Chapter ter 8 8 Integration Technology usi TSVing TSV

35
Chapter Chapter 8 8 Introduction to 3D Introduction to 3D Integration Technology Integration Technology i TSV i TSV using TSV using TSV Jin-Fu Li Jin Fu Li Department of Electrical Engineering National Central University National Central University Jungli, Taiwan

Transcript of Chapter ter 8 8 Integration Technology usi TSVing TSV

Chapter Chapter 8 8 ppIntroduction to 3D Introduction to 3D

Integration Technology Integration Technology i TSVi TSVusing TSVusing TSV

Jin-Fu LiJin Fu LiDepartment of Electrical Engineering

National Central UniversityNational Central UniversityJungli, Taiwan

Outline

Why 3D Integration A E l TSV P FlAn Exemplary TSV Process FlowStacking Strategiesg gConcept of 3D IC DesignSSummary

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2

IC Technology Evolution

ChipChip

Single-chip package

Printed wiring board(PCB) RF

Analog

Package

Flash

CPU

Other

Chemical &Bio Sensors

Package

3D-SIPRF

ADCDAC

NanoDeviceMEMS

Other Sensors,Imagers

Processor

Memory Stack

DAC

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU

3D-IC Energy/Power

Why 3D IntegrationIntegrating more and more transistors in a single chip to support more and more powerful functionality is a trend

Using 2D integration technology to implement such complex chips is more and more expensive and difficult

S l i h l i i Some alternative technologies attempting to cope with the bottlenecks of 2D integration

h l h b dtechnology have been proposed3D integration technology using through silicon g gy g gvia (TSV) has been acknowledged as one of the future chip design technologies

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 4

3D Integration Technology Using TSV

3D integration technology using TSVMultiple dies are stacked and TSV is used for the Multiple dies are stacked and TSV is used for the inter-die interconnection

Die 1Die 2

Die 3

TSV

The fabrication flow of a 3D IC Di / f ti

TSV

Die/wafer preparationDie/wafer assembly

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 5

What is TSVThrough Silicon Via (TSV):

A via that goes through the silicon substrate Used for dies stacking

Top Bump

i i l

CMOSDiameter

Al wiring TSVWiring layer

Diameter50 um or less

Top Bump

SiO2 insulatorVia made by laser

Typical TSV technologiesVia first via middle and via last technologies

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 6

Via-first, via-middle, and via-last technologies

Via-First TSV TechnologyVia-First TSV

(1) Before CMOS

(2) After CMOS & BEOL

Source: Yole, 2007.

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 7

Via-Last TSV TechnologyVia-Last TSV

(1) After BEOL & before bonding

(2) After bonding

Source: Yole 2007

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 8

Source: Yole, 2007.

An Exemplary Via-Last Process Flow (1/6)

Step 1: A wafer with CMOS circuits

… … …

MOSFET MOSFETRef :ITRI

Substrate

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 9

An Exemplary Via-Last Process Flow (2/6) Step 2: via etching

… … …Via machining(by etching or laser dilling)

MOSFET MOSFET

Substrate

Ref :ITRI

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 10

An Exemplary Via-Last Process Flow (3/6) Step 3: via filling

… …… Via filling

MOSFET MOSFET

S b

Ref :ITRI

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 11

Substrate

An Exemplary Via-Last Process Flow (4/6) Step 4: wafer thinning

… … …

50 ~ 100 μm

Wafer thinning

50 100 μm

Ref :ITRI

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 12

g

An Exemplary Via-Last Process Flow (5/6) Step 5: micro bump forming

Micro Bump

… … …

Ref :ITRI

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 13

An Exemplary Via-Last Process Flow (6/6) Step 6: stacking

… …

TSV

… …

TSV

Micro (μ) Bump

ABF(Ajinomoto B ilt i Fil )Built-in Film)

… … ……Ref :ITRI

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 14

An Exemplary 3D IC using Via-Last TSV

Bonding Bonding

P-Substrate 3rd ChipAdhesive Adhesive

N Well N Well N Well

TSVN+ N+ N+ N+ N+ N+ N+P+P+P+P+P+

P-Substrate 2nd Chip

N Well N Well N Well

TSVN+ N+ N+ N+ N+ N+ N+P+P+P+P+P+

N

P-Substrate 1st Chip

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 15

3-Tier 3D IC Cross-Section

Source: E. G. Friedman, University of Rochester.

