstrated. Synthetic reagent 6 was further elaborated in the polyene natural product synthesis of β-parinaric acid (Scheme 7) and reagent 7 was employed in the preparation of the polyene chain of amphotericin B (Scheme 8).2

BO

N

OOO

TMS

TMS

73%

Pd(PPh3)4, CuI

piperidine, THF, 23 °C

PdCl2(CH3CN)2

SPhos, KOAcPhMe, 45 °C

71%

BO

N

OOO

BO

OMe

Me

Me

Me

OB

OMeMe

Me

Me

2

BO

N

OOO

Bu3Sn

Bu3SnZnCl

THF, 0 °C66%

Pd(OAc)2, SPhos

BO

N

OOO

Br

703478

5

6

7

H3C

H3C

H3C

H3C

Scheme 6

BO

N

OOO

BO

OMe

Me

Me

Me

IClPdCl2dppf

K3PO4, DMSO23 °C, 54%

BO

N

OOO

Cl

B(OH)2

Pd(OAc)2, XPhos

K3PO4, THF, 45 °C

CH3

BO

N

OOO

CH3

1. aq NaOH, THF, 23 °C

I CO2H2.

Pd(OAc)2, XPhos

aq NaOH, THF, 23 °C

86%

7

CH3

CO2H

7

β-parinaric acid

6

H3C

H3C

H3C

Scheme 7

BO

N

OOO

Bu3Sn

7

1) aq. NaOH

2) 8, Pd(OAc)2, XPhos

Cs2CO3, PhMe, 23 °C

(HO)2B

CH3

Pd(OAc)2, SPhosKF, PhMe, 23 °C

BO

N

OO

OCH3

OAcH3C

MeTESO

H3C Cl

Pd(OAc)2, XPhos, 1N NaOH

THF, 45 °C, 48%

CH3

OAcH3C

MeTESO

H3C

5

Polyene chain amphotericin B

BO

N

OO

OCH3

THF, 23 °C

96%

42%

3

BO

N

OOO

Cl

ClI

Pd2dba3, Ph3As

DMF, 23 °C72% 8

BO

N

OOO

Br

703478

H3C H3C

H3C

CH3

CH3

Scheme 8

Reference:

(2) Lee, S. J.; Gray, K. C.; Paek, J. S.; Burke, M.D. J. Am. Chem. Soc. 2008, 130, 466.

Page 5: Chemfiles Vol. 9, No. 1 – MIDA-protected Boronate Esters

5Ready to scale up? For competitive quotes on larger quantities or custom synthesis, contact your local Sigma-Aldrich office, or visit safcglobal.com.

Form

atio

n o

f Co

mp

lex

Bo

ron

ic Acid

s

Formation of Complex Boronic Acids from MIDA BoronatesAnother extremely useful feature of the MIDA boronates is their compatibility with a wide range of common synthetic reagents, allowing for the elaboration of functionalized MIDA boronates to create structurally complex boronic acid surrogates. This was recently demonstrated by Burke and coworkers with the transformation of the 4-(hydroxymethyl)phenyl MIDA boronate 698105 by a variety of common oxidants and other reagents to create an array of synthetically useful MIDA boronates (Scheme 9). Even harsh reagents such as triflic acid, and Jones oxidant were well tolerated, and the MIDA boronate was left intact. In several cases, transformations can be easily reversed to yield the original 4-(hydroxymethyl)phenyl MIDA boronate.

The 4-formylphenyl MIDA boronate 697494 was further elaborated in various C-C bond-forming reactions. The results show that MIDA

