Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5...

80
Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 Prof. Tonio Buonassisi 1

Transcript of Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5...

Page 1: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Charge Separation Part 1: Diode Lecture 5 – 9/22/2011

MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 Prof. Tonio Buonassisi

1

Page 2: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

2.626/2.627 Roadmap

You Are Here

2

Page 3: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

2.626/2.627: Fundamentals

Charge Excitation

Charge Drift/Diff

usion

Charge Separation

Light Absorption

Charge Collection

Outputs

Solar Spectrum

Inputs

Conversion Efficiency Output Energy

Input Energy

Every photovoltaic device must obey:

For most solar cells, this breaks down into:

total absorptionexcitation drift/diffusion separation collection

3

Page 4: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Liebig’s Law of the Minimum

total absorptionexcitation drift/diffusion separation collection

S. Glunz, Advances in Optoelectronics 97370 (2007)

Image by S. W. Glunz. License: CC-BY. Source: "High-Efficiency Crystalline Silicon Solar Cells." Advances in OptoElectronics (2007).

4

Page 5: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Diode: Essence of Charge Separation

N P

I

N P

I

• What is a diode?

• How is it made?

• Why care about diodes?

5

Page 6: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Diode: Essence of Charge Separation

http://www.radio-electronics.com/info/data/thermionic-valves/vacuum-tube-theory/tube-tutorial-basics.php

Courtesy of Adrio Communications Ltd. Used with permission.

6

Page 7: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

1. Describe how conductivity of a semiconductor can be modified by the intentional introduction of dopants.

2. Draw pictorially, with fixed and mobile charges, how built-in field of pn-junction is formed.

3. Current flow in a pn-junction: Describe the nature of drift, diffusion, and illumination currents in a diode. Show their direction and magnitude in the dark and under illumination.

4. Voltage across a pn-junction: Quantify the built-in voltage across a pn-junction. Quantify how the voltage across a pn-junction changes when an external bias voltage is applied.

5. Draw current-voltage (I-V) response, recognizing that minority carrier flux regulates current.

Learning Objectives: Diode

7

Page 8: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

http://pvcdrom.pveducation.org/

Dopant Atoms

Periodic Table

8

Courtesy of PVCDROM. Used with permission.

Page 9: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Carrier Binding Energy to Shallow Dopant Atoms

E EH

m*

me

1

2 13.6 eV

m*

me

1

2

Carrier binding energy to a shallow (hydrogenic) dopant atom:

9

Courtesy of PVCDROM. Used with permission.

Page 10: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Carrier Binding Energy to Shallow Dopant Atoms

E EH

m*

me

1

2 13.6 eV

m*

me

1

2

Carrier binding energy to a shallow (hydrogenic) dopant atom:

Effective mass correction

Electron screening

10

Courtesy of PVCDROM. Used with permission.

Page 11: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

1. Describe how conductivity of a semiconductor can be modified by the intentional introduction of dopants.

2. Draw pictorially, with fixed and mobile charges, how built-in field of pn-junction is formed.

3. Current flow in a pn-junction: Describe the nature of drift, diffusion, and illumination currents in a diode. Show their direction and magnitude in the dark and under illumination.

4. Voltage across a pn-junction: Quantify the built-in voltage across a pn-junction. Quantify how the voltage across a pn-junction changes when an external bias voltage is applied.

5. Draw current-voltage (I-V) response, recognizing that minority carrier flux regulates current.

Learning Objectives: Diode

11

Page 12: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Gauss’ Law: Review

d

dx

= electric field = charge density = material permittivity

Spatially variant fixed charge creates an electric field:

Example: Capacitor

CapacitorImage by MIT OpenCourseWare.

12

Page 13: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Gauss’ Law: Review

d

dx

= electric field = charge density = material permittivity

Spatially variant fixed charge creates an electric field:

Drift Current: Net charge moves parallel to electric field

From: PVCDROM

Jh qhp

Described by Drift

Equation

Je qen

13 Courtesy of PVCDROM. Used with permission.

Page 14: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011 From PVCDROM

Described by Fick’s

Law

Jh qDh

dp

dx

Je qDe

dn

dx

Diffusion: Review

14Courtesy of PVCDROM. Used with permission.