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 16

Die/Wafer AssemblyBonding technologies for 3D ICs

Wafer-to-wafer (W2W) Die-to-Wafer (D2W) and Wafer to wafer (W2W), Die to Wafer (D2W), and Die-to-Die (D2D)

Comparison of different bonding technologiesComparison of different bonding technologies

D2D D2W W2WYieldFl ibilit

HighHi h

HighG d

LowPFlexibility

Production ThroughputHighLow

GoodGood

PoorHigh

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 17

Stacking Strategies

μ Bump μ Bump μ Bump

Die2TSV

D2D Vias

Metal

Active SiDie1

Bulk Si

face-to-face back-to-back face-to-back

Lewis D L et al “A ScanIsland Based Design Enabling Prebond Testability in DieStacked Microprocessors ”

face-to-face back-to-back face-to-back

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 18

Lewis, D.L. et al, A ScanIsland Based Design Enabling Prebond Testability in DieStacked Microprocessors, in proc. IEEE International Test Conference (ITC), 2007, pp. 1-8

Fabrication Steps for Face-to-Face Stacking

Die211 22 33 44 55Die2Die2

Die233 55

Metal

Active Si

Bulk Si

Metal

Active Si

Bulk Si

Metal

Active Si

Bulk Si

Metal

Active Si

Bulk Si

Metal

Active Si

Bulk SiBulk Si

Die1 Die2 Die1

Bulk Si

Die1 Die2

Bulk Si Bulk Si

Die1

Bulk Si

Die1

Loh, Gabriel H. et al, “Processor Design in 3D Die-Stacking Technologies,” in IEEE Micro, vol.27, issue 3, pp. 31-48, 2007

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 19

Fabrication Steps for Face-to-Back Stacking

Die2 Die211 22 33 44 55

Handle wafer

Metal

Active Si

Bulk Si

Metal

Active Si

Bulk Si

Metal

Active SiBulk Si

Metal

Active Si

B lk Si

Metal

Active Si

B lk SiBulk Si

Die1 Die2Bulk Si

Die1 Die2Bulk Si

Die1 Die2Bulk Si

Die1Bulk Si

Die1

Loh Gabriel H et al “Processor Design in 3D Die Stacking Technologies ”Loh, Gabriel H. et al, Processor Design in 3D Die-Stacking Technologies, in IEEE Micro, vol.27, issue 3, pp. 31-48, 2007

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 20

Electrical Characteristics of TSV

Capacitance of TSVTop Bump

CMOS

Top Bump

Diameter

Al wiring TSVWiring layer

DiameterTSV Length

Dielectric Thickness

TSV Dia TSV Diel TSV Length Cap [fF]TSV Dia[um]

TSV DielThk [nm]

TSV Length[um]

Cap [fF]

5 50 20 239.5

5 100 20 135 25 100 20 135.2

10 50 20 496.4

10 100 20 288.3

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 21

0 00 0 88.3

Source: Proceedings of IEEE, pp. 101, Jan. 2009

RC Characteristics of TSV

1 FO4 = 22 ps

Die1

Die2~ 0.35*RCviastack

D v

ia

p(BSIM 70nm)

M9

via9

D2D

225 ps

… … M2 RCviastack

1-mm top-level metal

4x minimum size

> 11 FO4

M1

i 1

via24x minimum size

F2F D2D i8 ps

MOSFET

via1 F2F D2D via ~ 1/3*FO4

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 22

Loh, Gabriel H. et al, “Processor Design in 3D Die-Stacking Technologies,” in IEEE Micro, vol.27, issue 3, pp. 31-48, 2007

Benefits of 3D IntegrationBenefits of 3D integration over 2D integrationintegration

High functionalityHigh performanceSmall form factorLow energy

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 23

Source: Proceedings of IEEE, Jan. 2009

High Functionality

Heterogeneous integrationCombine disparate Chemical &

Bi SCombine disparate technologies

DRAM, flash, RF, etc.

Other Sensors,Imagers

Bio Sensors

, f , ,Combine different technology RF

NanoDeviceMEMSgy

nodesE.g., 65nm technology and 45nm t h l

ADCDAC

technology

Processor

Memory Stack

Energy/Power

Processor

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 24

Source: Proceedings of IEEE, Jan. 2009

High Performance

3D integration technology can reduce the length of the long interconnections using TSVlength of the long interconnections using TSVFor example,

By

x x

B

x x

1 2y

1 2 z

3 4

A

y y 3 4

AA

L2D=x+2y L3D=x+y+z

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 25

3D y

High Bandwidth3D IC allows much more IO resources than 2D ICICFor example,

Stacking of processor and memoryStacking of processor and memory

Memory Memoryy Memory

CPUCPU

B d idth i li it d b IO Many TSVs are allowed for

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 26

Bandwidth is limited by IOs yhigh bandwidth transportation

Low Energy

SOBEnergy

SIPRF

AnalogFlash

CPU 3D IC

Package

CPU

RF

3D-IC

SRAM

Flash

Analog

CPU

Package

SRAM

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 27

Technology

3D IC Design Approaches

L2 D$robIdq

bpredrf

rs

CPU

L2

L2

MultipleCores

I$tlbIF

bpred

alu stq

L2 L2dec

F ti U it Bl k (FUB)Entire Core

VDD

Function Unit Block (FUB)Entire Core

gndX

Y

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 28

Transistors (circuit) LevelLogic gates (FUB splitting)