BO

N

OOO

OH

BO

N

OOO

PMBO

PMBOC(NH)CCl3TfOH, THF, 0→23 °C

DDQ, DCM

TBSCl, Imid, THFB

O

N

OO

O

TBSO HF•py, THF

BO

N

OOO

I

PPh3, I2, Imid, THF

BO

N

OOO

O

HO

CrO3, H2SO4, Acetone

BO

N

OOO

O

H

(COCl)2, DMSO

CH2Cl2, Et3N, 88%

NaBH4, THF:EtOH 697494

698105

5 h, 64%

23 °C, 1.5 h, 79%

23 °C, 9 h, 98%

23 °C, 1 h, 88%

23 °C, 1 h, 88%

23 °C, 30 min, 90%

0 °C, 2 h, 65%

H3C

H3C

H3CH3C

H3C

H3C

Scheme 9

BO

N

OOO

O

H

697494

N O

OO

Bn

Et n-Bu2BOTf,B

O

N

OOO

OHO

O N

O

BnCH3

O

EtOP(OEt)2

O

NaH, DMF

BO

N

OOO

EtO

O

BO

N

OOO

I

CrCl2, CHI3

BO

N

OOOmorpholine, NaBH(OAc)3

NO

Et3N, DCM-78→ 0 °C, 2 h

23 °C, 30 min, 71%

THF:dioxane23 °C, 1 h, 88%

DCE, 23 °C, 8 h, 76%

H2O2, MeOHpH 6.0 buffer, 79%

H3C

H3C

H3C

H3C

H3C

Scheme 10

BO

N

OOOH

O

CH3CH3

OPMBO

1) Sn(OTf)2, Et3N

DCM, -78 °C12 h, 70%

2) Me4N(OAc)3BH, AcOH

MeCN, -30 °C, 6 h, 71%

BO

N

OOO

OH

CH3

OH

CH3

PMBO

1) Me3OBF4, proton spongeDCM, 23 °C, 2.5 h, 82%

2) CAN, MeCN:H2O23 °C, 15 min, 77%

BO

N

OOO

OMe

CH3

OMe

CH3

OH

1) DMP, DCM23 °C, 15 min, 97%

2) CHI3, CrCl2THF:dioxane

23 °C, 1 h, 74%

BO

N

OOO

OMe

CH3

OMe

CH3

I Pd(PPh3)4, CsF, CuI

DMF, 23 °C, 5 h, 62%

H2N SnBu3

O CH3

BO

N

OOO

OMe

CH3

OMe

CH3

H2N

O

PhBr, Pd(OAc)2SPhos

K3PO4, THF:H2O60 °C, 24 h

OMe

CH3

OMe

CH3

H2N

O

(+)-crocacin C

9

10

CH3

CH3

H3C H3C

H3C

H3C

H3C

Scheme 11

boronates are also compatible with Evans aldol, Horner-Wadsworth-Emmons olefination, and Takai olefination protocols. Reductive amination is also well-tolerated (Scheme 10).

The impact of the exceptional compatibility of the MIDA boronate was exhibited in the total synthesis of (+)-crocacin C starting from an acrolein MIDA boronate (Scheme 11). The MIDA boronate tolerated a Paterson aldol and diastereoselective reduction protocol to yield the diol MIDA boronate, which was purified by silica gel chromatography. The purified MIDA boronate was permethylated with Meerwein’s salt, deprotected with CAN, oxidized with Dess-Martin periodinane and subjected to Takai olefination to yield the stable, crystalline, complex MIDA boronate 9. Stille coupling of 9 with known building block 10, followed by in situ boronic acid release and cross-coupling with bromobenzene provided (+)-crocacin C.3

Reference:

(3) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2008, 130, 14084.

Page 6: Chemfiles Vol. 9, No. 1 – MIDA-protected Boronate Esters

TO ORDER: Contact your local Sigma-Aldrich office (see back cover), or visit sigma-aldrich.com/chemicalsynthesis.6 sigma-aldrich.com

Prep

arat

ion

of trans-

(2-

bro

mo

vin

yl)

MID

A B

oro

nat

e

Preparation of trans-(2-bromovinyl) MIDA Boronate and Vinyl MIDA Boronate from the Corresponding SilanesDue to the instability of some boronic acids, the Burke group has developed very practical syntheses of some of the more challenging MIDA boronates. For instance, while trans-(2-bromovinyl) MIDA boronate (703478) could be prepared via bromoboration of acetylene and reaction with MIDA in the presence of base, a more convenient procedure was subsequently developed. The synthesis of trans-(2-bromovinyl) MIDA boronate is achieved via transmetalation of 1-bromo-2-trimethylsilylethylene with BBr3, followed by trapping with MIDA2-Na2+ to form the MIDA boronate (Scheme 12-(1)). This procedure also gave rise to the very useful building block, vinyl MIDA boronate (704415) (Scheme 12-(2)). Of note, the corresponding boronic acid is very unstable.4

BBr3CH2Cl2

0 °C, 2 h;

CH3CN0 °C, 1 h

(E:Z 9:1) (E only)

BBr3

CH2Cl2

0 → 23°C, 2.5 h;

CH3CN

TMS

86%0 → 23°C, 1 h

(2)

(1)

704415

MIDA2-Na2+

61%

MIDA2-Na2+

TMS

703478

BO

N

OOO

H3C

BrTMS

Br

BO

N

OOO

H3C

Scheme 12

Synthetic Utility of Vinyl MIDA BoronateThe utility of vinyl MIDA boronate was demonstrated via cyclopropanation and epoxidation to the corresponding MIDA cyclopropane and oxirane, respectively. These procedures (Scheme 13) provided air and chromatography-stable solids in both cases, with the oxirane being the first known synthesis of an unsubstituted oxiranylborane (confirmed by X-ray analysis of the oxiranylborane).