Page 15: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

+ -

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Recall the Checker Board Example

15

Page 16: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Let’s imagine the n- and p-type materials in contact, but with an imaginary barrier in between them.

16

Page 17: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

How a pn-junction comes into being

17

Courtesy of PVCDROM. Used with permission.

Page 18: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

When that imaginary boundary is removed, electrons and holes diffuse into the other side.

18

Page 19: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Eventually, the accumulation of like charges [(h+ + P+) or (e- + B-)] balances out the diffusion, and steady state condition is reached.

How a pn-junction comes into being

19

Courtesy of PVCDROM. Used with permission.

Page 20: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

The net charge can be approximated as shown above.

How a pn-junction comes into being

Net

Ch

arge

Position

Dashed line = Real charge distribution

Solid line = Approximate charge distr.

20

Courtesy of PVCDROM. Used with permission.

Page 21: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

How a pn-junction comes into being

Net

Ch

arge

Position

Elec

tric

Fie

ld

Position

d

dx

qNA

qNDPo

ten

tial

Position

d

dx o VA

e- En

ergy

Position

E q q o VA 21

Courtesy of PVCDROM. Used with permission.

Page 22: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

e- E

ner

gy

Position

E q q o VA

Summary of Current Understanding

1. When light creates an electron-hole pair, a pn-junction can separate the positive and negative charges because of the built-in electric field.

2. This built-in electric field is established at a pn-junction because of the balance of electron & hole drift and diffusion currents.

22

Courtesy of PVCDROM. Used with permission.

Page 23: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

In-Class Exercise

23

Page 24: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

No Bias Forward Bias Reverse Bias

Band Diagram

I-V Curve

Model Circuit

pn-junction, under dark conditions

E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type

I

V

I

V

I

V

N P +

+

+

-

-

- N P N P

2.626/2.627 Lecture 5 (9/22/2011)

24

Page 25: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

No Bias Forward Bias Reverse Bias

Band Diagram

I-V Curve

Model Circuit

pn-junction, under dark conditions

E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type

I

V

I

V

I

V

N P +

+

+

-

-

- N P N P

2.626/2.627 Lecture 5 (9/22/2011)

Tasks: 1. Draw band diagram (electron energy as a

function of position). 2. Draw relative magnitudes of electron drift

and diffusion currents.

25

Page 26: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

No Bias Forward Bias Reverse Bias

Band Diagram

I-V Curve

Model Circuit

pn-junction, under dark conditions

E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type

I

V

I

V

I

V

N P +

+

+

-

-

- N P N P

2.626/2.627 Lecture 5 (9/22/2011)

26

Page 27: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

No Bias Forward Bias Reverse Bias

Band Diagram

I-V Curve

Model Circuit

pn-junction, under dark conditions

E

h+ diffusion: h+ drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type

I

V

I

V

I

V

N P +

+

+

-

-

- N P N P

2.626/2.627 Lecture 5 (9/22/2011)

27

Page 28: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

No Bias Forward Bias Reverse Bias

Band Diagram

I-V Curve

Model Circuit

pn-junction, under dark conditions

E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type

I

V

I

V

I

V

N P +

+

+

-

-

- N P N P

2.626/2.627 Lecture 5 (9/22/2011)

Tasks: 1. Represent a voltage bias source (e.g., battery)

on the model circuit diagram. Ensure that positive and negative terminals of the battery

are pointing in the correct directions.

