Chapter_10.pptx

download Chapter_10.pptx

of 47

Transcript of Chapter_10.pptx

  • 8/10/2019 Chapter_10.pptx

    1/47

    Chemical Bonding I : Basic Concepts

    Copyright 2011 Pearson Canada Inc.

    ONTENTS

    10-1 Lewis Theory: An Overview

    10-2 Covalent Bonding: An

    Introduction

    10-3 Polar Covalent Bonds andElectrostatic Potential Maps

    10-4 Writing Lewis Structures

    10-5 Resonance

    10-6 Exceptions to the Octet Rule

    10-7 Shapes of Molecules

    10-8 Bond Order and Bond Length

    10-9 Bond Energies

  • 8/10/2019 Chapter_10.pptx

    2/47

    Lewis Theory: An Overview

    Valence e-

    play afundamental role in chemical

    bonding.

    e-transfer leads to

    ionic bonds.

    Sharing of e-leads to

    covalent bonds.

    e-

    are transferred or shared togive each atom a noble gas

    configuration

    the octet.

  • 8/10/2019 Chapter_10.pptx

    3/47

    Lewis Symbols

    A chemical symbol represents the nucleus

    and the coree-.

    Dots around the symbol represent valence e-.

    Si

    N

    P

    As

    Sb

    Bi

    Al

    Se

    Ar

    I

  • 8/10/2019 Chapter_10.pptx

    4/47

    Ba O

    O

    Ba2+ 2-BaO

    Writing Lewis Structures of Ionic Compounds. Write Lewisstructures for the following compounds: (a) BaO; (b) MgCl2;

    (c) aluminum oxide.

    Note the use of the fishhook arrow to denote a

    single electron movement. A double headed

    arrow means that two electrons move.

    Example

  • 8/10/2019 Chapter_10.pptx

    5/47

    Mg

    Cl

    Cl

    Cl

    Mg

    2+ -2MgCl2

    Example Continued

  • 8/10/2019 Chapter_10.pptx

    6/47

  • 8/10/2019 Chapter_10.pptx

    7/47

    Coordinate Covalent Bonds

    HN

    H

    HH

    N

    H

    HH

    H

    +

    Cl

    Cl

    -

    Note the double headed arrow

    showing that two electrons move.

  • 8/10/2019 Chapter_10.pptx

    8/47

    Multiple Covalent Bonds

    C

    O

    O

    CO O

    CO O

    CO O

  • 8/10/2019 Chapter_10.pptx

    9/47

    Multiple Covalent Bonds

    N

    N N

    N

    N N

    N N

  • 8/10/2019 Chapter_10.pptx

    10/47

    Paramagnetism of Oxygen

  • 8/10/2019 Chapter_10.pptx

    11/47

    Polar Covalent Bonds and Electrostatic

    Potential Maps

  • 8/10/2019 Chapter_10.pptx

    12/47

    Polar Molecules

  • 8/10/2019 Chapter_10.pptx

    13/47

    Electronegativity

  • 8/10/2019 Chapter_10.pptx

    14/47

    Percent I onic Character

  • 8/10/2019 Chapter_10.pptx

    15/47

    Writing Lewis Structures

    Allthe valence e-of atoms must appear.

    Usually,the e- are paired.

    Usually, each atom requires an octet. H only requires 2e-.

    Multiple bonds may be needed.

    Readily formed by C, N, O, S, and P.

  • 8/10/2019 Chapter_10.pptx

    16/47

    Skeletal Structure

    Identify centraland terminalatoms.

    C

    H

    HH

    HC

    H

    HO

  • 8/10/2019 Chapter_10.pptx

    17/47

    Skeletal Structure

    Hydrogen atoms are always terminal atoms.

    Central atoms are generally those with the

    lowest electronegativity.

    Carbon atoms are always central atoms.

    Generally structures are compact and

    symmetrical.

  • 8/10/2019 Chapter_10.pptx

    18/47

    Strategy for

    Writing LewisStructures

  • 8/10/2019 Chapter_10.pptx

    19/47

    Writing a Lewis Structure for a Polyatomic Ion. Write theLewis structure for the nitronium ion, NO2+.

    Step 1: Total valence e-= 5 + 6 + 61 = 16 e-

    Step 3: Plausible structure: ONO

    Step 4: Add e-to terminal atoms: ONO

    Step 2: Identify the central and terminal atoms

    Polyatomic I on

  • 8/10/2019 Chapter_10.pptx

    20/47

    Step 6: Use multiple bonds to satisfy octets.