BO

N

OOO

BO

N

OOO

BO

N

OOO

OmCPBA

CH2Cl2, 0 → 23 °C18 h, 74%

Pd(OAc)2/CH2N2

Et2O, 0 → 23 °C1 h, 93% 697311

703478

H3C

H3C

H3C

Scheme 13

Vinyl MIDA boronate was also successfully subjected to Heck and oxidative Heck reactions as well as to olefin metathesis (Scheme 14) to provide the desired alkenyl MIDA boronates. The cross metathesis of vinyl MIDA boronate with various olefins represents a potent strategy for the highly stereoselective construction of substituted vinyl boranes. This method proved successful in the preparation of a variety of disubstituted olefins (Scheme 15) with excellent yields (81-98%) and E:Z selectivities (>20:1). This procedure represents a significant advance relative to the cross metathesis with alkenyl pinacol, which can be limited by instability of the alkenyl boronic ester substrates, the stereoselectivity of the transformation, and/or the ease of purification of the resulting products.4

BO

N

OOO

BO

N

OOO

Me

O

BO

N

OOO

BO

N

OOO

CH3

Pd(PPh3)4, Ag3PO4

THF, 100 °C, 24 h, 64%

S SO O

Ph Ph•Pd(OAc)2

PhB(OH)2BQ, Dioxane, 45 °C,

48 h, 68%

CH3

Grubbs IICH2Cl2, 40 °C

12 h, 80%

Me

O

Br

699292703478

H3C

H3C

H3C

H3C

Scheme 14

R

BO

N

OOO

Grubbs IICH2Cl2

40 °C, 12 h

1 equivB

O

N

OOO

R

Entry Cross partner Cross product Isolated yield (%)

i-Pr3Si

AcO OAc

HO

Br

i-Pr3Si BO

N

O OO

AcO BO

N

O OO

BO

N

O OO

BO

N

O OOHO

Me Me

BO

N

O OO

Br

1

2

3

4

5

85

84

96

94

819189

orthometapara

orthometapara

E:Z>20:11.5-2.5 eq

703710

H3C

H3C

H3C

H3C

H3C

H3C

H3C

Scheme 15

Reference:

(4) Uno, B. E.; Gillis, E. P.; Burke, M. D. Tetrahedron 2008, In Press.

Page 7: Chemfiles Vol. 9, No. 1 – MIDA-protected Boronate Esters

7Ready to scale up? For competitive quotes on larger quantities or custom synthesis, contact your local Sigma-Aldrich office, or visit safcglobal.com.

MID

A Lig

an

d

MIDA LigandMethyl imino diacetic acid, 99%[4408-64-4] Beil. 4,367 C5H9NO4 FW 147.13

HON

OH

OO CH3

mp ...................................................................................220 °C (dec.)

M51008-5G 5 g

M51008-25G 25 g

Alkyl MIDA Boronates Allyl boro nic acid MIDA ester 8

2-Allyl-6-methyl-1,3,6,2-dioxa zaborocane-4,8-dione C8H12BNO4 FW 197.00 H2C

BO

N

OOO

H3C

698709-1G 1 g

Benzyl boro nic acid MIDA ester, 95% 8

C12H14BNO4 FW 247.05

BO

N

OOO

H3C

701114-1G 1 g

701114-5G 5 g

n-Butyl boro nic acid MIDA ester 8

C9H16BNO4 FW 213.04

BO

N

OOOH3C

H3C

701580-1G 1 g

701580-5G 5 g

Cyclo pentyl boro nic acid MIDA ester, 97% 8

C10H16BNO4 FW 225.05

BO

N

OOO

H3C

699144-1G 1 g

Cyclo pro pyl boro nic acid MIDA ester, 97% 8

Cyclo pro pyl boro nic acid methyl imino diacetic acid anhydride C8H12BNO4 FW 197.00 B

O

N

OOO

H3C

697311-1G 1 g

697311-5G 5 g

Methyl boro nic acid MIDA ester, 97% 8

C6H10BNO4 FW 170.96

BO

N

OOOH3C

H3C

700657-1G 1 g

700657-5G 5 g

sigma-aldrich.com

Let DiscoveryCPR Put High Throughput Back in Your Operation!

Custom Packaged Reagents from Sigma-Aldrich puts high throughput back into your chemistry!

When projects demand custom arrays of reagents, DiscoveryCPR can meet the challenge.