28

Page 29: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

No Bias Forward Bias Reverse Bias

Band Diagram

I-V Curve

Model Circuit

pn-junction, under dark conditions

E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type

I

V

I

V

I

V

N P +

+

+

-

-

- N P N P

2.626/2.627 Lecture 5 (9/22/2011)

+ - + -

29

Page 30: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

No Bias Forward Bias Reverse Bias

Band Diagram

I-V Curve

Model Circuit

pn-junction, under dark conditions

E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type

I

V

I

V

I

V

N P +

+

+

-

-

- N P N P

2.626/2.627 Lecture 5 (9/22/2011)

+ - + - Tasks:

1. Draw energy band diagrams, under forward and reverse bias (in the dark).

2. Draw relative magnitudes of electron drift and diffusion currents.

30

Page 31: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

No Bias Forward Bias Reverse Bias

Band Diagram

I-V Curve

Model Circuit

pn-junction, under dark conditions

E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type

I

V

I

V

I

V

N P +

+

+

-

-

- N P N P

2.626/2.627 Lecture 5 (9/22/2011)

+ - + -

31

Page 32: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

No Bias Forward Bias Reverse Bias

Band Diagram

I-V Curve

Model Circuit

pn-junction, under dark conditions

E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type

I

V

I

V

I

V

N P +

+

+

-

-

- N P N P

2.626/2.627 Lecture 5 (9/22/2011)

+ - + -

32

Page 33: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

1. Describe how conductivity of a semiconductor can be modified by the intentional introduction of dopants.

2. Draw pictorially, with fixed and mobile charges, how built-in field of pn-junction is formed.

3. Current flow in a pn-junction: Describe the nature of drift, diffusion, and illumination currents in a diode. Show their direction and magnitude in the dark and under illumination.

4. Voltage across a pn-junction: Quantify the built-in voltage across a pn-junction. Quantify how the voltage across a pn-junction changes when an external bias voltage is applied.

5. Draw current-voltage (I-V) response, recognizing that minority carrier flux regulates current.

Learning Objectives: Diode

33

Page 34: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Carrier Motion

Under equilibrium conditions in a homogeneous material: Individual carriers constantly experience Brownian motion, but the net charge flow is zero. To achieve net charge flow (current), carriers must move via diffusion or drift.

34

Page 35: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Diffusion

From PVCDROM

Described by Fick’s

Law

Jh qDh

dp

dx

Je qDe

dn

dx

35

Courtesy of PVCDROM. Used with permission.

Page 36: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Drift Current

From PVCDROM

Jh qhp

Described by Drift

Equation

Je qen

36

Courtesy of PVCDROM. Used with permission.

Page 37: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Dominates when is

large

Current Density Equations

De kT

q

n

Dh kT

q

p

Einstein Relationships: Relation between drift and diffusion:

Dominates when is

small

Jh qh p qDh

dp

dx

Je qnnqDe

dn

dx

37

Page 38: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

What’s ?

d

dx

= charge density = material permittivity

From differential form of Gauss’ Law (a.k.a. Poisson’s Equation):

We know the charge density is:

q p n ND

NA

ND+ = ionized donor concentration

NA- = ionized acceptor concentration

q p n ND NA Assuming all dopants are ionized at room temperature

In summa:

d

dxq

p n ND NA

38

Page 39: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

What’s ?

Net

Ch

arge

Position

Elec

tric

Fie

ld

Position

d

dx

qNA

qNDPo

ten

tial

Position

d

dx o VA

e- En

ergy

Position

E q q o VA 39

Courtesy of PVCDROM. Used with permission.

Page 40: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Continuity Equations

Je(x)

Je(x+dx)

dx

rate entering - rate exiting A

qJe(x) Je x dx

rate of generation - rate of recombination Adx G U

1

q

dJe

dxU G

A

q

dJe

dxdx

Continuity For electrons:

1

q

dJh

dx U G

For holes:

40

Page 41: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

System of Equations Describing Transport in Semiconductors

1

q

dJe

dxU G

1

q

dJh

dx U G

d

dxq

p n ND NA

Jh qh p qDh

dp

dx

Je qnnqDe

dn

dxDrift and Diffusion

Electric Field

Continuity Equations

41

Page 42: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Possible to Solve Analytically?

No! Coupled set of non-linear differential equations.

…or make series of approximations to solve analytically.

