Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

30
Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces Ted Barnes Physics Div. ORNL and Dept. of Physics, U.Tenn. (and p.t. DOE ONP) INT Nov 2009 1. For PANDA: Associated charmonium production cross sections at low to moderate energies ( pp (cc ) + m ) (Will show all recent theoretical calculations of these cross sections, Together with all the data in the world.) 2. Related process cc pp m => Nuclear (NN) Force Models

description

Ted Barnes Physics Div. ORNL and Dept. of Physics, U.Tenn. (and p.t. DOE ONP) INT Nov 2009. Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces. 1. For PANDA: Associated charmonium production cross sections at low to moderate energies - PowerPoint PPT Presentation

Transcript of Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

Page 1: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

Charmonium Aps:1) GSI cross secs, & 2) nuclear

forces

Ted Barnes Physics Div. ORNL andDept. of Physics, U.Tenn. (and p.t. DOE ONP) INT Nov 2009

1. For PANDA: Associated charmonium production cross sections at low to moderate energies

( pp (cc) + m )

(Will show all recent theoretical calculations of these cross sections,Together with all the data in the world.)

2. Related process cc ppm => Nuclear (NN) Force Models

Page 2: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

1. What PANDA is all about:

The search for non-qq mesons.

To many theorists this suggests qq + gluonic excitation,

= “hybrid mesons”.

Smoking gun: hybrids can have all JPC, unlike qq.

Just search for a meson with JPC-exotic quantum numbers;

Panda logic:

Light meson studies (u,d,s) were already well underway (prev. LEAR, BNL, JLAB),How about going to heavy quarks? cc-hybrids? Narrower states, cleaner spectrum.

JPC-Exotic Charmonium hybrids = the ultimate goal of PANDA@GSI.

We already have the LEAR community (ca. 300 people). Let’s use pp.

Page 3: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

PANDA at GSI… (ProtonAntiprotonaNnihilationexperimentatDArmstadt)

“m” = light meson(s)

cJ/

X(3872)

cc-H ~ 4.3 [GeV]

pp cc + m, cc-H + m p beam energies…

KEp = 0.8 – 14.5 [GeV]:

Allows access to cc and cc-H mass range.

Kinematics of pp cc + m

Page 4: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

Problem:

You can’t make JPC-exotics in s-channel pp annihilation (as in E760/835 at Fermilab), since pp only accesses conventional meson (qq) quantum numbers. To make J PC- exotic hybrids you have to make something else to recoil against (associated production):

Why associated production? ( pp cc + m, (cc)H

+ m )

p

p

qq quant. nos. only

p

p

All JPC quant. nos.,including cc-hybrids with exotic JPC

something elsee.g. typically

New Problem: Just how big are these cross sections?Let’s look at all the world’s data.

Page 5: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

our calc.

Evidently ca. 0.1–0.2 [nb] near threshold for J/ . Other states, other energies??? Nada.

All the world’s (published) data onpp cc + meson (exclusive) processes.

( pp J/ ) E760

Page 6: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

pp pp J/ J/ + + 00 from from continuumcontinuum

M. Andreotti et al., PRD 72, 032001(2005)

Expt…

Only 2 E760 points published.

This is E835, c/o D.Bettoni.

Physical cross sec is ca. 100x this.

Page 7: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

What PANDA needs to know:

What are the approximate low-E cross sections for pp + meson(s) ?

( is a generic charmonium or charmonium hybrid state.)

Recoil against meson(s) allows access to JPC-exotic .

Page 8: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

2. 2. TheoreticalTheoretical estimates of low to moderate energy estimates of low to moderate energy

associated charmonium cross sectionsassociated charmonium cross sections

( ( pppp ccc + m + m ) )

(What you can do in lieu of a direct measurement of these cross sections.

Also includes other possible experiments.)

The actual processes are obscure at the q+g level, so “microscopic” models will be problematic. We just need simple “semiquantitative” estimates.

A quick run through the literature (just 4 references) …

Page 9: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

Approximate low to moderate-E cross sections for pp + meson(s) = ?

Four theor. references to date:

1. M.K.Gaillard. L.Maiani and R.Petronzio, PLB110, 489 (1982). PCAC Wpp J )

2. A.Lundborg, T.Barnes and U.Wiedner, PRD73, 096003 (2006). Crossing estimates for ( pp m) from ( p p m) (‘ ; m = several)

3. T.Barnes and X.Li, hep-ph/0611340, PRD75, 054018 (2007). PCAC-like model W ( pp ),

c

4. T.Barnes, X.Li and W.Roberts, arXiv:0709.4491, PRD77, 056001 (2008). [3] model, ee J/ pp (for BES), pp J W and . Dirac and Pauli strong ppJFFs. Polarization.

Page 10: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

1. M.K.Gaillard. L.Maiani and R.Petronzio, PLB110, 489 (1982). PCAC-like model Wpp J )

Soft Pion Emission in pp Resonance Formation

Motivated by CERN experimental proposals (LEAR). Assumes low-E PCAC-like dynamics with the pp system in a definite J,S,L channel. (Hence not immediately useful for total cross section estimates for PANDA.)