To register for an online ordering account or to submit inquiries:

DiscoveryCPR.comDiscoveryCPR

The New Standard in Reagent Management for Medicinal Chemistry and Organic Synthesis

• Internet-based reagent database and procurement

• Powerful new batch-search and reporting capabilities

• Determine price and availability from your desktop

• From micromoles to grams

• 24–48 hour turnaround time for most compounds

• Reduce waste; eliminate on-site stocking and inventory management

• Specify vial type, atmosphere, labeling/bar-coding, packaging

• No minimum order required

Flexible | Efficient | Convenient

Page 8: Chemfiles Vol. 9, No. 1 – MIDA-protected Boronate Esters

TO ORDER: Contact your local Sigma-Aldrich office (see back cover), or visit sigma-aldrich.com/chemicalsynthesis.8 sigma-aldrich.com

Alk

en

yl

MID

A B

oro

nate

s

Alkenyl MIDA Boronatestrans-2-Bromo vinyl boro nic acid MIDA ester 8

BB1 C7H9BBrNO4 FW 261.87 B

O

N

OOO

Br

H3C

703478-500MG 500 mg

703478-1G 1 g

trans-(2-Cyclo hexyl vinyl)boro nic acid MIDA ester, 95% 8

C13H20BNO4 FW 265.11

BO

N

OOO

H3C

703710-1G 1 g

trans-2-Phenyl vinyl boro nic acid MIDA ester, 95% 8

C13H14BNO4 FW 259.07

BO

N

OOO

H3C

699292-1G 1 g

cis-1-Prop enyl boro nic acid MIDA ester 8

cis-1-Pro pene-1-boro nic acid MIDA ester; cis-6-Methyl-2-(1-prop enyl)-1,3,6,2-dioxa zaborocane-4,8-dione C8H12BNO4 FW 197.00

BO

N

OOO

H3C

H3C

698199-1G 1 g

trans-1-Prop enyl boro nic acid MIDA ester 8

C8H12BNO4 FW 197.00

BO

N

OOO

H3C

H3C

701831-1G 1 g

Alkynyl MIDA BoronatesEthynyl boro nic acid MIDA ester 8

Acetyl ene boro nic acid MIDA ester; Ethyne boro nic acid MIDA ester; Acet ynyl boro nic acid MIDA ester C7H8BNO4 FW 180.95

B

O

N

O

OO

HC

H3C

700231-1G 1 g

Aryl MIDA Boronates3-Benzyl oxy phenyl boro nic acid MIDA ester, 96% 8

C18H18BNO5 FW 339.15

BO

N

OOOO

H3C

699861-1G 1 g

2-Bromo phenyl boro nic acid MIDA ester, 95% 8

2-(2-Bromo phenyl)-6-methyl-1,3,6,2-dioxa zaboracane-4,8-dione C11H11BBrNO4 FW 311.92

BO

N

OOO

Br

H3C

698040-1G 1 g

698040-5G 5 g

3-Bromo phenyl boro nic acid MIDA ester, 96% 8

2-(3-Bromo phenyl)-6-methyl-1,3,6,2-dioxa zaborocane-4,8-dione C11H11BBrNO4 FW 311.92

BO

N

OOO

Br

H3C

698113-1G 1 g

698113-5G 5 g

sigma-aldrich.com

Cross-coupling has been a cornerstone set of reactions for the formation of carbon–carbon bonds. For the past twenty years, numerous research groups have developed new metal complexes and ligands, expanding the scope of these transformations to give access to more complex molecules. Among these important reactions, several stand out, such as Suzuki, Negishi, Heck, Kumada, Stille, Sonogashira and Buchwald Hartwig amination reactions. Furthermore, scientists have developed new complexes, usually palladium based, that are able to catalyze the aforementioned reactions, with high yields and low catalyst loadings. Sigma-Aldrich is happy to offer new palladium catalysts for cross-coupling reactions.

New Palladium Catalysts for Cross-Coupling from Sigma-Aldrich®

701602

Fe

P

P

PdCl

Cl

702005

P

P

PdCl

ClFe

701998

P

P

PdCl

ClFe

697230

P

P

PdCl

ClFe

High Purity 99.9+%697265

Pd PPh3

PPh3

Ph3P

PPh3

Page 9: Chemfiles Vol. 9, No. 1 – MIDA-protected Boronate Esters

9Ready to scale up? For competitive quotes on larger quantities or custom synthesis, contact your local Sigma-Aldrich office, or visit safcglobal.com.

Ary

l MID

A B

oro

nate

s

4-Bromo phenyl boro nic acid MIDA ester, 97% 8

2-(4-Bromo phenyl)-6-methyl-1,3,6,2-dioxa zaborocane-4,8-dione C11H11BBrNO4 FW 311.92

BO

N

OOO

Br

H3C

698083-1G 1 g

698083-5G 5 g

3-Carboxy phenyl boro nic acid MIDA ester, 96% 8

3-(6-Methyl-4,8-dioxo-1,3,6,2-dioxa zaborocan-2-yl)benzoic acid C12H12BNO6 FW 277.04

BO

N

OOO

HO

O

H3C

698091-1G 1 g

3-Cyano phenyl boro nic acid MIDA ester, 97% 8

3-(6-Methyl-4,8-dioxo-1,3,6,2-dioxa zaborocan-2-yl)benzo nitrile C12H11BN2O4 FW 258.04