    ONO

    O=N=O

    Step 5: Determine e-left over: 16412 = 0

    +

  • 8/10/2019 Chapter_10.pptx

    21/47

    Formal Charge

    FC = #valence e-- #lone pair e-- #bond pair e-21

    FC(O) = 6 - 4 (4) = 02

    1

    FC(N) = 5 - 0 (8) = +12

    1

    O=N=O+

  • 8/10/2019 Chapter_10.pptx

    22/47

    Alternative Lewis Structure

    ONO

    + -+

    FC(O) = 6 - 2 (6) = +12

    1

    FC(N) = 5 - 0 (8) = +12

    1

    FC(O) = 6 - 6 (2) = -12

    1

    O N O

  • 8/10/2019 Chapter_10.pptx

    23/47

    Alternative Lewis Structures

    Sum of FC is the overall charge.

    FC should be as small as possible.

    Negative FC is usually on the most electronegative

    elements.

    FC of same sign on adjacent atoms is unlikely.

    +

    ONO

    -+

  • 8/10/2019 Chapter_10.pptx

    24/47

    Using the Formal Charge in Writing Lewis Structures. Write

    the most plausible Lewis structure of nitrosyl chloride, NOCl.

    2+ 2- - 2+ - +-

    Example

  • 8/10/2019 Chapter_10.pptx

    25/47

    Resonance

    O O O O O O

    + +- -

    O O O

    + --

  • 8/10/2019 Chapter_10.pptx

    26/47

    Exceptions to the Octet Rule

    Odd e- species (Radicals)

    N=O

    HCH

    H

    OH

  • 8/10/2019 Chapter_10.pptx

    27/47

    Exceptions to the Octet Rule

    Incomplete octets.

    B

    F

    FF

    B

    F

    FF

    -

    +

    B

    F

    FF

    -

    +

  • 8/10/2019 Chapter_10.pptx

    28/47

    Exceptions to the Octet Rule

    Expanded valence shells.

    P

    Cl

    ClCl

    P

    Cl

    Cl

    Cl

    Cl

    ClS

    F

    F

    F

    F

    F

    F

  • 8/10/2019 Chapter_10.pptx

    29/47

    Expanded Valence Shell

  • 8/10/2019 Chapter_10.pptx

    30/47

    The Shapes of Molecules

    H O H

  • 8/10/2019 Chapter_10.pptx

    31/47

    Terminology

    Bond lengthdistance between nuclei.

    Bond angleangle between adjacent bonds.

    VSEPR Theory

    Electron pairs repel each other whether they are in

    chemical bonds (bond pairs) or unshared (lone pairs).

    Electron pairs assume orientations about an atom to

    minimize repulsions.

    Electron group geometrydistribution of e-pairs.

    Molecular geometrydistribution of nuclei.

  • 8/10/2019 Chapter_10.pptx

    32/47

    Balloon Analogy

  • 8/10/2019 Chapter_10.pptx

    33/47

    Methane, Ammonia and Water

    Charge clouds of the lone pair electrons spread out.

  • 8/10/2019 Chapter_10.pptx

    34/47

    Molecular Geometry as a Function of

    Electron Group Geometry

  • 8/10/2019 Chapter_10.pptx

    35/47

  • 8/10/2019 Chapter_10.pptx

    36/47

  • 8/10/2019 Chapter_10.pptx

    37/47

  • 8/10/2019 Chapter_10.pptx

    38/47

  • 8/10/2019 Chapter_10.pptx

    39/47

  • 8/10/2019 Chapter_10.pptx

    40/47

    Applying VSEPR Theory

    Drawa plausible Lewis structure. Determinethe number of e-groups and identify them

    as bondor lonepairs.

    Establish the e-

    group geometry. Determine the molecular geometry.

    Multiple bonds count as one group of electrons.

    More than one central atom can be handled

    individually.

    Di l M t

  • 8/10/2019 Chapter_10.pptx

    41/47

    Dipole Moments

    The extent of the charge displacement in a polar covalent bond is

    given by dipole moment.

  • 8/10/2019 Chapter_10.pptx

    42/47

    Molecular Shape and Dipole Moments

    B d O d d B d L th

  • 8/10/2019 Chapter_10.pptx

    43/47

    Bond Order and Bond Length

    Bond Order

    Single bond, order = 1

    Double bond, order = 2

    Bond Length Distance between two nuclei

    Higher bond order

    Shorter bond

    Stronger bond

  • 8/10/2019 Chapter_10.pptx

    44/47

  • 8/10/2019 Chapter_10.pptx

    45/47

    Bond Energies

    Bond-dissociation energy : The

    quantity of energy required to break

    one mole of covalent bonds in a

    gaseous species.

  • 8/10/2019 Chapter_10.pptx

    46/47

  • 8/10/2019 Chapter_10.pptx

    47/47

    The reaction of methane (CH4) and chlorine produces a mixture

    of products called chloromethanes. One of these ismonochloromethane, CH3Cl, used in the preparation of silicones.

    Calculate H for the reaction.

    Hrxn = H(bond breakage) - H(bond formation)

    = BE (reactants)- BE (products)

    = 657 kJ/mol770 kJ/mol = -113 kJ/mol

    Calculating an Enthalpy of Reaction