Quite numerical, gives W() at a specific E(cm) = 230 MeV as the only example.

Implicit analytic results completed in Ref.2.

“pion ISR”

Page 11: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

Crossing estimates:

We have experimental results for ca. 10 decays of the type ppm. These have the same amplitude as the desired ( pp m ).Given a sufficiently good understanding of the decay Dalitz plot, we can usefully extrapolate from the decay to the production cross section.

n.b. Also completes the derivation of some implicit results for cross sections in the Gaillard et al. PCAC-like paper.

0th-order estimate: assume a constant amplitude, then ( pp m) is simply proportional to ( ppm ).

Specific example, (pp J ):

2. A.Lundborg, T.Barnes and U.Wiedner, hep-ph/0507166, PRD73, 096003 (2006).

“summer in Uppsala”

Charmonium Production in pp Annihilation:Estimating cross sections from decay widths.

Page 12: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

These processes are actually not widely separated kinematically:

p

we know … we want …

J/

p

p

A

p

A

J/

Page 13: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

dt

Page 14: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

For a 0th-order (constant A) cross section estimate we can just swap 2-body and 3-body phase space to relate a generic cc

( pp ) to ( pp

Result:

where AD is the area of the decay Dalitz plot:

Next, an example of the numerical cross sections predicted by this simple estimate, compared to the only (published) data on this type of reaction…

( pp J/ ) from ( J/ pp

compared to the E760 data points:

Page 15: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

our calc.

Not bad for a first rough “phase space” estimate. Improved cross section estimates require a model of the reaction dynamics (next).

const. amp. model

all the world’s published data (E760)

Page 16: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

Before we proceed…The const. amp. approx. says other channels may be larger. This approx. however is very suspect. N* resonances?

Page 17: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

Calculates the differential and total cross sections for pp

using the same PCAC-like model assumed earlier by Gaillard et al.,but for incident pp plane waves, and several choices for

cJ

The a priori unknown pp couplings are taken from the (now known)pp widths.

3. T.Barnes and Xiaoguang Li, hep-ph/0611340; PRD75, 054018 (2007).

“summer in Darmstadt”

Associated Charmonium Production in Low Energy pp Annihilation

Page 18: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

Assume simple pointlike hadron vertices;

g

5 for the NN vertex,

= g

(

5, -i

, -i, -i

5) for

cJ/and’

Use the 2 tree-level Feynman diagrams to evaluate d/dt and .

g

5

PCAC-like model of pp + 0: T.Barnes and X.Li, hep-ph/0611340; PRD75, 054018 (2007).

+

Page 19: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

m = 0 limit, fairly simple analytic results…

unpolarized differential cross sections:

(in the analytic formulas)

simplifications

M = m

m = mp

x = (t - m2) / m2

y = (u - m2) / m2

f = -(x+y) = (s - m

2 - M 2) / m2

also, in both d</dt and <,

r i = m

i / m

Page 20: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

(analytic formulas)

m = 0 limit, fairly simply analytic results…

unpolarized total cross sections:

Page 21: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

However we would really prefer to give results for physicalmasses and thresholds. So, we have also derived the morecomplicated m

.ne. 0 formulas analytically.

e.g. of the pp J/ 0 unpolarized total cross section:

Values of the {pp

} coupling constants?

This is where it gets really interesting.

Page 22: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

To predict numerical pp + 0 production cross sections in this model, we know g

pp ~ 13.5 but not the { g

pp }. Fortunately we can get these new

coupling constants from the known pp partial widths:

Our formulas for ( pp ):

Resulting numerical values for the { gpp

} coupling constants:

(Uses PDG total widths and pp BFs.)

g

5

!!

!

Page 23: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

( pp J/ ), PCAC-like model versus “phase space” model:

(J/ pp) input “phase space”

(J/ pp) and g

NN=13.5

input“real dynamics”

Page 24: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

Now we can calculate NUMERICAL total and differential cross sections for pp any of these cc states + .

We can also answer the big question,

Are any cc states produced more easily in pp than J/?

(i.e. with significantly larger cross sections than ( pp J/) )

Page 25: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

And the big question…

Are any other cc states more easily produced than J/? ANS: Yes, by 1-2 orders of magnitude!

Page 26: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

Final result for cross sections. (All on 1 plot.)

Have also added two E835 points (open) from a PhD thesis.

Page 27: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

An interesting observation:

The differential cross sections have nontrivial angular dependence.e.g. This is the c.m. frame (and m

=0) angular distribution for

pp c at E

cm = 3.5 GeV:

Note the (state-dependent) node, at t = u.

Clearly this and the results for other quantum numbers may have implications for PANDA event identification.

beam axis

Page 28: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

Predicted c.m. frame angular distribution for pp c

normalized to the forward intensity, for Ecm

= 3.2 to 5.0 GeV by 0.2.

spiderman plot

Page 29: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

Predicted c.m. frame angular distribution for pp J normalized to the forward intensity, for E

cm = 3.4 to 5.0 GeV.

Page 30: Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces

END