BO

N

OOO

CN

H3C

698024-1G 1 g

698024-5G 5 g

4-Cyano phenyl boro nic acid MIDA ester, 97% 8

4-(6-Methyl-4,8-dioxo-1,3,6,2-dioxa zaborocan-2-yl)benzo nitrile C12H11BN2O4 FW 258.04

BO

N

OOO

CN

H3C

697990-1G 1 g

697990-5G 5 g

2,6-Dibromo phenyl boro nic acid MIDA ester 8

C11H10BBr2NO4 FW 390.82

BO

N

OOO

H3C

Br

Br

703044-500MG 500 mg

703044-1G 1 g

4-Fluoro phenyl boro nic acid MIDA ester, 97% 8

2-(4-Fluoro phenyl)-6-methyl-1,3,6,2-dioxa zaborocane-4,8-dione C11H11BFNO4 FW 251.02

BO

N

OOO

H3C

F

701548-5G 5 g

2-Formyl phenyl boro nic acid MIDA ester, 97% 8

2-(6-Methyl-4,8-dioxo-1,3,6,2-dioxa zaborocan-2-yl)benzal dehyde C12H12BNO5 FW 261.04

BO

N

OOO

H3C

H

O

698210-1G 1 g

698210-5G 5 g

3-Formyl phenyl boro nic acid MIDA ester, 97% 8

3-(6-Methyl-4,8-dioxo-1,3,6,2-dioxa zaborocan-2-yl)benzal dehyde C12H12BNO5 FW 261.04

BO

N

OOO

H

O

H3C

700932-1G 1 g

700932-5G 5 g

4-Formyl phenyl boro nic acid MIDA ester, 96% 8

4-Formyl phenyl boro nic acid methyl imino acetic acid anhydride C12H12BNO5 FW 261.04

BO

N

OOO

H3C

H

O

697494-1G 1 g

4-(Hydroxy methyl)phenyl boro nic acid MIDA ester 8

2-(4-(Hydroxy methyl)phenyl)-6-methyl-1,3,6,2-dioxa zaborocane-4,8-dione C12H14BNO5 FW 263.05

BO

N

OOO

H3C

HO

698105-1G 1 g

3-Hydroxy phenyl boro nic acid MIDA ester, 97% 8

2-(3-Hydroxy phenyl)-6-methyl-1,3,6,2-dioxa zaborocane-4,8-dione C11H12BNO5 FW 249.03

BO

N

OOO

H3C

OH

698008-5G 5 g

3-Iodo phenyl boro nic acid MIDA ester, 97% 8

2-(3-Iodo phenyl)-6-methyl-1,3,6,2-dioxa zaborocane- 4,8-dioneC11H11BINO4 FW 358.92

BO

N

OOO

H3C

I

698156-1G 1 g

4-Iodo phenyl boro nic acid MIDA ester, 97% 8

2-(4-Iodo phenyl)-6-methyl-1,3,6,2-dioxa zaborocane-4,8-dione C11H11BINO4 FW 358.92

BO

N

OOO

H3C

I

698121-1G 1 g

698121-5G 5 g

3-Methoxy carbo nyl phenyl boro nic acid MIDA ester, 97% 8Methyl 3-(6-methyl-4,8-dioxo-1,3,6,2- dioxa zaborocan-2-yl) ben zo ate C13H14BNO6 FW 291.06

BO

N

OOO

H3CO

O

H3C

698164-1G 1 g

698164-5G 5 g

2-Methoxy phenyl boro nic acid MIDA ester, 97% 8

2-(2-Methoxy phenyl)-6-methyl-1,3,6,2-dioxa zaborocane-4,8-dione C12H14BNO5 FW 263.05

BO

N

OOO

H3C

OCH3

698075-1G 1 g

3-Methoxy phenyl boro nic acid MIDA ester, 97% 8

C12H14BNO5 FW 263.05

BO

N

OOO

H3C

OCH3

699160-1G 1 g

699160-5G 5 g

4-Methoxy phenyl boro nic acid MIDA ester, 97% 8

2-(4-Methoxy phenyl)-6-methyl-1,3,6,2- dioxa zaborocane-4,8-dione C12H14BNO5 FW 263.05

BO

N

OOO

H3C

H3CO

700924-1G 1 g

700924-5G 5 g

Page 10: Chemfiles Vol. 9, No. 1 – MIDA-protected Boronate Esters

TO ORDER: Contact your local Sigma-Aldrich office (see back cover), or visit sigma-aldrich.com/chemicalsynthesis.10 sigma-aldrich.com