Must solve numerically (e.g., using computer simulations)…

42

Page 43: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

1. Describe how conductivity of a semiconductor can be modified by the intentional introduction of dopants.

2. Draw pictorially, with fixed and mobile charges, how built-in field of pn-junction is formed.

3. Current flow in a pn-junction: Describe the nature of drift and diffusion currents in a diode in the dark. Show their direction and magnitude under neutral, forward, and reverse bias conditions.

4. Voltage across a pn-junction: Quantify the built-in voltage across a pn-junction. Quantify how the voltage across a pn-junction changes when an external bias voltage is applied.

5. Draw current-voltage (I-V) response, recognizing that minority carrier flux regulates current.

Learning Objectives: Diode

43

Page 44: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Band Diagram (E vs. x)

http://pvcdrom.pveducation.org/

New Concept: Chemical Potential

44

Courtesy of PVCDROM. Used with permission.

Page 45: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Band Diagram (E vs. x)

Covalently-bonded

electrons

At absolute zero, no conductivity (perfect insulator).

New Concept: Chemical Potential

45

Courtesy of PVCDROM. Used with permission.

Page 46: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Band Diagram (E vs. x)

At T > 0 K, some carriers are thermally excited across the bandgap.

New Concept: Chemical Potential

46

Courtesy of PVCDROM. Used with permission.

Page 47: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Band Diagram (E vs. x)

At T > 0 K, some carriers are thermally excited across the bandgap.

Thermally excited

electrons

New Concept: Chemical Potential

47

Courtesy of PVCDROM. Used with permission.

Page 48: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Band Diagram (E vs. x)

At T > 0 K, some carriers are thermally excited across the bandgap.

“Intrinsic” Carriers (ni)

New Concept: Chemical Potential

48

Courtesy of PVCDROM. Used with permission.

Page 49: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Band Diagram (E vs. x)

At T > 0 K, some carriers are thermally excited across the bandgap.

New Concept: Chemical Potential

• The chemical potential describes the average energy necessary to add or remove an infinitesimally small quantity of electrons to the system.

• In a semiconductor, the chemical potential is referred to as the “Fermi level.”

Fermi Level

49

Courtesy of PVCDROM. Used with permission.

Page 50: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Fermi Level

Fermi Level

EF E i kbT lnND

ni

EF E i kbT ln

NA

ni

We assume: All dopants are ionized!

p-type n-type

50

Courtesy of PVCDROM. Used with permission.

Page 51: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Distance, x

Ener

gy, e

V

Transition region

p-type n-type

Fermi Level, EF

Voltage Across a pn-Junction

51

Page 52: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Distance, x

Ener

gy, e

V

Fermi Level, EF

EF - EV

EC - EF

qo

qo Eg EF EV EC EF Built-in pn-junction

potential a function of dopant concentrations.

kT

qlnNAND

ni2

p-type n-type

Voltage Across a pn-Junction

52

Page 53: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Derivation

qo Eg EF EV EC EF

Eg kT lnNV

NA

kT ln

NC

ND

Eg kT lnNCNV

NAND

o kT

qlnNAND

ni2

Built-in pn-junction potential a function of dopant concentrations.

53

Page 54: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Distance, x

Ener

gy, e

V

Fermi Level, EF

EF - EV

EC - EF

qo

qo Eg EF EV EC EF Built-in pn-junction

potential a function of dopant concentrations.

kT

qlnNAND

ni2

p-type n-type

Voltage Across a pn-Junction

54

Page 55: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Voltage Across a Biased pn-Junction

Distance, x

Ener

gy, e

V

Fermi Level, EF

EF - EV

EC - EF

q(o-VA)

p-type n-type

q o VA kbT lnNAND

ni2

VA

VA

55

Page 56: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Distance, x

Ener

gy, e

V

Fermi Level, EF

EF - EV

EC - EF

qo

p-type n-type

Effect of Bias on Width of Space-Charge Region

Transition region

qo kT

qlnNAND

ni2

56

Page 57: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Effect of Bias on Width of Space-Charge Region