2D RAM

WordlinesBitlines

Blo

ck 0

WL

Dec

Blo

ck 1

WL

Dec

Blo

ck 2

WL

Dec

Blo

ck 3

WL

Dec

BW

Mux & SA

BW

Mux & SA

BW

Mux & SA

BW

Mux & SA

WL Pre DecAddress input

4c

Mux & SA

4cMux & SA

4c

Mux & SA

4c

Mux & SA

WL Pre-DecData output

Ls

Blo

ck 4

WL

De

Blo

ck 4

WL

De

Blo

ck 4

WL

De

Blo

ck 4

WL

De

128

WL

256 BLsRAM Subarray

Y.-F. Tsai et al, “Design Space Exploration for 3-D Cache,”

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 29

IEEE Transactions on Very Large Scale Integration (TVLSI), vol.16, issue 4, pp. 444-555, 2008

3D Wordline-Partitioned RAM

-2ec -2ec -2ec -2ec

k 0-

2

Dec

k 1-

2

Dec

k 2-

2

Dec

k 3-

1

DecB

lock

0

WL

De

SA 0 2

Blo

ck 1

WL

De

SA 1 2

Blo

ck 2

WL

De

SA 2 2

Blo

ck 3

WL

De

SA 3 2

Blo

ck

WL

SA 0-2

Blo

ck

WL

SA 1-2

Blo

ck

WL

SA 2-2

Blo

ck

WL

SA 3-1

SA 0-2

WL Pre-DecAddress inputData output

SA 1-2 SA 2-2 SA 3-2

SA 4-2 SA 5-2 SA 6-2 SA 7-22WL Pre-Dec2 2

SA 4-2

SA 5-2

SA 6-2 SA 7-1

lock

4-2

WL

Dec

SA 4 2

lock

5-2

WL

Dec

SA 5 2

lock

6-2

WL

Dec

SA 6 2

lock

7-2

WL

Dec

SA 7 2

128

WLs

Blo

ck 4

-2

WL

Dec

Blo

ck 5

-2

WL

Dec

Blo

ck 6

-2

WL

Dec

Blo

ck 7

-1

WL

Dec

BlW BlW BlW BlW

128 BLs

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 30

Y.-F. Tsai et al, “Design Space Exploration for 3-D Cache,” IEEE Transactions on Very Large Scale Integration (TVLSI), vol.16, issue 4, pp. 444-555, 2008

3D Bitline-Partitioned RAM

c c c c

Block 0 2WL ec Block 1 2WL ec Block 2 2WL ec Block 3 1WL ec

Block 0-2

WL

De

Mux & SA

Block 1-2

WL

De

Mux & SA

Block 2-2

WL

De

Mux & SA

Block 3-2

WL

De

Mux & SABlock 0-2W D

e

Mux & SA

WL Pre Dec

Block 1-2W De

Mux & SA

Block 2-2W De

Mux & SA

Block 3-1W De

Mux & SAWL Pre-DecAddress input

Data output

c

Mux & SA

c

Mux & SA

c

Mux & SA

c

Mux & SAWL Pre-Dec

Bl k 4 1Dec

Mux & SA

Bl k 5 1Dec

Mux & SA

Bl k 6 1Dec

Mux & SA

Bl k 7 1Dec

Mux & SA

WLs

Block 4-2

WL

Dec

Block 5-2W

L D

ecBlock 6-2

WL

Dec

Block 7-2

WL

Dec

Block 4-1

WL

D Block 5-1

WL

D Block 6-1

WL

D Block 7-1

WL

D

64 W

256 BLs

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 31

Y.-F. Tsai et al, “Design Space Exploration for 3-D Cache,” IEEE Transactions on Very Large Scale Integration (TVLSI), vol.16, issue 4, pp. 444-555, 2008

Design Example: 3D RAM

Source: G. H. Loh, ISCA 2008

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 32

Design Example

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 33

Source: ASP-DAC 2009.

Road Map of 3D Integration with TSVs

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 34

Source: Proceedings of IEEE, Jan. 2009

Summary

3D integration technology using TSV is one of future IC design technologiesIt can offer many advantages over the 2D y gintegration technologyHowever there are some challenges should be However, there are some challenges should be overcome before volume-production of TSV-based 3D IC becomes possiblebased 3D IC becomes possible

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 35