Ary

l M

IDA

Bo

ron

ate

s

1-Naph thyl boro nic acid MIDA ester, 95% 8

Naph thalene-1-boro nic acid MIDA ester C15H14BNO4 FW 283.09 B

ON O

OO

H3C

699136-1G 1 g

2-Naph thyl boro nic acid MIDA ester, 95% 8

C15H14BNO4 FW 283.09

BO

N

OOO

H3C

699853-1G 1 g

3-Nitro phenyl boro nic acid MIDA ester, 97% 8

6-Methyl-2-(3-nitro phenyl)-1,3,6,2-dioxa zaborocane- 4,8-dione C11H11BN2O6 FW 278.03

BO

N

OOO

H3C

NO2

698148-1G 1 g

698148-5G 5 g

Phenyl boro nic acid MIDA ester, 95% 8

6-Methyl-2-phenyl-1,3,6,2-dioxa zaborocane-4,8-dione C11H12BNO4 FW 233.03 B

O

N

OOO

H3C

698032-1G 1 g

698032-5G 5 g

4-Tolyl boro nic acid MIDA ester, 97% 8

6-Methyl-2-p-tolyl-1,3,6,2-dioxa zaborocane-4,8-dione C12H14BNO4 FW 247.05 B

O

N

OOO

H3C

H3C

698229-5G 5 g

4-Vinyl phenyl boro nic acid MIDA ester, 97% 8

6-Methyl-2-(4-vinyl phenyl)-1,3,6,2- dioxa zaborocane-4,8-dione C13H14BNO4 FW 259.07

BO

N

OOO

H3C

H2C

701890-500MG 500 mg

701890-1G 1 g

Heteroaryl MIDA Boronates2-Benzo furan yl boro nic acid MIDA ester, 97% 8

2-Benzo furan boro nic acid MIDA ester; 2-(Benzo furan-2-yl)-6-methyl-1,3,6,2-dioxa zaborocane-4,8-dione C13H12BNO5 FW 273.05

BO

N

OO

OO

H3C

701106-1G 1 g

5-Bromo-3-pyridinyl boro nic acid MIDA ester, 95% 8

5-Bromo pyri dine-3-boro nic acid MIDA ester C10H10BBrN2O4 FW 312.91 B

O

N

OOO

N

Br

H3C

703370-1G 1 g

703370-5G 5 g

6-Bromo-3-pyridinyl boro nic acid MIDA ester, 97% 8

2-Bromo pyri dine-5-boro nic acid MIDA ester;2-(6-Bromo-3-pyridinyl)-6-methyl-1,3,6,2- dioxa zaborocane-4,8-dione; 6-Bromo pyri dine- 3-boro nic acid MIDA ester C10H10BBrN2O4 FW 312.91

BO

N

OOO

NBr

H3C

702269-1G 1 g

5-Bromo-2-thio phenyl boro nic acid MIDA ester, 95% 8

5-Bromo thio phene-2-boro nic acid MIDA ester; 2-(5-Bromo thio phen-2-yl)-6-methyl-1,3,6,2- dioxa zaborocane-4,8-dione C9H9BBrNO4S FW 317.95

B

O

N

O

OO

H3C

SBr

701092-1G 1 g

6-Chloro-3-pyridinyl boro nic acid MIDA ester, 97% 8

6-Chloro-3-pyri dine boro nic acid MIDA ester; 2-(6-Chloro-3-pyridinyl)-6-methyl-1,3,6,2- dioxa zaborocane-4,8-dione; 2-Chloro pyri dine-5- boro nic acid MIDA ester C10H10BClN2O4 FW 268.46

BO

N

OOO

NCl

H3C

mp ................................................................................. 222 to 226 °C

700908-1G 1 g

2-Furan yl boro nic acid MIDA ester, 97% 8

2-Furan boro nic acid MIDA ester; 2-(Furan-2-yl)-6-methyl-1,3,6,2-dioxa zaborocane-4,8-dione C9H10BNO5 FW 222.99

B

O

N

O

OO

H3C

O

701017-1G 1 g

2-Methoxy-3-pyridinyl boro nic acid MIDA ester, 97% 8

2-Methoxy-3-pyri dine boro nic acid MIDA ester; 2-(2-Methoxy pyridin-3-yl)-6-methyl-1,3,6,2- dioxa zaborocane-4,8-dione C11H13BN2O5 FW 264.04

BO

N

OOO

H3C

N OCH3

701084-1G 1 g

2-Methoxy-5-pyridinyl boro nic acid MIDA ester, 97% 8

2-Methoxy-5-pyri dine boro nic acid MIDA ester C11H13BN2O5 FW 264.04 B

O

N

OOO

H3C

NH3CO

699845-1G 1 g

1-(Phenyl sul fonyl)-2-indolyl boro nic acid 8

MIDA ester, 96%1-(Phenyl sul fonyl)indole-2-boro nic acid MIDA ester; 1-(Phenyl sul fonyl)indole-2-boro nic acid; Methyl imino diacetic acid anhydride C19H17BN2O6S FW 412.22

NB

O

N

OOO

H3C

S OO

697443-1G 1 g

4-Pyridinyl boro nic acid MIDA ester, 95% 8

4-Pyri dine boro nic acid MIDA ester C10H11BN2O4 FW 234.02 B

ON O

OO

H3C

N

699179-1G 1 g

Page 11: Chemfiles Vol. 9, No. 1 – MIDA-protected Boronate Esters

New Aldrich® Handbook!