Distance, x

Ener

gy, e

V

Fermi Level, EF

EF - EV

EC - EF

q(o-VA)

p-type n-type

q o VA kbT lnNAND

ni2

VA

VA

Transition region

57

Page 58: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

No Bias Forward Bias Reverse Bias

Band Diagram

I-V Curve

Model Circuit

pn-junction, under dark conditions

E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type

I

V

I

V

I

V

N P +

+

+

-

-

- N P N P

2.626/2.627 Lecture 5 (9/22/2011)

+ - + -

+

+

-

- +

+

+

-

-

- -

-

+

+

58

Page 59: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

1. Describe how conductivity of a semiconductor can be modified by the intentional introduction of dopants.

2. Draw pictorially, with fixed and mobile charges, how built-in field of pn-junction is formed.

3. Current flow in a pn-junction: Describe the nature of drift and diffusion currents in a diode in the dark. Show their direction and magnitude under neutral, forward, and reverse bias conditions.

4. Voltage across a pn-junction: Quantify the built-in voltage across a pn-junction. Quantify how the voltage across a pn-junction changes when an external bias voltage is applied.

5. Draw current-voltage (I-V) response, recognizing that minority carrier flux regulates current.

Learning Objectives: Diode

59

Page 60: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Carrier Concentrations Across a pn-Junction

Ln (

n),

Ln

(p

)

Distance, x

Transition region

p = pp0 ≈ NA

n = np0 ≈ ni2/NA

n = nn0 ≈ ND

p = pn0 ≈ ni2/ND

Approximation 1: Device can be split into two types of region: quasi-neutral regions (space-charge density is assumed zero) and the depletion region (where carrier concentrations are small, and ionized dopants contribute to fixed charge).

p-type n-type

60

Page 61: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Width of space charge region

Ln (

n),

Ln

(p

)

Distance, x

Transition region

p = pp0 ≈ NA

n = np0 ≈ ni2/NA

n = nn0 ≈ ND

p = pn0 ≈ ni2/ND

W ln lp 2

qo Va

1

NA

1

ND

p-type n-type

61

Page 62: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Width of space charge region

Ln (

n),

Ln

(p

)

Distance, x

Transition region

p = pp0 ≈ NA

n = np0 ≈ ni2/NA

n = nn0 ≈ ND

p = pn0 ≈ ni2/ND

W ln lp 2

qo Va

1

NA

1

ND

Width of the space-charge

region

NB: Actually * o, where o, the vacuum permittivity, is

8.85x10-12 F/m or 5.53x107 e/(V*m)

p-type n-type

62

Page 63: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Capacitance

Ln (

n),

Ln

(p

)

Distance, x

Transition region

p = pp0 ≈ NA

n = np0 ≈ ni2/NA

n = nn0 ≈ ND

p = pn0 ≈ ni2/ND

C A

W

Device capacitance

pn-junction area

p-type n-type

63

Page 64: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Capacitance

Ln (

n),

Ln

(p

)

Distance, x

Transition region

p = pp0 ≈ NA

n = np0 ≈ ni2/NA

n = nn0 ≈ ND

p = pn0 ≈ ni2/ND

C

A

qN

2 o Va

When one side of the pn-junction is heavily doped, the

capacitance reduces to this expression

p-type n-type

64

Page 65: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Pn-junction under zero bias

Ln (

n),

Ln

(p

)

Distance, x

Transition region

p = pp0 ≈ NA

n = np0 ≈ ni2/NA

n = nn0 ≈ ND

p = pn0 ≈ ni2/ND

p-type n-type

65

Page 66: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Pn-junction under forward bias

Ln (

n),

Ln

(p

)

Distance, x

Transition region

p = pp0 ≈ NA

np0

n = nn0 ≈ ND

pn0

npa

pnb

a b

p-type n-type

66

Page 67: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Pn-junction under forward bias

Ln (

n),

Ln

(p

)

Distance, x

Transition region

p = pp0 ≈ NA

np0

n = nn0 ≈ ND

pn0

npa

pnb

pnb pn0 pp0 exp qo

kT

ni2

ND

npa np0 nn0 exp qo

kT

ni2

NA

At zero bias:

a b

p-type n-type

67

Page 68: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Current flow through the depletion region