To request your complimentary Aldrich Handbook set, visit sigma-aldrich.com/aldrichcat

Reserve your copy of the new 2009-2010 Aldrich Handbook set today.

2009-2010 Aldrich Handbook• 10,000 chemical structures

• 8,500 updated literature citations

• Extensive chemical & physical data

Labware Catalog• Innovative new products

• Improved product images

• New technical information index

sigma-aldrich.com

Over 6,000 Innovative New Products

Page 12: Chemfiles Vol. 9, No. 1 – MIDA-protected Boronate Esters

Sigma-Aldrich3050 Spruce StreetSt. Louis, MO 63103 USAsigma-aldrich.com

LFI70940-504740

0029

World Headquarters3050 Spruce St., St. Louis, MO 63103(314) 771-5765sigma-aldrich.com

Order/Customer Service (800) 325-3010 • Fax (800) 325-5052

Technical Service (800) 325-5832 • sigma-aldrich.com/techservice

Development/Bulk Manufacturing Inquiries (800) 244-1173

©2009 Sigma-Aldrich Co. All rights reserved. SIGMA, , SAFC, , SIGMA-ALDRICH, ALDRICH, , FLUKA, , and SUPELCO, are trademarks belonging to Sigma-Aldrich Co. and its affiliate Sigma-Aldrich Biotechnology, L.P. Sigma brand products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip. Eppendorf is a registered trademark of Eppendorf-Netheler-Hinz GmbH. Sepharose is a registered trademark of GE Healthcare. IGEPAL is a registered trademark of General Dyestuff Corp. Coomassie is a registered trademark of Imperial Chemical Industries Ltd. ProteoSilver is a trademark of Sigma-Aldrich Biotechnology LP and Sigma-Aldrich Co.

Accelerating Customers’

Success through Innovation and

Leadership in Life Science,

High Technology and Service

ArgentinaSIGMA-ALDRICH DE ARGENTINA S.A. Free Tel: 0810 888 7446 Tel: (+54) 11 4556 1472 Fax: (+54) 11 4552 1698

AustraliaSIGMA-ALDRICH PTY LTD. Free Tel: 1800 800 097 Free Fax: 1800 800 096 Tel: (+61) 2 9841 0555 Fax: (+61) 2 9841 0500

AustriaSIGMA-ALDRICH HANDELS GmbH Tel: (+43) 1 605 81 10 Fax: (+43) 1 605 81 20

BelgiumSIGMA-ALDRICH NV/S.A.Free Tel: 0800 14747 Free Fax: 0800 14745 Tel: (+32) 3 899 13 01 Fax: (+32) 3 899 13 11

BrazilSIGMA-ALDRICH BRASIL LTDA.Free Tel: 0800 701 7425 Tel: (+55) 11 3732 3100 Fax: (+55) 11 5522 9895

CanadaSIGMA-ALDRICH CANADA LTD.Free Tel: 1800 565 1400 Free Fax: 1800 265 3858 Tel: (+1) 905 829 9500 Fax: (+1) 905 829 9292

ChinaSIGMA-ALDRICH (SHANGHAI) TRADING CO. LTD.Free Tel: 800 819 3336 Tel: (+86) 21 6141 5566 Fax: (+86) 21 6141 5567

Czech RepublicSIGMA-ALDRICH spol. s r. o. Tel: (+420) 246 003 200 Fax: (+420) 246 003 291

DenmarkSIGMA-ALDRICH DENMARK A/S Tel: (+45) 43 56 59 10 Fax: (+45) 43 56 59 05

FinlandSIGMA-ALDRICH FINLAND OYTel: (+358) 9 350 9250 Fax: (+358) 9 350 92555

FranceSIGMA-ALDRICH CHIMIE S.à.r.l. Free Tel: 0800 211 408Free Fax: 0800 031 052Tel: (+33) 474 82 28 00 Fax: (+33) 474 95 68 08

GermanySIGMA-ALDRICH CHEMIE GmbHFree Tel: 0800 51 55 000 Free Fax: 0800 64 90 000 Tel: (+49) 89 6513 0 Fax: (+49) 89 6513 1160

GreeceSIGMA-ALDRICH (O.M.) LTD.Tel: (+30) 210 994 8010 Fax: (+30) 210 994 3831

HungarySIGMA-ALDRICH Kft Ingyenes telefonszám: 06 80 355 355 Ingyenes fax szám: 06 80 344 344 Tel: (+36) 1 235 9055 Fax: (+36) 1 235 9050

IndiaSIGMA-ALDRICH CHEMICALS PRIVATE LIMITED Telephone Bangalore: (+91) 80 6621 9600 New Delhi: (+91) 11 4358 8000 Mumbai: (+91) 22 2570 2364 Hyderabad: (+91) 40 4015 5488 Fax Bangalore: (+91) 80 6621 9650 New Delhi: (+91) 11 4358 8001 Mumbai: (+91) 22 2579 7589 Hyderabad: (+91) 40 4015 5466

IrelandSIGMA-ALDRICH IRELAND LTD. Free Tel: 1800 200 888 Free Fax: 1800 600 222Tel: +353 (0) 402 20370Fax: + 353 (0) 402 20375

IsraelSIGMA-ALDRICH ISRAEL LTD.Free Tel: 1 800 70 2222 Tel: (+972) 8 948 4100 Fax: (+972) 8 948 4200

ItalySIGMA-ALDRICH S.r.l. Numero Verde: 800 827018 Tel: (+39) 02 3341 7310 Fax: (+39) 02 3801 0737

JapanSIGMA-ALDRICH JAPAN K.K. Tel: (+81) 3 5796 7300 Fax: (+81) 3 5796 7315

KoreaSIGMA-ALDRICH KOREA Free Tel: (+82) 80 023 7111 Free Fax: (+82) 80 023 8111 Tel: (+82) 31 329 9000 Fax: (+82) 31 329 9090

MalaysiaSIGMA-ALDRICH (M) SDN. BHDTel: (+60) 3 5635 3321 Fax: (+60) 3 5635 4116

MexicoSIGMA-ALDRICH QUÍMICA, S.A. de C.V.Free Tel: 01 800 007 5300 Free Fax: 01 800 712 9920 Tel: 52 722 276 1600 Fax: 52 722 276 1601

The NetherlandsSIGMA-ALDRICH CHEMIE BVFree Tel: 0800 022 9088 Free Fax: 0800 022 9089 Tel: (+31) 78 620 5411 Fax: (+31) 78 620 5421

New ZealandSIGMA-ALDRICH NEW ZEALAND LTD. Free Tel: 0800 936 666 Free Fax: 0800 937 777 Tel: (+61) 2 9841 0555 Fax: (+61) 2 9841 0500

NorwaySIGMA-ALDRICH NORWAY AS Tel: (+47) 23 17 60 60 Fax: (+47) 23 17 60 50

PolandSIGMA-ALDRICH Sp. z o.o. Tel: (+48) 61 829 01 00 Fax: (+48) 61 829 01 20

PortugalSIGMA-ALDRICH QUÍMICA, S.A.Free Tel: 800 202 180 Free Fax: 800 202 178 Tel: (+351) 21 924 2555 Fax: (+351) 21 924 2610

RussiaSIGMA-ALDRICH RUS, LLC Tel: +7 (495) 621 6037 +7 (495) 621 5828 Fax: +7 (495) 621 5923

SingaporeSIGMA-ALDRICH PTE. LTD.Tel: (+65) 6779 1200 Fax: (+65) 6779 1822

SlovakiaSIGMA-ALDRICH spol. s r. o. Tel: (+421) 255 571 562Fax: (+421) 255 571 564

South AfricaSIGMA-ALDRICH SOUTH AFRICA (PTY) LTD.Free Tel: 0800 1100 75 Free Fax: 0800 1100 79 Tel: (+27) 11 979 1188 Fax: (+27) 11 979 1119

SpainSIGMA-ALDRICH QUÍMICA, S.A. Free Tel: 900 101 376 Free Fax: 900 102 028 Tel: (+34) 91 661 99 77 Fax: (+34) 91 661 96 42

SwedenSIGMA-ALDRICH SWEDEN ABTel: (+46) 8 742 4200 Fax: (+46) 8 742 4243

SwitzerlandSIGMA-ALDRICH CHEMIE GmbH Free Tel: 0800 80 00 80 Free Fax: 0800 80 00 81 Tel: (+41) 81 755 2828 Fax: (+41) 81 755 2815

United KingdomSIGMA-ALDRICH COMPANY LTD.Free Tel: 0800 717 181 Free Fax: 0800 378 785 Tel: (+44) 1747 833 000 Fax: (+44) 1747 833 313 SAFC (UK) Tel: 01202 712305

United StatesSIGMA-ALDRICH P.O. Box 14508 St. Louis, Missouri 63178 Toll-Free: 800 325 3010 Toll-Free Fax: 800 325 5052 Call Collect: (+1) 314 771 5750 Tel: (+1) 314 771 5765 Fax: (+1) 314 771 5757

Internet sigma-aldrich.com