Ln (

n),

Ln

(p

)

Distance, x

Transition region

p = pp0 ≈ NA

np0

n = nn0 ≈ ND

pn0

npa

pnb

Jh qh p qDh

dp

dxFor holes:

Drift current Diffusion current

a b

p-type n-type

68

Page 69: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Current flow through the depletion region

Ln (

n),

Ln

(p

)

Distance, x

Transition region

p = pp0 ≈ NA

np0

n = nn0 ≈ ND

pn0

npa

pnb

kT

q

1

p

dp

dxFor holes:

Approximation 2: Assume Jh is small!

a b

p-type n-type

69

Page 70: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Current flow through the depletion region

Ln (

n),

Ln

(p

)

Distance, x

Transition region

p = pp0 ≈ NA

np0

n = nn0 ≈ ND

pn0

npa

pnb

o Va kT

qln(p)

a

bIntegrating…

kT

qlnppa

pnb

a b

p-type n-type

70

Page 71: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Current flow through the depletion region

Ln (

n),

Ln

(p

)

Distance, x

Transition region

p = pp0 ≈ NA

np0

n = nn0 ≈ ND

pn0

npa

pnb

ppa NA npaApproximation 3: Only cases where minority carriers have a much lower concentration than majority carriers will be considered, i.e., ppa >> npa, nna >> pna

a b

p-type n-type

71

Page 72: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Current densities

Jh qDh

dp

dx

... from previous slide ...

Jh (x) qDh pn0

LheqV / kT 1 ex /L h

Je (x') qDenn0

LeeqV / kT 1 ex /L e

Je Jh

x’ x b a

J

Calculate (diffusive) currents in quasi-neutral region:

72

Page 73: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Current densities

dJe dJh q U G dxW

0

0

Magnitude of the change in current across the depletion region:

Key assumption: W is small compared to Le and Lh. Therefore, integral is negligible. It follows that the current Je and Jh are essentially constant across the depletion region, as shown below.

Jtotal

Jh Je

Je Jh

x’ x b a

J

1

q

dJe

dxU G

1

q

dJh

dx

73

Page 74: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Ideal Diode Equation

I Io eqV / kT 1 , where

Io AqDeni

2

LeNAqDhni

2

LhND

Jtotal Je x'0 Jh x0

qDenp0

LeqDh pn0

Lh

e

qV / kT 1

This leads to the ideal diode law:

Since Je and Jh are known at all points in the depletion region, we can calculate the total current:

74

Page 75: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Key Point

• The IV response of a pn-junction is determined by changes in minority carrier current at the edge of the space-charge region.

75

Page 76: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Readings are strongly encouraged

• Green, Chapter 4

• http://www.pveducation.org/pvcdrom/, Chapters 3 & 4.

76

Page 77: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

No Bias Forward Bias Reverse Bias

Band Diagram

I-V Curve

Model Circuit

pn-junction, under dark conditions

E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type

I

V

I

V

I

V

N P +

+

+

-

-

- N P N P

2.626/2.627 Lecture 5 (9/22/2011)

+ - + -

+

+

-

- +

+

+

-

-

- -

-

+

+

77

Page 78: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

No Bias Forward Bias Reverse Bias

Band Diagram

I-V Curve

Model Circuit

pn-junction, under dark conditions

E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type E

e- diffusion: e- drift:

x

p-type n-type

I

V

I

V

I

V

N P +

+

+

-

-

- N P N P

2.626/2.627 Lecture 5 (9/22/2011)

+ - + -

+

+

-

- +

+

+

-

-

- -

-

+

+

X

X

X

78

Page 79: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

Buonassisi (MIT) 2011

Hands-On: Measure Solar Cell IV Curves

79

Page 80: Charge Separation Part 1: Diode - MIT OpenCourseWare · Charge Separation Part 1: Diode Lecture 5 – 9/22/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 . Prof.

MIT OpenCourseWarehttp://ocw.mit.edu

2.627 / 2.626 Fundamentals of PhotovoltaicsFall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.